14.09.2014 Views

GPDs and spin effects in light mesons production. - IPN

GPDs and spin effects in light mesons production. - IPN

GPDs and spin effects in light mesons production. - IPN

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>GPDs</strong> <strong>and</strong> <strong>sp<strong>in</strong></strong> <strong>effects</strong> <strong>in</strong> <strong>light</strong> <strong>mesons</strong><br />

<strong>production</strong>.<br />

S.V. Goloskokov<br />

Bogoliubov Laboratory of Theoretical Physics, Jo<strong>in</strong>t Institute for Nuclear Research,<br />

Dubna 141980, Moscow region, Russia<br />

• Factorization of Vector meson lepto<strong>production</strong> .<br />

• Model for <strong>GPDs</strong>.<br />

• Modified PA<br />

• Cross section for vector meson <strong>production</strong> <strong>in</strong> a wide energy range.<br />

• Results for A UT asymmetry at HERMES <strong>and</strong> COMPASS<br />

• Some new results on <strong>production</strong> of π <strong>mesons</strong>.<br />

In collaboration with P. Kroll, Wuppertal<br />

arXiv:0906.0460; Euro. Phys. J. C59, 809 (2009); C53, 367 (2008);C50, 829 (2007)<br />

———————————————————————————<br />

<strong>IPN</strong> ORSAY January 26, 2010


© £<br />

<br />

¦©<br />

¡<br />

©<br />

¢¨§<br />

¤¥<br />

¨¦<br />

¡<br />

¢¨£<br />

¤¥<br />

¨<br />

¡<br />

¦<br />

¡<br />

¤¥<br />

¡<br />

¢ £<br />

H<strong>and</strong>bag factorization of Vector Mesons <strong>production</strong> amplitude<br />

• Large Q 2 - factorization <strong>in</strong>to a hard meson photo<strong>production</strong> off partons, <strong>and</strong> <strong>GPDs</strong>. (LL )<br />

Radyushk<strong>in</strong>, Coll<strong>in</strong>s,Frankfurt Strikman<br />

k = ((x + ξ)p + , ....)<br />

¢ §<br />

¤¥<br />

k ′ = ((x − ξ)p + , ....)<br />

k ≠ k ′ ; ξ ∼<br />

x B<br />

2 − x B<br />

L → L transition - predom<strong>in</strong>ant. Other amplitudes are suppressed as powers 1/Q<br />

The process of VM <strong>production</strong><br />

• φ <strong>production</strong> (gluon&strange sea)<br />

• ρ, ω <strong>production</strong> (gluon&sea&valence quarks)<br />

• Charge <strong>mesons</strong>- transition <strong>GPDs</strong>


Generalized Parton Distributions<br />

D.Mueller, 1994; Ji, 1997; Radyushk<strong>in</strong>, 1997<br />

ξ = (p − p′ ) +<br />

(p + p ′ ) + ∼ x b<br />

2 , x = ¯k + /¯p + , t<br />

×<br />

〈p ′ ν ′ | ∑ a,a ′ A aρ (0) A a′ ρ ′ (¯z)|pν〉 ∝<br />

{ū(p ′ ν ′ ) n/u(pν)<br />

2¯p · n<br />

+ ū(p′ ν ′ ) n/γ 5 u(pν)<br />

2¯p · n<br />

∫ 1<br />

0<br />

dx<br />

(x + ξ − iε)(x − ξ + iε) e−i(x−ξ)p·¯z<br />

H g (x, ξ, t) + ū(p′ ν ′ ) i σ αβ n α ∆ β u(pν)<br />

E g (x, ξ, t)<br />

4m ¯p · n<br />

˜H g (x, ξ, t) + ū(p′ ν ′ }<br />

) n · ∆ γ 5 u(pν)<br />

Ẽ g (x, ξ, t) .<br />

4m ¯p · n<br />

H g (x, 0, 0) = x g(x); ˜Hg (x, 0, 0) = x ∆g(x) (1)<br />

(Ẽ) determ<strong>in</strong>e ma<strong>in</strong>ly proton <strong>sp<strong>in</strong></strong>-flip – Some contribution for unpo-<br />

Distributions E g (x, ξ, t),<br />

larized case at moderate x.


Modell<strong>in</strong>g the <strong>GPDs</strong><br />

The double distributions for <strong>GPDs</strong> Radyushk<strong>in</strong> ’99 .<br />

– simple for the double distributions. Regge form: α i = α i (0) + α ′ t<br />

f i (β, α, t) = h i (β, t)<br />

⋆ Gluon contribution (n=2).<br />

Γ(2n i + 2)<br />

2 2n i+1<br />

Γ 2 (n i + 1)<br />

[(1 − |β|) 2 − α 2 ] n i<br />

(1 − |β|) 2n i+1<br />

, (2)<br />

h g (β, 0) = |β|g(|β|) (3)<br />

⇓<br />

H i (x, ξ, t) =<br />

∫ 1<br />

−1<br />

dβ<br />

∫ 1−|β|<br />

−1+|β|<br />

dα δ(β + ξ α − ¯x) f i (β, α, t) (4)<br />

⋆ h q sea (β, 0) = q sea(|β|) sign(β) - sea quark contribution (n=2).<br />

⋆ h q val (β, 0) = q val(|β|) Θ(β) –valence contribution (n=1).


