01.10.2014 Views

AD1868* Single Supply Dual 18-Bit Audio DAC - VasilTech Audio

AD1868* Single Supply Dual 18-Bit Audio DAC - VasilTech Audio

AD1868* Single Supply Dual 18-Bit Audio DAC - VasilTech Audio

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

a<br />

FEATURES<br />

<strong>Dual</strong> Serial Input, Voltage Output <strong>DAC</strong>s<br />

<strong>Single</strong> +5 V <strong>Supply</strong><br />

0.004% THD+N (typ)<br />

Low Power: 50 mW (typ)<br />

108 dB Channel Separation (min)<br />

Operates at 8 Oversampling<br />

16-Pin Plastic DIP or SOIC Package<br />

APPLICATIONS<br />

Portable Compact Disc Players<br />

Portable DAT Players and Recorders<br />

Automotive Compact Disc Players<br />

Automotive DAT Players<br />

Multimedia Workstations<br />

PRODUCT DESCRIPTION<br />

The AD<strong>18</strong>68 is a complete dual <strong>18</strong>-bit <strong>DAC</strong> offering excellent<br />

performance while requiring a single +5 V power supply. It is<br />

fabricated on Analog Devices’ ABCMOS wafer fabrication process.<br />

The monolithic chip includes CMOS logic elements, bipolar<br />

and MOS linear elements, and laser-trimmed thin-film<br />

resistor elements. Careful design and layout techniques have resulted<br />

in low distortion, low noise, high channel separation, and<br />

low power dissipation.<br />

The <strong>DAC</strong>s on the AD<strong>18</strong>68 chip employ a partially segmented<br />

architecture. The first three MSBs of each <strong>DAC</strong> are segmented<br />

into seven elements. The 15 LSBs are produced using standard<br />

R-2R techniques. The segments and R-2R resistors are laser<br />

trimmed to provide extremely low total harmonic distortion.<br />

The AD<strong>18</strong>68 requires no deglitcher or trimming circuitry. Low<br />

noise is achieved through the use of two noise-reduction capacitors.<br />

Each <strong>DAC</strong> is equipped with a high performance output amplifier.<br />

These amplifiers achieve fast settling and high slew rate,<br />

producing ±1 V signals at load currents up to ±1 mA. The<br />

buffered output signal range is 1.5 V to 3.5 V. Reference voltages<br />

of 2.5 V are provided, eliminating the need for “False<br />

Ground” networks.<br />

A versatile digital interface allows the AD<strong>18</strong>68 to be directly<br />

connected to all digital filter chips. Fast CMOS logic elements<br />

allow for an input clock rate of up to 13.5 MHz. This allows for<br />

operation at 2×, 4×, 8×, or 16× the sampling frequency for each<br />

channel. The digital input pins of the AD<strong>18</strong>68 are TTL and<br />

+5 V CMOS compatible.<br />

*Protected by U.S. Patent Numbers: 3,961,326; 4,141,004; 4,349,811;<br />

4,857,862; and patents pending.<br />

V L<br />

LL<br />

DL<br />

CK<br />

DR<br />

LR<br />

DGND<br />

V B R<br />

FUNCTIONAL BLOCK DIAGRAM<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

<strong>Single</strong> <strong>Supply</strong><br />

<strong>Dual</strong> <strong>18</strong>-<strong>Bit</strong> <strong>Audio</strong> <strong>DAC</strong><br />

<strong>AD<strong>18</strong>68*</strong><br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

<strong>18</strong>-BIT<br />

SERIAL<br />

REGISTER<br />

<strong>18</strong>-BIT<br />

SERIAL<br />

REGISTER<br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

AD<strong>18</strong>68<br />

–<br />

+<br />

V REF<br />

V REF<br />

+<br />

–<br />

8 9<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

V B L<br />

V S<br />

V O L<br />

NRL<br />

AGND<br />

The AD<strong>18</strong>68 operates on +5 V power supplies. The digital supply,<br />

V L , can be separated from the analog supply, V S , for reduced<br />

digital feedthrough. Separate analog and digital ground<br />

pins are also provided. In systems employing a single +5 volt<br />

power supply, V L and V S should be connected together. In battery<br />

operated systems, operation will continue even with reduced<br />

supply voltage. Typically, the AD<strong>18</strong>68 dissipates 50 mW.<br />

The AD<strong>18</strong>68 is packaged in either a 16-pin plastic DIP or a 16-<br />

pin plastic SOIC package. Operation is guaranteed over the temperature<br />

range of –35°C to +85°C and over the voltage supply<br />

range of 4.75 V to 5.25 V.<br />

PRODUCT HIGHLIGHTS<br />

1. <strong>Single</strong>-supply operation @ +5 V.<br />

2. 50 mW power dissipation (typical).<br />

3. THD+N is 0.004% (typical).<br />

4. Signal-to-Noise Ratio is 97.5 dB (typical).<br />

5. 108 dB channel separation (minimum).<br />

6. Compatible with all digital filter chips.<br />

7. 16-pin DIP and 16-pin SOIC packages.<br />

8. No deglitcher required.<br />

9. No external adjustments required.<br />

NRR<br />

V O R<br />

V S<br />

REV. A<br />

Information furnished by Analog Devices is believed to be accurate and<br />

reliable. However, no responsibility is assumed by Analog Devices for its<br />

use, nor for any infringements of patents or other rights of third parties<br />

which may result from its use. No license is granted by implication or<br />

otherwise under any patent or patent rights of Analog Devices.<br />

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.<br />

Tel: 617/329-4700 Fax: 617/326-8703


AD<strong>18</strong>68–SPECIFICATIONS (typical at T A = +25C and +5 V supplies unless otherwise noted)<br />

