10.10.2014 Views

Temperature-pressure phase diagram and ferroelectric properties of ...

Temperature-pressure phase diagram and ferroelectric properties of ...

Temperature-pressure phase diagram and ferroelectric properties of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

114105-3 Wang et al. J. Appl. Phys. 108, 114105 2010<br />

TABLE I. Coefficients <strong>of</strong> L<strong>and</strong>au potential in Eq. 2, where T is temperature in kelvin, T S is the saturation temperature below which the quantum mechanical<br />

effects are not ignorable, <strong>and</strong> 1 , 2 ,<strong>and</strong> 3 are stress along x, y, <strong>and</strong> z direction in unit <strong>of</strong> gigapascal.<br />

Coefficients This Work Bell <strong>and</strong> Cross Li et al. Wang et al. Units<br />

1<br />

5.0 10 5 T S<br />

Coth T S<br />

390<br />

T − Coth T S<br />

11<br />

−1.15410 8<br />

1+0.037 1 + 2 + 3 <br />

3.3410 5<br />

T−381<br />

4.12410 5<br />

T−388<br />

3.6110 5<br />

T−391<br />

4.69106T−393<br />

1.83109<br />

−2.02108 −2.09710 8 +4.0106T<br />

12 1+0.037 1 + 2 + 3 3.23010 8 7.97410 8 +6.7106T<br />

6.53010 8<br />

2.24109<br />

111<br />

−2.10610 9<br />

1+0.023 1 + 2 + 3 <br />

5.52107T−393<br />

1.391010<br />

+2.76109 1.29410 9 −3.2107T<br />

VmC −1<br />

Vm 5 C −3<br />

Vm 5 C −3<br />

Vm 9 C −5<br />

112<br />

4.09110 9<br />

1+0.023 1 + 2 + 3 4.47010 9 −1.95010 9 −2.210 9 Vm 9 C −5<br />

123 1+0.023 1 + 2 + 3 4.91010 9 −2.50010 9 5.5110 10 Vm 9 C −5<br />

−6.68810 9<br />

1111 7.59010 10 0.0 3.86310 10 4.8410 10 Vm 13 C −7<br />

1112 −2.19310 10 0.0 2.52910 10 2.5310 11 Vm 13 C −7<br />

1122 −2.22110 10 0.0 1.63710 10 2.8010 11 Vm 13 C −7<br />

1123 2.41610 10 0.0 1.36710 10 9.3510 10 Vm 13 C −7<br />

Since only the second-order coefficient in the L<strong>and</strong>au<br />

free energy is temperature-dependent, the entropy change for<br />

a <strong>phase</strong> transition at the transition temperature can be obtained<br />

from S=P product T C − P parent T C /2 0 C, where 0<br />

2<br />

2<br />

is the permittivity <strong>of</strong> vacuum <strong>and</strong> C is the Curie–Weiss<br />

constant. 28 Therefore, the entropy changes obtained in our<br />

work are 13 361 J m −3 K −1 for cubic to tetragonal <strong>phase</strong><br />

transition, 9237 J m −3 K −1 for tetragonal to orthorhombic,<br />

<strong>and</strong> 5531 J m −3 K −1 for orthorhombic to rhombohedral. For<br />

comparison, the entropy changes in Li et al.’s work are<br />

13 535 J m −3 K −1 , 6640 J m −3 K −1 , <strong>and</strong> 6971 J m −3 K −1 ,<br />

respectively. 7 These values are in general agreement with<br />

experimental values listed in Ref. 28: 13 098–13 644, 5898–<br />

9940, <strong>and</strong> 4357–7624 J m −3 K −1 . 28<br />

the classical L<strong>and</strong>au potential coefficients <strong>of</strong> Li et al. produced<br />

linear dependence <strong>of</strong> transition temperatures on the<br />

hydrostatic <strong>pressure</strong> for all three <strong>phase</strong> transitions, rhombohedral<br />

to orthorhombic, orthorhombic to tetragonal, <strong>and</strong> tetragonal<br />

to cubic. While the transition temperatures obtained<br />

using the classical L<strong>and</strong>au potential coefficients <strong>of</strong> Li et al.<br />

show good agreements with experimentally measured values<br />

above the saturation temperature, their linear dependence on<br />

III. TEMPERATURE-PRESSURE PHASE DIAGRAM<br />

Under a hydrostatic <strong>pressure</strong>, the applied stress tensors<br />

satisfy 1 = 2 = 3 =−p, 4 = 5 = 6 =0, <strong>and</strong> Eq. 1 becomes<br />

G = f LGD − 3 2 s 11 +3s 12p 2 + pQ 11 +2Q 12 <br />

P 1 2 + P 2 2 + P 3 2 .<br />

The variation in polarization with temperature <strong>and</strong> <strong>pressure</strong><br />

was obtained <strong>and</strong> shown in Figs. 1a <strong>and</strong> 1b. Each <strong>phase</strong><br />

transition can easily be identified in Fig. 1 based on the<br />

jumps in polarization values. Application <strong>of</strong> a hydrostatic<br />

<strong>pressure</strong> decreases polarization at a given temperature. As<br />

the hydrostatic <strong>pressure</strong> increases, the rhomobohedral <strong>phase</strong><br />

disappears first at its critical <strong>pressure</strong>, followed by the disappearance<br />

<strong>of</strong> the orthorhombic <strong>phase</strong> at 5.8 GPa, <strong>and</strong> finally,<br />

the tetragonal <strong>phase</strong> at about 6.4 GPa.<br />

With the coefficients listed in Table I, a temperature<strong>pressure</strong><br />

<strong>phase</strong> <strong>diagram</strong> was constructed <strong>and</strong> shown in Fig. 2.<br />

We also included the experimental data from Ishidate’s<br />

work 24 <strong>and</strong> theoretical results calculated by using classical<br />

L<strong>and</strong>au coefficients <strong>of</strong> Li et al. It can be seen from Fig. 2 that<br />

3<br />

FIG. 1. Color online a. Polarization <strong>of</strong> BaTiO 3 vs temperature under<br />

different hydrostatic <strong>pressure</strong>s. b. Polarization <strong>of</strong> BaTiO 3 vs hydrostatic<br />

<strong>pressure</strong> at different temperatures.<br />

Downloaded 23 Dec 2011 to 128.118.88.243. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_<strong>and</strong>_permissions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!