PDF t-dependence —Regge paramererization<br />

.<br />

h i (β, t) = e b 0t β −(δ i(Q 2 )+α ′ t) (1 − β) 2n i+1<br />

3∑<br />

c i β i/2 (5)<br />

i=0<br />

α i (t) = α i (0) + α ′ it<br />

Q2<br />

δ g (Q 2 ) = α P (0) − 1 = .1 + .06 ln<br />

4GeV 2<br />

α ′ g ≃ 0.15GeV −2<br />

δ sea = α P (0) = 1 + δ g<br />

δ val = α val (0) ∼ 0.48; α ′ val = 0.9GeV−2<br />

σ L ∼ W 4δ g(Q 2 )<br />

–High energies –HERA


⋆ Results for gluon <strong>and</strong> valence quark <strong>GPDs</strong><br />

-CTEQ6 parameterization of PDFs<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

0.1<br />

0.01<br />

0.001<br />

H g<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

0.05<br />

0.1<br />

0.2<br />

H u val<br />

1.0<br />

2.0<br />

10 −4 10 −3 10 −2 10 −1 1 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5<br />

¯x<br />

¯x<br />

H g GPD at t = 0 <strong>and</strong> Q 2 = 4GeV 2 . L<strong>in</strong>esfor<br />

ξ = 10 −3 , 10 −2 , 10 −1 .<br />

H u val GPD at t = 0<strong>and</strong> Q2 = 4GeV 2 . L<strong>in</strong>esfor<br />

ξ = 0.05, 0.1, 0.2.


Simple model for u <strong>and</strong> d sea .<br />

H u sea = H d sea = κ s H s sea<br />

The flavor symmetry break<strong>in</strong>g factor is from the fit if CTEQ6M PDFs<br />

κ s = 1 + 0.68/(1 + 0.52 ln(Q 2 /Q 2 0))<br />

0.5<br />

0.4<br />

0.3<br />

0.001<br />

¯xH s sea<br />

0.2<br />

0.01<br />

H s sea GPD at t = 0 <strong>and</strong> Q2 = 4GeV 2<br />

0.1<br />

0.1<br />

10 −4 10 −3 10 −2 10 −1 1<br />

¯x


Modified PA for vector meson <strong>production</strong><br />

We calculate the L → L <strong>and</strong> T → T amplitudes – important <strong>in</strong> analyses of <strong>sp<strong>in</strong></strong> observales.<br />

⋆ Wave function<br />

The k- dependent wave function is used<br />

ˆΨ V = ˆΨ 0 V + ˆΨ 1 V .<br />

ˆΨ 0 V = ( /V + m V ) /ɛ V φ V (k, τ).<br />

ˆΨ 1 V = [ 2<br />

/V /ɛ V /K − 2 ( /V − m V )(ɛ V · K)]φ ′ V (k, τ).<br />

M V M V<br />

• ˆΨ 0 V<br />

• ˆΨ 1 V<br />

- lead<strong>in</strong>g twist wave function -L polarized meson<br />

- higher twist wave function -T polarized meson<br />

J. Bolz, J. Körner <strong>and</strong> P. Kroll, 1994<br />

• V is a vector meson momentum <strong>and</strong> m V is its mass<br />

• ɛ V is a meson polarization vector <strong>and</strong> K is a quark transverse momentum<br />

• M V is a scale <strong>in</strong> the ˆΨ 1 V . We use M V = m V /2


⋆ Structure of the amplitudes of vector meson <strong>production</strong><br />

γ ∗ µ → V ′<br />

µ<br />

quark & gluons contributions<br />

M µ ′ +,µ+ ∼ ∑ e a Ba<br />

V<br />

a<br />

∫ 1<br />

[<br />

]<br />

×<br />

{C F dxĤa (x, ξ, t) Fµ a ′ ,µ (x, ξ) 1<br />

−1<br />

x + ξ − iˆε + 1<br />

x − ξ + iˆε<br />

∫ 1 Ĥ g (x, ξ, t) F g µ<br />

+ 2 (1 + ξ) dx<br />

′ ,µ (x, ξ )<br />

}<br />

. (6)<br />

0 (x + ξ)(x − ξ + iˆε)<br />

√<br />

Ĥ i = [H i −<br />

ξ2<br />

] + [<br />

1 − ξ ˜H −t<br />

i<br />

2Ei (Ẽi ) contributions]. M µ ′ −,µ+ ∼ [< E > +...ξ < Ẽ >]<br />

2m<br />

The hard scatter<strong>in</strong>g amplitudes-transverse quark motion<br />

F a(g)<br />

µ ′ ,µ (x, ξ) = 8πα ∫<br />

s(µ R ) 1 ∫ d 2 k<br />

√ ⊥<br />

dτ 2Nc 16π φ 3 V µ ′(τ, k2 ⊥ ) fa(g) µ ′ ,µ (k ⊥, x, ξ, τ)D . (7)<br />

0<br />

φ V (k ⊥ , τ) = 8π 2√ 2N c f V a 2 V exp [−a 2 V<br />

k⊥<br />

2 ]<br />

. (8)<br />

τ ¯τ


The product of propagator denom<strong>in</strong>ators reads<br />

D −1 = ( k 2 ⊥ + ¯τ Q 2) ( k 2 ⊥ + τ Q 2) ( k 2 ⊥ + ȳ ¯τ Q 2 − iˆε )<br />

× ( k 2 ⊥ + y ¯τ Q2 − iˆε ) ( k 2 ⊥ + τ y Q2 − iˆε ) ( k 2 ⊥ + τ ȳ Q2 − iˆε ) .<br />