Min Typ Max Units<br />

RESOLUTION <strong>18</strong> <strong>Bit</strong><br />

DIGITAL INPUTS V IH 2.4 V<br />

V IL 0.8 V<br />

I IH , V IH = V L 1.0 µA<br />

I IL , V IL = DGND 1.0 µA<br />

Maximum Clock Input Frequency 13.5 MHz<br />

ACCURACY<br />

Gain Error ±1 % of FSR<br />

Gain Matching ±1 % of FSR<br />

Midscale Error ±15 mV<br />

Midscale Error Matching ±10 mV<br />

Gain Linearity Error ±3 dB<br />

DRIFT (0°C to +70°C)<br />

Gain Drift ±100 ppm/°C<br />

Midscale Drift ±100 µV/°C<br />

TOTAL HARMONIC DISTORTION + NOISE<br />

0 dB, 990.5 Hz AD<strong>18</strong>68N 0.004 0.008 %<br />

AD<strong>18</strong>68N-J 0.004 0.006 %<br />

–20 dB, 990.5 Hz AD<strong>18</strong>68N 0.020 0.08 %<br />

AD<strong>18</strong>68N-J 0.020 0.08 %<br />

–60 dB, 990.5 Hz AD<strong>18</strong>68N 2.0 5.0 %<br />

AD<strong>18</strong>68N-J 2.0 5.0 %<br />

CHANNEL SEPARATION 1 kHz, 0 dB 108 NIL* dB<br />

SIGNAL-TO-NOISE RATIO (with A-Weight Filter) 95 97.5 dB<br />

D-RANGE (with A-Weight Filter) 86 92 dB<br />

OUTPUT<br />

Voltage Output Pins (V O L, V O R)<br />

Output Range (±3%) ±1 V<br />

Output Impedance 0.1 Ω<br />

Load Current ±1 mA<br />

Bias Voltage Pins (V B L, V B R)<br />

Output Voltage +2.5 V<br />

Output Impedance 350 Ω<br />

POWER SUPPLY<br />

Specification, V L and V S 4.75 5 5.25 V<br />

Operation, V L and V S 3.5 5.25 V<br />

+I, V L and V S = 5 V 10 14 mA<br />

POWER DISSIPATION 50 70 mW<br />

TEMPERATURE RANGE<br />

Specification 0 25 70 °C<br />

Operation –35 85 °C<br />

Storage –60 100 °C<br />

*Above 115 dB.<br />

Specifications subject to change without notice.<br />

ABSOLUTE MAXIMUM RATINGS*<br />

V L to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to 6 V<br />

V S to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to 6 V<br />

AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.3 V<br />

Digital Inputs to DGND . . . . . . . . . . . . . . . . . . . . . –0.3 to V L<br />

Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +300°C, 10 sec<br />

*Stresses greater than those listed under “Absolute Maximum Ratings” may cause<br />

permanent damage to the device. This is a stress rating only and functional<br />

operation of the device at these or any other conditions above those indicated in the<br />

operational section of this specification is not implied. Exposure to absolute<br />

maximum rating conditions for extended periods may affect device reliability.<br />

CAUTION<br />

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily<br />

accumulate on the human body and test equipment and can discharge without detection.<br />

Although the AD<strong>18</strong>68 features proprietary ESD protection circuitry, permanent damage may<br />

occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD<br />

precautions are recommended to avoid performance degradation or loss of functionality.<br />