The y <strong>and</strong> ȳ are def<strong>in</strong>ed by y = (x + ξ)/(2ξ) , ȳ = (ξ − x)/(2ξ) .<br />

At k 2 = 0 divergences may appear at τ = 0, (ξ − x) = 0 -happened <strong>in</strong> TT<br />

D ∼<br />

1<br />

(k 2 ⊥ +τQ2 )... - conta<strong>in</strong>s power corrections ∼ k2 ⊥ /Q2 .<br />

The model leads to the follow<strong>in</strong>g form of helicity amplitudes<br />

L → L :<br />

T → T :<br />

M V (g)<br />

0 ν,0 ν ∝ 1<br />

M V (g)<br />

+ν,+ν ∝<br />

k2 ⊥<br />

QM V<br />

(9)


Amplitudes of vector meson lepto<strong>production</strong> (lead<strong>in</strong>g twist)<br />

M φ = e 8πα s<br />

N c Q f −1<br />

φ〈1/τ〉 φ<br />

3<br />

M ρ = e 8πα s<br />

N c Q f ρ〈1/τ〉 ρ<br />

1 √2<br />

{ 1<br />

M ω = e 8πα s<br />

N c Q f 1<br />

ω〈1/τ〉 ω<br />

3 √ 2<br />

The <strong>in</strong>tegrals:<br />

I g = 2<br />

I sea = 2<br />

I a val = 2<br />

{ 1<br />

2ξ I g + C F I sea<br />

}<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

,<br />

2ξ I g + κ s C F I sea + 1 3 C F Ival u + 1 6 C F Ival<br />

d<br />

{ 1<br />

2ξ I g + κ s C F I sea + C F Ival u − 1 }<br />

2 C F Ival<br />

d<br />

−ξ<br />

}<br />

,<br />

(10)<br />

ξH g (x, ξ, t ′ )<br />

dx<br />

(x + ξ)(x − ξ + iɛ) ,<br />

xH s<br />

dx<br />

sea(x, ξ, t ′ )<br />

(x + ξ)(x − ξ + iɛ) ,<br />

xHval a dx<br />

(x, ξ, t′ )<br />

(x + ξ)(x − ξ + iɛ) . (11)<br />

Different comb<strong>in</strong>ations of valence quark <strong>GPDs</strong>. Valence quark contribution u val ∼ 2d val<br />

φ: val=0;<br />

ρ: ∼ 5/6 d val ;<br />

ω: ∼ 9/6 d val


Comb<strong>in</strong>ations of quark contribution to different reactions<br />

Uncharged VM <strong>production</strong> - St<strong>and</strong>ard p → p <strong>GPDs</strong> for ρ, ω: Transition p → Σ + <strong>GPDs</strong> for K ∗0 :<br />

ρ :<br />

∼ e u H u − e d H d = 2 3 Hu + 1 3 Hd<br />

ω :<br />

∼ 2 3 Hu − 1 3 Hd<br />

K ∗0 : ∼ H d − H s<br />

Charged VM <strong>production</strong> - Transition p → n <strong>GPDs</strong> :<br />

Pseudoscalar <strong>mesons</strong> <strong>production</strong> :<br />

ρ + : ∼ H (3) = H u − H d ;<br />

π + : ∼ ˜H (3) = ˜H u − ˜H d ;<br />

π 0 : ∼ 2 3 ˜H u + 1 3 ˜H d<br />

These comb<strong>in</strong>ations can be tested <strong>in</strong> mentioned reactions. <strong>GPDs</strong> <strong>in</strong> amplitudes are <strong>in</strong> <strong>in</strong>tegrated<br />

form. Direct <strong>GPDs</strong> extraction is impossible .<br />

Our way: parameterization of <strong>GPDs</strong> <strong>and</strong> comparison with experiment.


Modified PA amplitudes<br />

The hard scatter<strong>in</strong>g amplitudes-transverse quark motion<br />

F a(g)<br />

µ ′ ,µ (x, ξ) = 8πα ∫<br />

s(µ R ) 1<br />

√ 2Nc<br />

0<br />

dτ<br />

∫ d 2 k ⊥<br />

16π 3 φ V µ ′(τ, k2 ⊥ ) fa(g) µ ′ ,µ (k ⊥, x, ξ, τ) ˆD(τ, Q, b) . (12)<br />

φ V (k ⊥ , τ) = 8π 2√ [<br />

2N c f V a 2 V exp −a 2 k 2 ]<br />

⊥<br />

V . (13)<br />

τ ¯τ<br />

We consider Sudakov suppression of large quark-antiquark separations. These <strong>effects</strong> suppress<br />

contributions from the end-po<strong>in</strong>t regions , where factorization breaks down . S<strong>in</strong>ce the Sudakov<br />

factor is exponentiate <strong>in</strong> the impact parameter space- we have to work <strong>in</strong> this space.<br />

The helicity amplitudes for vector-meson electro<strong>production</strong> read<br />

M H µ ′ +,µ+ = √ e ∫<br />

∫<br />

C V dxdτ f µ ′ µ H(x, ξ, t)× d 2 b φ V (τ, b 2 ) ˆD(τ, Q, b) α s (µ R ) exp [−S(τ, b, Q)] .<br />

2Nc<br />

The renormalization scale µ R is taken to be the largest mass scale appear<strong>in</strong>g <strong>in</strong> the hard scatter<strong>in</strong>g<br />

amplitude, i.e. µ R = max (τQ, ¯τQ, 1/b).<br />

(14)


Cross sections of VM <strong>production</strong><br />

Q 2 dependence of cross sections of ρ <strong>and</strong>φ <strong>production</strong> at W = 75GeV. H1 <strong>and</strong> ZEUS data.<br />

10 3<br />

10 3<br />

σ(ρ) [nb]<br />

10 2<br />

10 1<br />

σ(φ) [nb]<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 0<br />

4 6 10 20 40 60 100<br />

5 10 20 30 40<br />

10 -1<br />

Q 2 [GeV 2 ]<br />

Q 2 [GeV 2 ]<br />

Cross sections of ρ <strong>production</strong> with errors<br />

from uncerta<strong>in</strong>ty <strong>in</strong> parton distributions<br />

at W = 75GeV/10 <strong>and</strong> W = 90GeV.<br />

Dashed l<strong>in</strong>e lead<strong>in</strong>g twist results.<br />

Cross sections of φ <strong>production</strong> with errors<br />

from uncerta<strong>in</strong>ty <strong>in</strong> parton distributions<br />

at W = 75GeV. Dashed l<strong>in</strong>e lead<strong>in</strong>g<br />

twist results.<br />

⋆ Power corrections ∼ k 2 ⊥ /Q2 <strong>in</strong> propagators are important at low Q 2 –1/10 suppression at Q 2 ∼<br />

3GeV 2


Q 2 dependence of ρ <strong>and</strong> φ <strong>production</strong> cross sections.<br />

10 2<br />

σ L<br />

(γ * p->ρp) [nb]<br />

10 2<br />

10 1<br />

σ L<br />

(γ * p->φp) [nb]<br />

10 1<br />

10 0<br />

2 4 6 8<br />

Q 2 [GeV 2 ]<br />

2 4 6 8<br />

Q 2 [GeV 2 ]<br />

The longitud<strong>in</strong>al cross section for ρ electro<strong>production</strong><br />

at W = 5 GeV-full l<strong>in</strong>e<br />

<strong>and</strong> W = 10 GeV -dashed l<strong>in</strong>e. Open<br />

triangle- E665<br />

The same for φ electro<strong>production</strong>.<br />

Solid circles-HERMES data.<br />

• All data are described f<strong>in</strong>e. • Predictions for COMPASS should be f<strong>in</strong>e too.


W dependence of ρ <strong>production</strong> cross section at high energies.<br />

10 3 13.5<br />

σ(ρ) [nb]<br />

10 2<br />

10 1<br />

Q 2 [GeV] 2<br />

3.7<br />

6.0<br />

8.3<br />

10 0<br />

32<br />

50 100 150 200<br />

W [GeV]<br />

Cross sections of ρ <strong>production</strong> at different Q 2 . New ZEUS data.


Ratio of cross sections of φ/ρ <strong>production</strong>.<br />

σ L<br />

(φ)/σ L<br />

(ρ)<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

2/9<br />

Show strong violation of σ φ /σ ρ = 2/9 at<br />

HERA energies <strong>and</strong> low Q 2 is caused by<br />

the flavor symmetry break<strong>in</strong>g between ū<br />

<strong>and</strong> ¯s<br />

ū(x) = ¯d(x) = κ s s(x)<br />

0.05<br />

0.00<br />

2 4 6 8 10 20 40<br />

The flavor symmetry break<strong>in</strong>g factor is<br />

from the fit of CTEQ6M PDFs<br />

Q 2 [GeV 2 ]<br />

Q 2 dependence of σ φ /σ ρ at HERA is determ<strong>in</strong>ed by κ s factor completely.<br />

At HERMES energies we have valence quarks contribution which gives additional suppression of<br />

σ φ /σ ρ ratio.