–2–<br />

WARNING!<br />

ESD SENSITIVE DEVICE<br />

REV. A


THD +N – dB<br />

PSRR – dB<br />

THD +N – dB<br />

GAIN LINEARITY ERROR – dB<br />

THD +N – dB<br />

CHANNEL SEPARATION – dB<br />

AD<strong>18</strong>68<br />

Typical Performance of the AD<strong>18</strong>68<br />

–30<br />

150<br />

–40<br />

–60dB<br />

140<br />

–50<br />

–60<br />

130<br />

–70<br />

–20dB<br />

120<br />

–80<br />

–90<br />

0dB<br />

110<br />

–100<br />

0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5<br />

FREQUENCY – kHz<br />

16.5 <strong>18</strong>.5 20.5<br />

100<br />

10 3 10 4<br />

FREQUENCY – Hz<br />

Figure 1. THD+N vs. Frequency<br />

Figure 2. Channel Separation vs. Frequency<br />

–20<br />

8<br />

–30<br />

–60dB<br />

6<br />

0°C<br />

–40<br />

4<br />

–50<br />

–60<br />

2<br />

0<br />

25°C<br />

–70<br />

–80<br />

–20dB<br />

0dB<br />

–90<br />

4.4 4.6 4.8 5.0 5.2 5.4<br />

VOLTAGE SUPPLY<br />

–2<br />

70°C<br />

–4<br />

–6<br />

–100 –80 –60 –40 –20 –10<br />

INPUT AMPLITUDE – dB<br />

0<br />

Figure 3. THD+N vs. <strong>Supply</strong> Voltage<br />

Figure 4. Gain Linearity Error vs. Input Amplitude<br />

–20<br />

90<br />

–40<br />

– 60dB<br />

80<br />

70<br />

–60<br />

–80<br />

– 20dB<br />

0dB<br />

60<br />

50<br />

–100<br />

–50 –30 –10 10 30 50 70 90 110 130<br />

TEMPERATURE – °C<br />

Figure 5. THD+N vs. Temperature<br />

140<br />

40<br />

10 2 10 3 10 4 10 5<br />

SUPPLY MODULATION FREQUENCY – Hz<br />

Figure 6. Power <strong>Supply</strong> Rejection Ratio vs. Frequency<br />

REV. A –3–


AD<strong>18</strong>68<br />

V L<br />

LL<br />

DL<br />

CK<br />

DR<br />

LR<br />

DGND<br />

V B R<br />

PIN CONFIGURATION<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

AD<strong>18</strong>68<br />

TOP VIEW<br />

(Not To Scale)<br />

8 9<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

V B L<br />

V S<br />

V O L<br />

NRL<br />

AGND<br />

DEFINITION OF SPECIFICATIONS<br />

Total Harmonic Distortion + Noise<br />

Total harmonic distortion plus noise (THD+N) is defined as<br />

the ratio of the square root of the sum of the squares of the amplitudes<br />

of the harmonics and noise to the amplitude of the fundamental<br />

input frequency. It is usually expressed in percent (%)<br />

or decibels (dB).<br />

D-Range Distortion<br />

D-range distortion is the ratio of the amplitude of the signal at<br />

an amplitude of –60 dB to the amplitude of the distortion plus<br />

noise. In this case, an A-weight filter is used. The value specified<br />

for D-range performance is the ratio measured plus 60 dB.<br />

Signal-to-Noise Ratio<br />

The signal-to-noise ratio is defined as the ratio of the amplitude<br />

of the output when a full-scale output is present to the amplitude<br />

of the output with no signal present. It is expressed in<br />

decibels (dB) and measured using an A-weight filter.<br />

Gain Linearity<br />

Gain linearity is a measure of the deviation of the actual output<br />

amplitude from the ideal output amplitude. It is determined by<br />

measuring the amplitude of the output signal as the amplitude<br />

of that output signal is digitally reduced to a lower level. A perfect<br />

D/A converter exhibits no difference between the ideal and<br />

actual amplitudes. Gain linearity is expressed in decibels (dB).<br />

Midscale Error<br />

Midscale error is the difference between the analog output and<br />

the bias when the twos complement input code representing<br />

midscale is loaded in the input register. Midscale error is expressed<br />

in mV.<br />

NRR<br />

V O R<br />

V S<br />

PIN DESIGNATIONS<br />

11 V L Digital <strong>Supply</strong> (+5 Volts)<br />

12 LL Left Channel Latch Enable<br />

13 DL Left Channel Data Input<br />

14 CK Clock Input<br />

15 DR Right Channel Data Input<br />

16 LR Right Channel Latch Enable<br />

17 DGND Digital Common<br />

<strong>18</strong> V B R Right Channel Bias<br />

19 V S Analog <strong>Supply</strong> (+5 Volts)<br />

10 V O R Right Channel Output<br />

11 NRR Right Channel Noise Reduction<br />

12 AGND Analog Common<br />

13 NRL Left Channel Noise Reduction<br />

14 V O L Left Channel Output<br />

15 V S Analog <strong>Supply</strong> (+5 Volts)<br />

16 V B L Left Channel Bias<br />

FUNCTIONAL DESCRIPTION<br />

The AD<strong>18</strong>68 is a complete, voltage output dual <strong>18</strong>-bit digital<br />

audio <strong>DAC</strong> which operates with a single +5 volt supply. As<br />

shown in the block diagram, each channel contains a voltage<br />

reference, an <strong>18</strong>-bit <strong>DAC</strong>, an output amplifier, an <strong>18</strong>-bit input<br />

latch, and an <strong>18</strong>-bit serial-to-parallel input register.<br />

The voltage reference section provides a reference voltage and a<br />

false ground voltage for each channel. The low noise bandgap<br />

circuits produce reference voltages that are unaffected by<br />

changes in temperature, time, and power supply.<br />

The output amplifier uses both MOS and bipolar devices and<br />

incorporates an NPN class-A output stage. It is designed to produce<br />

high slew rate, low noise, low distortion, and optimal frequency<br />

response.<br />

Each <strong>18</strong>-bit <strong>DAC</strong> uses a combination of segmented decoder<br />

and R-2R architecture to achieve good integral and differential<br />

linearity. The resistors which form the ladder structure are fabricated<br />

with silicon-chromium thin film. Laser trimming of<br />

these resistors further reduces linearity error, resulting in low<br />

output distortion.<br />

The input registers are fabricated with CMOS logic gates.<br />

These gates allow fast switching speeds and low power consumption,<br />

contributing to the fast digital timing, low glitch, and<br />

low power dissipation of the AD<strong>18</strong>68.<br />

ORDERING GUIDE<br />

THD + N<br />

Package<br />

Model @ F S SNR Option*<br />

AD<strong>18</strong>68N 0.008% 95 dB N-16<br />

AD<strong>18</strong>68R 0.008% 95 dB R-16<br />

AD<strong>18</strong>68N-J 0.006% 95 dB N-16<br />

AD<strong>18</strong>68R-J 0.006% 95 dB R-16<br />

*N = Plastic DIP; R = SOIC.<br />

–4–<br />

REV. A


AD<strong>18</strong>68<br />

V L<br />

LL<br />

DL<br />

1<br />

2<br />

3<br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

<strong>18</strong>-BIT<br />

SERIAL<br />

REGISTER<br />

AD<strong>18</strong>68<br />

–<br />

+<br />

16<br />

15<br />

14<br />

V B L<br />

V S<br />

V O L<br />

<strong>DAC</strong>, the AD<strong>18</strong>68 can continue to function at supply voltages<br />

as low as 3.5 V. Because of its unique design, the power requirements<br />

of the AD<strong>18</strong>68 diminish as the battery voltage drops, further<br />