Analyses of different contributions to the ρ <strong>production</strong>.<br />

σ L<br />

(γ * p->ρp) [nb]<br />

10 2<br />

10 1<br />

Full l<strong>in</strong>e- cross section.<br />

Red-gluon contribution<br />

Green- gluon+ sea contribution.<br />

Blue -Valence- gluon+sea <strong>in</strong>terference<br />

4 6 8 10 20 40 60 80100<br />

W[GeV]<br />

At HERMES energies valence quarks contribution is essential. At energies higher 5GeV 2 it<br />

decreases rapidly with energy grow<strong>in</strong>g . As a result, COMPASS (unpolarized cross secto<strong>in</strong>) is<br />

closed to HERA physics- gluon <strong>and</strong> sea is essential .


Cross section of ρ <strong>and</strong> φ <strong>production</strong> cross<br />

σ L<br />

(γ * p->φp) [nb]<br />

10 2<br />

10 1<br />

σ L<br />

(γ * p->ρp) [nb]<br />

10 2<br />

10 0<br />

10 1<br />

4 6 810 20 40 60 100<br />

4 6 810 20 40 60 100<br />

W[GeV]<br />

W[GeV]<br />

The longitud<strong>in</strong>al cross section for φ at<br />

Q 2 = 3.8 GeV 2 . Data: HERMES (solid<br />

circle), ZEUS (open square), H1 (solid<br />

square), open circle- CLAS data po<strong>in</strong>t<br />

The longitud<strong>in</strong>al cross section for ρ at<br />

Q 2 = 4.0 GeV 2 . Data: HERMES<br />

(solid circle), ZEUS (open square), H1<br />

(solid square), E665 (open triangle), open<br />

circles- CLAS, CORNEL -solid triangle<br />

Such problem appears <strong>in</strong> all the cases when valence quark distributions are essential at low W : ρ 0 ,<br />

ρ + , ω <strong>production</strong>.- Break <strong>in</strong> DD, h<strong>and</strong>bag, other <strong>effects</strong>???


Ratio of longitud<strong>in</strong>al <strong>and</strong> transverse cross sections<br />

R(V ) = σ L(γ ∗ p → V p)<br />

σ T (γ ∗ p → V p) , (15)<br />

R(ρ)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

4 6 8 10 20 40<br />

Q 2 [GeV 2 ]<br />

The ratio of longitud<strong>in</strong>al <strong>and</strong> transverse<br />

cross sections for ρ <strong>production</strong> versus Q 2<br />

at W ≃ 75 GeV.<br />

R(φ)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

5<br />

10 20 30<br />

Q 2 [GeV 2 ]<br />

The ratio of longitud<strong>in</strong>al <strong>and</strong> transverse<br />

cross sections for φ <strong>production</strong> versus Q 2<br />

at W ≃ 75 GeV.


5<br />

4<br />

R(ρ)<br />

4<br />

3<br />

2<br />

1<br />

R(φ)<br />

3<br />

2<br />

1<br />

0<br />

2 3 4 5 6 7 8 9 10<br />

Q 2 [GeV 2 ]<br />

The ratio of longitud<strong>in</strong>al <strong>and</strong> transverse<br />

cross sections for ρ <strong>production</strong> at low Q 2<br />

Blue l<strong>in</strong>e- HERA , red-COMPASS <strong>and</strong><br />

black- HERMES.<br />

0<br />

2 3 4 5 6 7 8 9 10<br />

Q 2 [GeV 2 ]<br />

The ratio of longitud<strong>in</strong>al <strong>and</strong> transverse<br />

cross sections for φ <strong>production</strong> at low Q 2<br />

Blue l<strong>in</strong>e- HERA , black- HERMES.<br />

Squares- H1 <strong>and</strong> ZEUS data, open diamond- COMPASS, filled circles- HERMES.


Sp<strong>in</strong> density matrix elements<br />

Some essential <strong>sp<strong>in</strong></strong> density matrix elements read<br />

N L = 2|M V (g)<br />

0 +,0 + |2 ,<br />

N T = ∑ [<br />

]<br />

|M V +ν,+ν| (g) 2 + |M V (g)<br />

0 ν,+ν |2 ,<br />

ν<br />

r00 04 = 1 ∑<br />

(|M V (g)<br />

0ν,,+ν<br />

N T + εN |2 + ε |M V (g)<br />

L<br />

r 1 1−1 = −Im r 2 1−1 =<br />

Re r 5 10 = −Im r 6 10 =<br />

ν<br />

1<br />

1 + ɛ<br />

√ ˜R<br />

˜R<br />

1 + ɛ ˜R<br />

1<br />

N T<br />

∣ ∣M H<br />

++,++<br />

∣ ∣<br />

2<br />

,<br />

1<br />

√ 2NL N T<br />

Re<br />

[<br />

0ν ,0ν |2 )<br />

]<br />

M H ++,++ M H∗<br />

0 +,0 +<br />

.........................................................................


Sp<strong>in</strong> density matrix elements-ρ <strong>production</strong> at HERA<br />

0.9<br />

0.8<br />

0.7<br />

<br />

<br />

0.20<br />

0.15<br />

0.10<br />

<br />

<br />

0.00<br />

-0.05<br />

-0.10<br />

<br />

<br />

0.6<br />

0.05<br />

-0.15<br />

0.5<br />

4 6 810 20 40<br />

0.00<br />

4 6 810 20 40<br />

-0.20<br />

4 6 810 20 40<br />

0.20<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

<br />

<br />

4 6 810 20 40<br />

-0.10<br />

-0.12<br />

-0.14<br />

-0.16<br />

-0.18<br />

<br />

<br />

4 6 810 20 40<br />

The SDME sensitive to LL <strong>and</strong> TT transitions via Q 2 .