extending the operating time of the system.<br />

POWER<br />

SUPPLY<br />

CK<br />

4<br />

V REF<br />

13<br />

NRL<br />

1<br />

AD<strong>18</strong>68<br />

V L<br />

V B L<br />

16<br />

DR<br />

LR<br />

5<br />

6<br />

<strong>18</strong>-BIT<br />

SERIAL<br />

REGISTER<br />

V REF<br />

12<br />

11<br />

AGND<br />

NRR<br />

0.1µF<br />

2<br />

3<br />

4<br />

LL<br />

DL<br />

CK<br />

V S<br />

V O L<br />

NRL<br />

15<br />

14<br />

13<br />

4.7µF<br />

0.1µF<br />

DGND<br />

V B R<br />

7<br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

+<br />

–<br />

8 9<br />

10<br />

V O R<br />

V S<br />

5 DR AGND 12<br />

6<br />

7<br />

LR<br />

DGND<br />

NRR 11<br />

V O R 10<br />

8 V B R<br />

V S 9<br />

4.7µF<br />

Functional Block Diagram<br />

ANALOG CIRCUIT CONSIDERATIONS<br />

GROUNDING RECOMMENDATIONS<br />

The AD<strong>18</strong>68 has two ground pins, designated as AGND (Pin<br />

12) and DGND (Pin 7). The analog ground, AGND, serves as<br />

the “high quality” reference ground for analog signals and as a<br />

return path for the supply current from the analog portion of the<br />

device. The system analog common should be located as close<br />

as possible to Pin 12 to minimize any voltage drop which may<br />

develop between these two points, although the internal circuit<br />

is designed to minimize signal dependence of the analog return<br />

current.<br />

The digital ground, DGND, returns ground current from the<br />

digital logic portion of the device. This pin should be connected<br />

to the digital common node in the system. As shown in Figure<br />

7, the analog and digital grounds should be joined at one point<br />

in the system. When these two grounds are remotely connected<br />

such as at the power supply ground, care should be taken to<br />

minimize the voltage difference between the DGND and AGND<br />

pins in order to ensure the specified performance.<br />

POWER SUPPLIES AND DECOUPLING<br />

The AD<strong>18</strong>68 has three power supply input pins. V S (Pins 9 and<br />

15) provides the supply voltages which operate the analog portion<br />

of the device including the <strong>18</strong>-bit <strong>DAC</strong>s, the voltage references,<br />

and the output amplifiers. The V S supplies are designed<br />

to operate with a +5 V supply. These pins should be decoupled<br />

to analog common using a 0.1 µF capacitor. Good engineering<br />

practice suggests that the bypass capacitors be placed as close as<br />

possible to the package pins. This minimizes the inherent inductive<br />

effects of printed circuit board traces.<br />

V L (Pin 1) operates the digital portions of the chip including the<br />

input shift registers and the input latching circuitry. V L is also<br />

designed to operate with a +5 V supply. This pin should be bypassed<br />

to digital common using a 0.1 µF capacitor, again placed<br />

as close as possible to the package pin. Figure 7 illustrates the correct<br />

connection of the digital and analog supply bypass capacitors.<br />

An important feature of the AD<strong>18</strong>68 audio <strong>DAC</strong> is its ability to<br />

operate at reduced power supply voltages. This feature is very<br />

important in portable battery operated systems. As the batteries<br />

discharge, the supply voltage drops. Unlike any other audio<br />

Figure 7. Recommended Circuit Schematic<br />

NOISE REDUCTION CAPACITORS<br />

The AD<strong>18</strong>68 has two noise reduction pins designated as NRL<br />

(Pin 13) and NRR (Pin 11). It is recommended that external<br />

noise reduction capacitors be connected from these pins to<br />

AGND to reduce the output noise contributed by the voltage<br />

reference circuitry. As shown in Figure 7, each of these pins<br />

should be bypassed to AGND with a 4.7 µF or larger capacitor.<br />

The connections between the capacitors, package pins and<br />

AGND should be as short as possible to achieve the lowest<br />

noise.<br />

USING V B L AND V B R<br />

The AD<strong>18</strong>68 has two bias voltage reference pins, designated as<br />

V B R (Pin 8) and V B L (Pin 16). These pins supply a dc reference<br />

voltage equal to the center of the output voltage swing. These<br />

bias voltages replace “False Ground” networks previously required<br />

in single-supply audio systems. At the same time, they allow dccoupled<br />

systems, improving audio performance.<br />

Figure 8a illustrates the traditional approach used to generate<br />

False Ground voltages in single-supply audio systems. This circuit<br />

requires additional power and circuit board space.<br />

–V S<br />

DGND<br />

1<br />

2<br />

16-BIT<br />

LATCH<br />

16-BIT<br />

<strong>DAC</strong><br />

16<br />

15<br />

+V S<br />

TRIM<br />

+V L 3<br />

MSB<br />

SERIAL<br />

14<br />

ADJ<br />

INPUT<br />

REGISTER<br />

NC<br />

CLK<br />

4<br />

5<br />

I OUT 13<br />

12<br />

I OUT<br />

AGND<br />

CONTROL<br />

LOGIC<br />

LE<br />

DATA<br />

NC<br />

6<br />

7<br />

8<br />

11<br />

10<br />

9<br />

SJ<br />

R F<br />

V OUT<br />

AD<strong>18</strong>51<br />

NC = NO CONNECT<br />

Figure 8a. Schematic Using False Ground<br />

REV. A –5–


AD<strong>18</strong>68<br />

AD<strong>18</strong>68<br />

1<br />

2<br />

V L<br />

LL<br />

V B L 16<br />

V S<br />

15<br />

3<br />

4<br />

5<br />

6<br />

7<br />

DL<br />

CK<br />

DR<br />

LR<br />

DGND<br />

V O L 14<br />

NRL 13<br />

AGND 12<br />

NRR 11<br />

V O R 10<br />

8 VB R<br />

V S 9<br />

+ 5V<br />

+ 5V<br />

V O L<br />

V O R<br />

Figure 1 illustrates the typical THD+N versus frequency performance<br />

of the AD<strong>18</strong>68. It is evident that the THD+N performance<br />

of the AD<strong>18</strong>68 remains stable at all three levels through<br />

a wide range of frequencies. A load impedance of at least 2 kΩ is<br />

recommended for best THD+N performance.<br />

Analog Devices tests and grades all AD<strong>18</strong>68s on the basis of<br />

THD+N performance. During the distortion test, a high speed<br />

digital pattern generator transmits digital data to each channel<br />

of the device under test. Eighteen-bit data is latched into the<br />

<strong>DAC</strong> at 352.8 kHz (8× F S ). The test waveform is a 990.5 Hz<br />

sine wave with 0 dB, –20 dB, and –60 dB amplitudes. A 4096-<br />

point FFT calculates total harmonic distortion + noise,<br />

signal-to-noise ratio, and D-range. No deglitchers or external<br />

adjustments are used.<br />

Figure 8b. Circuitry Using Voltage Biases<br />

The AD<strong>18</strong>68 eliminates the need for “False Ground” circuitry.<br />

V B R and V B L generate the required bias voltages previously<br />

generated by the “False Ground.” As shown in Figure 8b, V B R<br />

and V B L may be used as the reference point in each output<br />

channel. This permits a dc-coupled output signal path. This<br />

eliminates ac-coupling capacitors and improves low frequency<br />

performance. It should be noted that these bias outputs have<br />

relatively high output impedance and will not drive output<br />

currents larger than 100 µA without degrading the specified<br />

performance.<br />

DISTORTION PERFORMANCE AND TESTING<br />

The THD+N figure of an audio <strong>DAC</strong> represents the amount of<br />

undesirable signal produced during reconstruction and playback<br />

of an audio waveform. Therefore, the THD+N specification<br />

provides a direct method to classify and choose an audio <strong>DAC</strong><br />

for a desired level of performance.<br />

DIGITAL CIRCUIT CONSIDERATIONS<br />

INPUT DATA<br />

The AD<strong>18</strong>68 digital input port employs five signals: Data Left<br />

(DL), Data Right (DR), Latch Left (LL), Latch Right (LR) and<br />

Clock (CLK). DL and DR are the serial inputs for the left and<br />

right <strong>DAC</strong>s, respectively. Input data bits are clocked into the input<br />

register on the rising edge of CLK. The falling edges of LL<br />

and LR cause the last <strong>18</strong> bits which were clocked into the serial<br />

registers to be shifted into the <strong>DAC</strong>s, thereby updating the respective<br />

<strong>DAC</strong> outputs. For systems using only a single latch signal,<br />

LL and LR may be connected together. For systems using<br />

only one DATA signal, DR and DL may be connected together.<br />

Data is transmitted to the AD<strong>18</strong>68 in a bit stream composed of<br />

<strong>18</strong>-bit words with a serial, twos complement, MSB first format.<br />

Left and right channels share the Clock (CLK) signal.<br />

Figure 9 illustrates the general signal requirements for data<br />

transfer for the AD<strong>18</strong>68.<br />

CLK<br />

DL<br />

MSB<br />

LSB<br />

DR<br />

MSB<br />

LSB<br />

LL<br />

LR<br />

Figure 9. Control Signals<br />

–6–<br />

REV. A


AD<strong>18</strong>68<br />

TIMING<br />

Figure 10 illustrates the specific timing requirements that must<br />

be met in order for the data transfer to be accomplished properly.<br />

The input pins of the AD<strong>18</strong>68 are TTL and 5 V CMOS<br />

compatible.<br />

The maximum clock rate of the AD<strong>18</strong>68 is specified to be at<br />

least 13.5 MHz. This clock rate allows data transfer rates of 2×,<br />

4×, 8×, and 16× F S (where F S equals 44.1 kHz). The applications<br />

section of this data sheet contains additional guidelines for<br />

using the AD<strong>18</strong>68.<br />

CLK<br />

DATA<br />

>30ns<br />

LATCH<br />

ENABLE (LE)<br />

> 74./ ns<br />

>30ns<br />

>30ns<br />

>10ns >10ns<br />

MSB<br />

1st BIT<br />

>60ns<br />

>40ns<br />

INTERNAL <strong>DAC</strong> INPUT REGISTER<br />

UPDATED WITH <strong>18</strong> MOST RECENT BITS<br />

2nd BIT<br />

LSB<br />

(<strong>18</strong>th BIT)<br />

Figure 10. Input Signal Timing<br />

>15ns<br />

>40ns<br />

NEXT<br />

WORD<br />

BITS CLOCKED<br />

TO SHIFT REGISTER<br />

APPLICATIONS OF THE AD<strong>18</strong>68<br />

The AD<strong>18</strong>68 is a high performance audio <strong>DAC</strong> specifically designed<br />

for portable and automotive digital audio applications.<br />

These market segments have technical requirements fundamentally<br />

different than those found in the high-end or home-use<br />

market segments. Portable equipment must rely on components<br />

which require low amounts of power to offer reasonable playing<br />

times. Also, battery voltages drop as the end of the discharge<br />

cycle is approached. The AD<strong>18</strong>68’s ability to operate from a<br />

single +5 V supply makes it a good choice for battery-operated<br />

gear. As the battery voltage drops, the power dissipation of the<br />

+5V POWER<br />

SUPPLY<br />

AD<strong>18</strong>68 drops. This extends the usable battery life. Finally, as<br />

the battery supply voltage drops, the bias voltages and signal<br />

swings also drop, preventing signal clipping and abrupt degradation<br />

of distortion. Figure 3 illustrates that THD+N performance<br />

of the AD<strong>18</strong>68 remains constant through a wide range<br />

of supply voltages.<br />

Automotive equipment rely on components which are able to<br />

consistently perform in a wide range of temperatures. In addition,<br />

due to the limited space available in automotive applications,<br />

small size is essential. The AD<strong>18</strong>68 is able to satisfy both<br />