Sp<strong>in</strong> density matrix elements-ρ <strong>production</strong> at energies from<br />

HERMES to HERA<br />

0.7<br />

<br />

<br />

0.3<br />

<br />

<br />

-0.1<br />

<br />

<br />

0.6<br />

0.5<br />

0.2<br />

-0.2<br />

0.4<br />

3 4 5 6 7 8<br />

0.1<br />

3 4 5 6 7 8<br />

-0.3<br />

3 4 5 6 7 8<br />

0.22<br />

0.20<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

<br />

<br />

3 4 5 6 7 8<br />

-0.12<br />

-0.14<br />

-0.16<br />

-0.18<br />

-0.20<br />

-0.22<br />

<br />

<br />

3 4 5 6 7 8<br />

The SDME sensitive to LL <strong>and</strong> TT transitions via Q 2 .<br />

Blue- HERA , red- COMPASS , black- HERMES.<br />

Open diamond- COMPASS, filled circles- HERMES.


Sp<strong>in</strong> density matrix elements-φ <strong>production</strong> at HERMES<br />

<br />

<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

3 4 5 6 7 8<br />

0.3<br />

0.2<br />

<br />

<br />

0.1<br />

3 4 5 6 7 8<br />

<br />

<br />

0.22<br />

0.20<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

3 4 5 6 7 8<br />

The SDME for φ meson via Q 2 at W = 5GeV .<br />

Relative phase φ between TT <strong>and</strong> LL amplitudes for <strong>light</strong> VM:<br />

φ model ∼ 3 o φ experim ∼ 22<br />

(Results from HERA, HERMES).


Hierarchy of cross sections for various meson <strong>production</strong>.<br />

σ (γ * p->Vp) [nb]<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

2 3 4 5 6 7 8<br />

Q 2 [GeV 2 ]<br />

σ (γ * p->Vp) [nb]<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

2 3 4 5 6 7 8<br />

Q 2 [GeV 2 ]<br />

Our predictions for HERMES energy<br />

W = 5GeV.<br />

Our predictions for COMPASS energy<br />

W = 10GeV<br />

• Red- dot-dashed l<strong>in</strong>e ρ 0 ; Black-full l<strong>in</strong>e ω. –gluon contribution here - grow<strong>in</strong>g with energy .<br />

• Blue- dotted l<strong>in</strong>e ρ + ; Green-dashed l<strong>in</strong>e K ∗0 . K ∗0 - sea contribution .


Effects of ˜H <strong>in</strong> σ U & A LL asymmetry.<br />

˜H determ<strong>in</strong>es amplitudes with unnatural parity <strong>and</strong> cross section<br />

σ U ∝ |M ˜H| 2<br />

The lead<strong>in</strong>g term <strong>in</strong> A LL is an <strong>in</strong>terference between the H <strong>and</strong> the ˜H terms.<br />

[<br />

]<br />

A LL [ep → epV ] = 2 √ Re M H<br />

1 − ε 2 ++,++ M ˜H∗<br />

++,++<br />

ε|M H 0+,0+ |2 + |M H ++,++| . (16)<br />

2<br />

This ratio is of order 〈 ˜H g 〉/〈H g 〉 .<br />

A LL asymmetry can be measured with longitud<strong>in</strong>ally polarized beam <strong>and</strong> target.<br />

Gluon <strong>and</strong> sea polarized distributions compensate each other essentially.<br />

The dom<strong>in</strong>ant contribution comes from quark polarized distributions We construct ∆u <strong>and</strong> ∆d<br />

distributions. The st<strong>and</strong>ard values δ val = 0.48; α ′ val<br />

= 0.9GeV −2 are used. <strong>GPDs</strong> ˜H is estimated<br />

us<strong>in</strong>g double distribution.


0.20<br />

0.2<br />

0.15<br />

0.1<br />

σ u<br />

/σ (ρ)<br />

0.10<br />

A LL<br />

(ρ)<br />

0.0<br />

0.05<br />

-0.1<br />

0.00<br />

2 3 4 5 6 7 8<br />

Q 2 [GeV 2 ]<br />

-0.2<br />

2 3 4 5 6 7 8<br />

Q 2 [GeV 2 ]<br />

The ratio of σ U <strong>and</strong> σ for ρ <strong>production</strong> versus Q 2 at W = 5 GeV. Data taken from HERMES .<br />

The solid (dashed, dash-dotted) l<strong>in</strong>e represents our estimate (obta<strong>in</strong>ed with e u ˜Hu val − e d ˜Hd val , with<br />

e u ˜Hu val<br />

+ e d ˜Hd val<br />

). .<br />

Larger result is expected for this ratio for ω cross section ratio.<br />

The A LL asymmetry for ρ <strong>production</strong> at W = 5 (10) GeV dashed (dash-dotted) l<strong>in</strong>e.<br />