of these requirements. The device has guaranteed specified performance<br />

between 0°C and +70°C, and the 16-pin DIP or 16-<br />

pin SOIC package is particularly attractive where overall size is<br />

important.<br />

Since the AD<strong>18</strong>68 provides dc bias voltages, the entire signal<br />

chain can be dc-coupled. This eliminate ac-coupling capacitors<br />

from the signal path, improving low frequency performance and<br />

lowering system cost and size.<br />

In summary, the AD<strong>18</strong>68 is an excellent choice for battery operated<br />

portable or automotive digital audio systems. In the following<br />

sections, some examples of high performance audio<br />

applications featuring the AD<strong>18</strong>68 are described.<br />

AD<strong>18</strong>68 with Sony CXD2550P Digital Filter<br />

Figure 11 illustrates an <strong>18</strong>-bit CD player design incorporating<br />

an AD<strong>18</strong>68 <strong>DAC</strong>, a Sony CXD2550P digital filter and 2-pole<br />

antialias filters. This high performance, single supply design operates<br />

at 8× F S and is suitable for portable and automotive applications.<br />

In this design, the CXD2550P filter transmits left<br />

and right channel digital data to the AD<strong>18</strong>68. The left and<br />

right latch signals, LL and LR, are both provided by the word<br />

clock signal (LRCKO) of the digital filter. The digital data is<br />

converted to low distortion output voltages by the output<br />

amplifiers on the AD<strong>18</strong>68. Also, no deglitching circuitry or<br />

external adjustments are required. Bypass capacitors, noise<br />

reduction capacitors and the antialias filter details are omitted<br />

for clarity.<br />

1<br />

TEST<br />

CXD2550P<br />

SLOT<br />

<strong>18</strong><br />

1<br />

V L<br />

AD<strong>18</strong>68<br />

V B<br />

L 16<br />

LEFT<br />

CHANNEL<br />

OUTPUT<br />

2<br />

3<br />

8Fs/4Fs<br />

LRCK0 17<br />

DATAL 16<br />

2<br />

3<br />

LL<br />

DL<br />

V S 15<br />

V O<br />

L 14<br />

1<br />

2<br />

V S<br />

8<br />

7<br />

RIGHT<br />

CHANNEL<br />

OUTPUT<br />

4<br />

DATAR<br />

15<br />

4<br />

CK<br />

NRL<br />

13<br />

3<br />

6<br />

5<br />

V DD<br />

V SS<br />

14<br />

5<br />

DR<br />

AGND 12<br />

4 AGND<br />

5<br />

6<br />

BCKO<br />

13<br />

6<br />

LR<br />

NRR 11<br />

7<br />

12<br />

7<br />

DGND<br />

V O<br />

R 10<br />

8 11<br />

8 V 9<br />

B<br />

R<br />

V S<br />

9 INIT<br />

10<br />

Figure 11. AD<strong>18</strong>68 with Sony CXD2550P Digital Filter<br />

REV. A –7–


AD<strong>18</strong>68<br />

ADDITIONAL APPLICATIONS<br />

In addition to CD player designs, the AD<strong>18</strong>68 is suitable for<br />

similar applications such as DAT, portable musical instruments,<br />

Laptop and Notebook personal computers, and PC audio<br />

I/O boards. The circuit techniques illustrated are directly<br />

applicable in those applications.<br />

Figures 12, 13, and 14 show connection diagrams for the<br />

AD<strong>18</strong>68 with popular digital filter chips from NPC and<br />

Yamaha. Each application operates at 8× F S operation. Please<br />

refer to the appropriate sections of this data sheet for additional<br />

information.<br />

+5V POWER<br />

SUPPLY<br />

SM5813<br />

AD<strong>18</strong>68<br />

1<br />

2<br />

3<br />

BCKO<br />

28<br />

27<br />

26<br />

1<br />

2<br />

3<br />

V L<br />

LL<br />

DL<br />

V B L 16<br />

V S 15<br />

V O L 14<br />

LOW<br />

PASS<br />

FILTER<br />

LEFT<br />

CHANNEL<br />

OUTPUT<br />

4<br />

WCKO<br />

25<br />

4<br />

CK<br />

NRL<br />

13<br />

5<br />

DOL<br />

24<br />

5<br />

DR<br />

AGND 12<br />

6<br />

DOR<br />

23<br />

6<br />

LR<br />

NRR 11<br />

7<br />

V DD 22<br />

8 V SS 1<br />

V SS 2 21<br />

9 20<br />

7 DGND<br />

V 10 O R<br />

8 V B R<br />

V S 9<br />

LOW<br />

PASS<br />

FILTER<br />

RIGHT<br />

CHANNEL<br />

OUTPUT<br />

10 19<br />

11 <strong>18</strong><br />

12 OW<strong>18</strong> 17<br />

13 OW20 16<br />

14<br />

COB 15<br />

Figure 12. AD<strong>18</strong>68 with NPC SM5813 Digital Filter<br />

+5V POWER<br />

SUPPLY<br />

SM58<strong>18</strong>AP<br />

AD<strong>18</strong>68<br />

1<br />

2<br />

3<br />

V DD<br />

BCKO<br />

WDCO<br />

16<br />

15<br />

14<br />

1<br />

2<br />

3<br />

V L<br />

LL<br />

DL<br />

V B L<br />

V S<br />

V O L<br />

16<br />

15<br />

14<br />

LOW<br />

PASS<br />

FILTER<br />

LEFT<br />

CHANNEL<br />

OUTPUT<br />

4<br />

13<br />

4<br />

CK<br />

NRL<br />

13<br />

5<br />

DOR<br />

12<br />

5<br />

DR<br />

AGND<br />

12<br />

6<br />

DOL<br />

11<br />

6<br />

LR<br />

NRR<br />

11<br />

7<br />

10<br />

8 V SS<br />

9<br />

7 DGND<br />

V O R 10<br />

8 V B R<br />

V S<br />

9<br />

LOW<br />

PASS<br />

FILTER<br />

RIGHT<br />

CHANNEL<br />

OUTPUT<br />

Figure 13. AD<strong>18</strong>68 with NPC SM58<strong>18</strong>AP Digital Filter<br />