Data taken from COMPASS <strong>and</strong> HERMES


⋆ Sp<strong>in</strong>-flip contribution. Effects of E <strong>GPDs</strong>.<br />

The proton <strong>sp<strong>in</strong></strong>-flip amplitude is associated with E <strong>GPDs</strong>.<br />

√ ∫ −t 1<br />

M µ ′ −,µ+ ∝ dx E a (x, ξ, t) Fµ a 2m<br />

′ ,µ(x, ξ)<br />

−1<br />

Double distribution model is used to construct E <strong>GPDs</strong>. E parameters- from Pauli form factor.<br />

St<strong>and</strong>ard connection with ord<strong>in</strong>ary distribution :<br />

E a (x, 0, 0) = e a (x)<br />

M. Diehl, ...,P.Kroll ’04<br />

And ∫ 1<br />

dxe a val(x) = κ a , κ u ∼ 1.67, κ d ∼ −2.03<br />

κ a -anomalous magnetic moments of valence quarks.<br />

0<br />

This means that E a ∝ κ a <strong>and</strong> E u <strong>and</strong> E d have different signs.<br />

⋆ ρ <strong>production</strong>- M ρ ∝ e u Eval u − e dEval d = 2 3 Eu val + 1 3 Ed val<br />

different signs- compensation .<br />

⋆ ω <strong>production</strong>- M ω ∝ e u Eval u + e dEval d = 2 3 Eu val + 1 3 Ed val<br />

same signs- enhancement.


A UT asymmetry for ρ <strong>production</strong>.<br />

A UT = −2 Im[M ∗ +−,++ M ++,++ + εM ∗ 0−,0+M 0+,0+ ]<br />

∑ ′<br />

ν [|M +ν ′ ,++| 2 + ε|M 0ν ′ ,0+| 2 ]<br />

∝ Im < E >∗ < H ><br />

| < H > | 2<br />

E distributions needed to calculate M +−,++ – from Pauli FF of nucleon. +DD form for GPD.<br />

A UT<br />

(ρ 0 )<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

A UT<br />

(ρ 0 )<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

W=8 GeV<br />

Q 2 =2 GeV 2<br />

-0.3<br />

0.0 0.2 0.4 0.6<br />

-t' [GeV 2 ]<br />

-0.15<br />

-0.20<br />

0.0 0.2 0.4 0.6<br />

-t'[GeV 2 ]<br />

Predictions for HERMES energy W =<br />

5GeV, Q 2 = 3GeV 2 . Prelim<strong>in</strong>ary HER-<br />

MES data are shown.<br />

Predictions for COMPASS energy W =<br />

10GeV. Prelim<strong>in</strong>ary COMPASS data at<br />

W = 8GeV S<strong>and</strong>acz, Photon 09, Bradamante, TPSH 09


A UT asymmetry for ω <strong>and</strong> ρ + <strong>production</strong>.<br />

A UT<br />

(ω)<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

-0.15<br />

2 4 6 8<br />

Q 2 [GeV 2 ]<br />

A UT<br />

(ρ + )<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

2 4 6 8<br />

Q 2 [GeV 2 ]<br />

Our predictions for ω at HERMES energy<br />

W = 5GeV.<br />

Not small negative asymmetry: no compensation<br />

<strong>in</strong> e u E u + e d E d .<br />

Our predictions for ρ + at HERMES<br />

energy W = 5GeV .<br />

Large positive asymmetry- no compensation<br />

<strong>in</strong> E u − E d .


Hierarchy of A UT asymmetry for various meson <strong>production</strong>.<br />

A UT<br />

(V)<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0.0 0.2 0.4 0.6<br />

-t' [GeV 2 ]<br />

A UT<br />

(V)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

2 3 4 5 6 7 8<br />

Q 2 [GeV 2 ]<br />

Predictions for HERMES energy W =<br />

5GeV, Q 2 = 3GeV 3 . ρ 0 , ω. ρ + , K ∗0 Predictions for COMPASS energy W =<br />

10GeV.<br />

At small −t A UT ∝ √ −t. For ρ + flatness caused by large <strong>sp<strong>in</strong></strong>-flip contribution E to cross section<br />

∝ t. (No compensation between u <strong>and</strong> d quarks here) .


Parton angular momenta.<br />

Evaluation from Ji’s sum rule<br />

< J a > = 1 2 [ea v<br />

20 + ha v<br />

20 ] + eā20 + hā20<br />

< J g > = 1 2 [eg 20 + hg 20 ] (17)<br />

e(h) a 20 - second moments of correspond<strong>in</strong>g parton distributions.<br />

In our model we f<strong>in</strong>d the angular momenta for valence quarks:<br />

< J u v >= 0.222, < Jd v >= −0.015, < Jg >= 0.214. (18)<br />

These results are closed to other estimations (Lattice) ...<br />

Orbital angular momenta:<br />

Polarized distributions from BB fit.<br />

< L i >=< J i > − 1 2˜h i 10 (19)<br />

< L u v >= −0.241, < L d v >= 0.155, < L g >=< J g > . (20)


π + <strong>production</strong> at HERMES.<br />

Pion pole <strong>and</strong> h<strong>and</strong>bag contributions to π + <strong>production</strong>.<br />

Calculation of M 0−,++ is a special case.<br />

M µ ′ ν ′ ,µν ∝ √ −t ′|µ−ν−µ′ +ν ′ |<br />

from angular momentum conservation.<br />

M 0−,++ ∝ √ −t ′ 0 ∝ const but h<strong>and</strong>bag amplitude ∝ t ′<br />

M 0−,++ -is determ<strong>in</strong>ed by twist 3 contribution → const .


Cross section of π + <strong>production</strong> at HERMES.<br />

300<br />

250<br />

W=3.83 GeV<br />

300<br />

250<br />

W=3.99 GeV<br />

Q 2 =2.45 GeV 2<br />

dσ/dt (π + ) [nb/GeV) 2 ]<br />

200<br />

150<br />

100<br />

50<br />

dσ/dt (π + ) [nb/GeV) 2 ]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

LT<br />

T<br />

TT<br />

L<br />

0<br />

0.2 0.4 0.6<br />

Q 2 =3.44 GeV 2 0.0 0.2 0.4 0.6<br />

-50<br />

-t'[GeV 2 ]<br />

-t'[GeV 2 ]<br />

Cross section of π + <strong>production</strong> at<br />

HERMES with HERMES data.<br />

The partial cross section<br />

dσ L /dt, dσ T /dt, dσ LT /dt, dσ TT /dt .<br />

Information about different amplitudes<br />

contribution.


Asymmetry <strong>in</strong> π + <strong>production</strong> at HERMES.<br />

A UT<br />

s<strong>in</strong> (φ- φ S<br />

)(π + )<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

0.0 0.2 0.4 0.6<br />

-t'[GeV 2 ]<br />

A UL<br />

(π + )<br />

0<br />

-1<br />

0.0 0.2 0.4 0.6<br />

-t'[GeV 2 ]<br />

A UT asymmetry of π + <strong>production</strong> at<br />

HERMES with prelim<strong>in</strong>ary HERMES<br />

data.<br />

A UL asymmetry of π + <strong>production</strong> at<br />

HERMES with prelim<strong>in</strong>ary HERMES<br />

data. Dashed l<strong>in</strong>e- twist 3 is omitted.


π 0 <strong>production</strong> at HERMES.<br />

10<br />

8<br />

W=3.99 GeV<br />

Q 2 =2.45 GeV 2<br />

0.6<br />

0.5<br />

s<strong>in</strong> φ S<br />

W=3.99 GeV<br />

Q 2 =2.45 GeV 2<br />

dσ/dt (π 0 ) [nb/GeV) 2 ]<br />

6<br />

4<br />

2<br />

0<br />

T<br />

LT<br />

0.2 0.4 0.6<br />

A UT<br />

(π 0 )<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

s<strong>in</strong> (φ- φ S<br />

)<br />

0.2 0.4 0.6<br />

-t'[GeV 2 ]<br />

-t'[GeV 2 ]<br />

Cross section of π 0 <strong>production</strong>. Unseparated<br />

cross section- black, red-transverse,<br />

blue-longitud<strong>in</strong>al-transverse <strong>in</strong>terference<br />

cross section.<br />

s<strong>in</strong>φ S <strong>and</strong> s<strong>in</strong>φ − φ S moments of A UT<br />

asymmetry for π 0 <strong>production</strong> at<br />

HERMES<br />

No pion pole contribution here → small cross section . At COMPASS π 0 cross section smaller<br />

then 1nb/GeV 2


Conclusion<br />

• We analyse meson electro<strong>production</strong> with<strong>in</strong> h<strong>and</strong>bag approach.<br />

• Modified PA is used to calculate hard subprocess amplitude.<br />

• PDF:<br />

–gluon, sea, valence PDFs -from CTEQ6 parameterization.<br />

–polarized ˜H from BB parameterization.<br />

– E distributions -from Pauli nucleon FF analyses.<br />

• <strong>GPDs</strong> are calculated us<strong>in</strong>g these PDF on the bases of DD representation.<br />

• Direct <strong>GPDs</strong> extraction is impossible .<br />

Our way: parameterization of <strong>GPDs</strong> , amplitudes calculation <strong>in</strong> h<strong>and</strong>bag approach ;<br />

comparison with experiment.<br />

• We describe f<strong>in</strong>e :<br />

–cross section of <strong>light</strong> meson <strong>production</strong>: corrections ∼ k 2 ⊥ /Q2 <strong>in</strong> propagators are important.<br />

–<strong>sp<strong>in</strong></strong> observables: R -ratio , SDME <strong>and</strong> different asymmetries for various meson <strong>production</strong>.<br />

• Vector meson electro<strong>production</strong>-can be an excellent object to study <strong>GPDs</strong>.<br />

In different energy ranges, <strong>in</strong>formation about quark <strong>and</strong> gluon <strong>GPDs</strong> can be extracted from the<br />

cross section <strong>and</strong> <strong>sp<strong>in</strong></strong> observables of the vector meson electro<strong>production</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!