–8–<br />

REV. A


AD<strong>18</strong>68<br />

+5V POWER<br />

SUPPLY<br />

YM3434<br />

AD<strong>18</strong>68<br />

1<br />

16<br />

1<br />

V L<br />

V B L<br />

16<br />

2<br />

3<br />

16/<strong>18</strong><br />

ST<br />

15<br />

14<br />

2<br />

3<br />

LL<br />

DL<br />

V S<br />

V O L<br />

15<br />

14<br />

LOW<br />

PASS<br />

FILTER<br />

LEFT<br />

CHANNEL<br />

OUTPUT<br />

4<br />

V DD 2<br />

V SS<br />

13<br />

4<br />

CK<br />

NRL<br />

13<br />

5<br />

BCO<br />

12<br />

5<br />

DR<br />

AGND<br />

12<br />

6<br />

WCO<br />

11<br />

6<br />

LR<br />

NRR<br />

11<br />

7<br />

DRO<br />

10<br />

7<br />

DGND<br />

V O R<br />

10<br />

8 V DD 1<br />

DLO 9<br />

8 V B R<br />

V S 9<br />

LOW<br />

PASS<br />

FILTER<br />

RIGHT<br />

CHANNEL<br />

OUTPUT<br />

Figure 14. AD<strong>18</strong>68 with Yamaha YM3434 Digital Filter<br />

OTHER DIGITAL AUDIO COMPONENTS AVAILABLE FROM ANALOG DEVICES<br />

+V S<br />

–V S 1<br />

16-BIT<br />

16-BIT 16<br />

–V L 8 9 V OUT<br />

LATCH<br />

<strong>DAC</strong><br />

DGND 2<br />

15 TRIM<br />

+V 3<br />

SERIAL<br />

MSB<br />

L<br />

14<br />

INPUT<br />

ADJ<br />

REGISTER<br />

NC<br />

CLK<br />

4<br />

5<br />

I OUT 13<br />

12<br />

I OUT<br />

AGND<br />

CONTROL<br />

LOGIC<br />

LE<br />

DATA<br />

6<br />

7<br />

11<br />

10<br />

SJ<br />

R F<br />

AD<strong>18</strong>56<br />

NC = NO CONNECT<br />

+V S<br />

–V S 1<br />

<strong>18</strong>-BIT<br />

<strong>18</strong>-BIT 16<br />

–V L 8 9 V OUT<br />

LATCH<br />

<strong>DAC</strong><br />

DGND 2<br />

15 TRIM<br />

+V L 3<br />

MSB<br />

SERIAL<br />

14<br />

ADJ<br />

INPUT<br />

REGISTER<br />

NC<br />

CLK<br />

4<br />

5<br />

I OUT 13<br />

12<br />

I OUT<br />

AGND<br />

CONTROL<br />

LOGIC<br />

LE<br />

DATA<br />

6<br />

7<br />

11<br />

10<br />

SJ<br />

R F<br />

AD<strong>18</strong>60<br />

NC = NO CONNECT<br />

AD<strong>18</strong>56 16-<strong>Bit</strong> <strong>Audio</strong> <strong>DAC</strong><br />

Complete, No External Components Required<br />

16-Pin DIP or SOIC Package<br />

Standard Pinout<br />

Low Cost<br />

AD<strong>18</strong>60 <strong>18</strong>-<strong>Bit</strong> <strong>Audio</strong> <strong>DAC</strong><br />

Complete, No External Components Required<br />

102 dB SNR Minimum<br />

16-Pin DIP or SOIC Package<br />

Standard Pinout<br />

REV. A –9–


AD<strong>18</strong>68<br />

–V S<br />

DGND<br />

1<br />

2<br />

3<br />

16-BIT<br />

LATCH<br />

SERIAL<br />

INPUT<br />

REGISTER<br />

16-BIT<br />

<strong>DAC</strong><br />

16<br />

15<br />

14<br />

+V S<br />

TRIM<br />

MSB<br />

ADJ<br />

–V S 1<br />

16<br />

+V<br />

<strong>18</strong>-BIT<br />

<strong>18</strong>-BIT<br />

S<br />

LATCH<br />

<strong>DAC</strong><br />

DGND 2<br />

15 TRIM<br />

MSB<br />

+V L 3<br />

SERIAL<br />

14<br />

ADJ<br />

INPUT<br />

REGISTER<br />

NC<br />

4<br />

I OUT<br />

13<br />

I OUT<br />

NC<br />

4<br />

I OUT<br />

13<br />

I OUT<br />

CLK<br />

5<br />

12<br />

AGND<br />

CLK<br />

5<br />

12<br />

AGND<br />

LE<br />

6<br />

CONTROL<br />

LOGIC<br />

11<br />

SJ<br />

LE<br />

6<br />

CONTROL<br />

LOGIC<br />

11<br />

SJ<br />

DATA<br />

7<br />

10<br />

R F<br />

DATA<br />

7<br />

10<br />

R F<br />

NC<br />

+V L<br />

NC = NO CONNECT<br />

8 9<br />

AD<strong>18</strong>51<br />

V OUT<br />

NC<br />

8 9<br />

AD<strong>18</strong>61<br />

V OUT<br />

NC = NO CONNECT<br />

AD<strong>18</strong>51 16-<strong>Bit</strong> PCM <strong>Audio</strong> <strong>DAC</strong><br />

107 dB SNR Minimum<br />

16 × F S Capability<br />

±5 V <strong>Supply</strong><br />

AD<strong>18</strong>61 <strong>18</strong>-<strong>Bit</strong> PCM <strong>Audio</strong> <strong>DAC</strong><br />

107 dB SNR Minimum<br />

16 × F S Capability<br />

±5 V <strong>Supply</strong><br />

1<br />

AD<strong>18</strong>64<br />

24<br />

+V S<br />

1<br />

AD<strong>18</strong>65<br />

24<br />

+V S<br />

TRIM<br />

2<br />

23<br />

TRIM<br />

TRIM<br />

2<br />

–V S<br />

AGND<br />

23<br />

TRIM<br />

MSB<br />

3<br />

REFERENCE<br />

REFERENCE<br />

22<br />

MSB<br />

MSB<br />

3<br />

REFERENCE<br />

REFERENCE<br />

22<br />

MSB<br />

I OUT<br />

4<br />

21<br />

I OUT<br />

I OUT<br />

4<br />

21<br />

I OUT<br />

AGND<br />

5<br />

–V S<br />

AGND<br />

20<br />

AGND<br />

5<br />

20<br />

SJ<br />

6<br />

19<br />

SJ<br />

SJ<br />

6<br />

19<br />

SJ<br />

R F<br />

V OUT<br />

+V L<br />

7<br />

8<br />

9<br />

–<br />

+<br />

–<br />

+<br />

<strong>18</strong><br />

17<br />

16<br />

R F<br />

V OUT<br />

–V L<br />

R F<br />

V OUT<br />

+V L<br />

7<br />

8<br />

9<br />

–<br />

+<br />

–<br />

+<br />

<strong>18</strong><br />

17<br />

16<br />

R F<br />

V OUT<br />

NC<br />

DR<br />

LR<br />

CK<br />

10<br />

11<br />

12<br />

<strong>18</strong>-BIT<br />

LATCH<br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

<strong>18</strong>-BIT<br />

LATCH<br />

15<br />

14<br />

13<br />

DL<br />

LL<br />

DGND<br />

DR<br />

LR<br />

CK<br />

10<br />

11<br />

12<br />

<strong>18</strong>-BIT<br />

LATCH<br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

<strong>18</strong>-BIT<br />

<strong>DAC</strong><br />

<strong>18</strong>-BIT<br />

LATCH<br />

15<br />

14<br />

13<br />

DL<br />

LL<br />

DGND<br />

NC = NO CONNECT<br />

AD<strong>18</strong>64 <strong>Dual</strong> <strong>18</strong>-<strong>Bit</strong> <strong>Audio</strong> <strong>DAC</strong><br />

Complete, No External Components<br />

High Performance<br />

Low Crosstalk<br />

24-Pin DIP<br />

THD+N = 0.004% (typical)<br />

AD<strong>18</strong>65 <strong>Dual</strong> <strong>18</strong>-<strong>Bit</strong> <strong>Audio</strong> <strong>DAC</strong><br />

107 dB SNR Minimum<br />

16 × F S Capability<br />

THD+N = 0.004% (typical)<br />

±5 V <strong>Supply</strong><br />

–10–<br />

REV. A


AD<strong>18</strong>68<br />

+V S<br />

–V S 1<br />

VOLTAGE<br />

16<br />

–V L 8 9 DGND<br />

REFERENCE<br />

–V S<br />

TRIM<br />

+V L<br />

CLK<br />

2<br />

3<br />

4<br />

5<br />

15<br />

14<br />

13<br />

12<br />

NR 2<br />

ADJ<br />

NR 1<br />

AGND<br />

INPUT<br />

LE 6<br />

&<br />

DIGITAL<br />

OFFSET<br />

20-BIT<br />

<strong>DAC</strong><br />

11 I OUT<br />

DATA 7<br />

10 R F<br />

AD<strong>18</strong>62<br />

AD<strong>18</strong>62 20-<strong>Bit</strong>, Low Noise <strong>Audio</strong> <strong>DAC</strong><br />

110 dB SNR Minimum<br />

THD+N = 0.0019% (typical)<br />

±1 dB Gain Linearity<br />

16-Pin Plastic DIP<br />

REV. A –11–


AD<strong>18</strong>68<br />

OUTLINE DIMENSIONS<br />

Dimensions shown in inches and (mm).<br />

Plastic DIP (N) Package<br />

16<br />

9<br />

1 8<br />

0.87 (22.1) MAX<br />

0.25<br />

(6.35)<br />

0.035<br />

(0.89)<br />

0.31<br />

(7.87)<br />

0.<strong>18</strong><br />

(4.57)<br />

MAX<br />

C1478–7–10/90<br />

0.<strong>18</strong><br />

(4.57)<br />

0.0<strong>18</strong> (0.46) 0.033 (0.84) 0.1 (2.54)<br />

0.125<br />

(3.<strong>18</strong>)<br />

MIN<br />

0.011<br />

(0.28)<br />

0.3 (7.62)<br />

Plastic SOIC (R) Package<br />

16<br />

9<br />

0.299<br />

(7.60)<br />

0.419<br />

(10.65)<br />

1 8<br />

0.012<br />

(0.3)<br />

0.413 (10.50)<br />

0.104<br />

(2.65)<br />

0.030<br />

(0.75)<br />

0.050<br />

(1.27)<br />

REF<br />

0.019 (0.49)<br />

0.013 (0.32)<br />

0.042 (1.07)<br />

PRINTED IN U.S.A.<br />

–12–<br />

REV. A

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!