10.10.2014 Views

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF APPLIED PHYSICS 101, 114105 2007<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> epitaxial BiFeO 3 thin films<br />

J. X. Zhang, a Y. L. Li, Y. Wang, Z. K. Liu, and L. Q. Chen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science and Engineering, The Pennsylvania State University,<br />

University Park, Pennsylvania 16802<br />

Y. H. Chu, F. Zavaliche, and R. Ramesh<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science and Engineering and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California,<br />

Berkeley, California 94720<br />

Received 12 November 2006; accepted 15 April 2007; published <strong>on</strong>line 13 June 2007<br />

A single-domain <strong>the</strong>rmodynamic <strong>the</strong>ory is employed to predict <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

001 c , 101 c , and 111 c oriented epitaxial BiFeO 3 thin films grown <strong>on</strong> dissimilar <str<strong>on</strong>g>substrate</str<strong>on</strong>g>s. The<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> were studied. The<br />

dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> <strong>on</strong> film orientati<strong>on</strong>s and <strong>the</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> were analyzed. © 2007 American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics. DOI: 10.1063/1.2743733<br />

I. INTRODUCTION<br />

There has been c<strong>on</strong>siderable interest in developing<br />

BiFeO 3 magnetoelectric materials, which are simultaneously<br />

antiferromagnetic and ferroelectric. 1–3 In its bulk form, <strong>the</strong><br />

ferroelectric phase <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 has a rhombohedrally distorted<br />

perovskite structure with space group R3c. The sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 is al<strong>on</strong>g <strong>the</strong> pseudocubic 111 c crystallographic<br />

directi<strong>on</strong>s, and hence <strong>the</strong>re are eight possible<br />

polarizati<strong>on</strong> variants: r + 1 =111 c , r + 2 =111 c , r + +<br />

3 =111 c , r 4<br />

=111 c , r − 1 =111 c , r − 2 =111 c , r − 3 =111 c , and r − 4 =111 c .<br />

However, for epitaxial BiFeO 3 thin films, <strong>the</strong> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

free surface and <str<strong>on</strong>g>substrate</str<strong>on</strong>g> c<strong>on</strong>straint destroys <strong>the</strong> macroscopic<br />

symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system and may significantly affect<br />

<strong>the</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 . Recently, large ferroelectric polarizati<strong>on</strong>s<br />

have been reported in heteroepitaxially c<strong>on</strong>strained<br />

thin films <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 . 1,4,5 Str<strong>on</strong>g dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> polarizati<strong>on</strong><br />

<strong>on</strong> film thickness has also been observed in experiments, and<br />

a likely explanati<strong>on</strong> is <strong>the</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> with film<br />

thickness. 1 Previous studies have shown that <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> can lead to a substantial increase in sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> for c<strong>on</strong>venti<strong>on</strong>al ferroelectric materials,<br />

e.g., BaTiO 3 , PbTiO 3 . 6,7 However, <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain effect for BiFeO 3 thin films is still unclear. For example,<br />

first-principles calculati<strong>on</strong>s showed 8,9 that <strong>the</strong> sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> is ra<strong>the</strong>r insensitive to <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> compared to c<strong>on</strong>venti<strong>on</strong>al ferroelectric systems, while<br />

a recent <strong>the</strong>rmodynamic calculati<strong>on</strong> showed a str<strong>on</strong>g dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous polarizati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> film thickness for 001 c oriented BiFeO 3 thin<br />

films. 10<br />

Landau-type phenomenological <strong>the</strong>ory has been extensively<br />

used to study <strong>the</strong> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> single-domain<br />

ferroelectric thin films. 11–15 In this article, we extend <strong>the</strong><br />

<strong>the</strong>rmodynamic <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> ferroelectric thin films to variously<br />

oriented i.e., 001 c , 101 c , and 111 c epitaxial BiFeO 3<br />

thin films with general <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. We focus<br />

a Electr<strong>on</strong>ic mail: jzz108@psu.edu<br />

<strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 thin films and its<br />

dependence <strong>on</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> at room temperature.<br />

Our results are compared to previous experimental and<br />

<strong>the</strong>oretical studies.<br />

II. RESULTS AND DISCUSSION<br />

We c<strong>on</strong>sider a single-domain 001 c oriented BiFeO 3<br />

thin film grown <strong>on</strong> a dissimilar <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. For a phenomenological<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 with coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> ferroelectric<br />

and antiferromagnetic orders, in principle, both <strong>the</strong> sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> P =P 1 , P 2 , P 3 and sp<strong>on</strong>taneous<br />

magnetizati<strong>on</strong> M =M 1 ,M 2 ,M 3 should be chosen as <strong>the</strong> order<br />

parameters. If we set up a rectangular coordinate system<br />

x =x 1 ,x 2 ,x 3 with <strong>the</strong> x 1 , x 2 , and x 3 axes al<strong>on</strong>g <strong>the</strong> 100 c ,<br />

010 c , and 001 c crystallographic directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3<br />

film, respectively, <strong>the</strong> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 using a Landau<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> can be written as 16<br />

FP,M, = 1 P 1 2 + P 2 2 + P 32 + 11 P 1 4 + P 2 4 + P 34 + 12<br />

P 1 2 P 2 2 + P 1 2 P 3 2 + P 2 2 P 32 + 1 M 1 2 + M 2 2 + M 32 <br />

+ 11 M 1 4 + M 2 4 + M 34 + 12 M 1 2 M 2 2 + M 1 2 M 3<br />

2<br />

+ M 2 2 M 32 + ijkl P i P j M k M l + 1 2 c ijkl ij kl<br />

− 1 2 q ijkl ij P k P l − 1 2 ijkl ij M k M l + ¯ ,<br />

where ij are <strong>the</strong> strain comp<strong>on</strong>ents, 1 , ij , 1 , and ij are<br />

<strong>the</strong> phenomenological Landau expansi<strong>on</strong> coefficients, ijkl<br />

are <strong>the</strong> magnetoelectric coupling coefficients, c ijkl and q ijkl<br />

are <strong>the</strong> elastic c<strong>on</strong>stants and electrostrictive c<strong>on</strong>stants, respectively,<br />

and ijkl are <strong>the</strong> magnetoelastic coupling coefficients.<br />

The summati<strong>on</strong> c<strong>on</strong>venti<strong>on</strong> for <strong>the</strong> repeated indices is<br />

1<br />

0021-8979/2007/10111/114105/6/$23.00<br />

101, 114105-1<br />

© 2007 American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-2 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

employed and i, j,k,l=1,2,3. The electrostrictive coefficients,<br />

q ijkl , defined here can be easily obtained from<br />

q ijkl =2c ijmn Q mnkl ,<br />

where Q mnkl are <strong>the</strong> electrostrictive coefficients typically<br />

measured experimentally. Although sixth-order terms in polarizati<strong>on</strong><br />

are required for a first-order ferroelectric transiti<strong>on</strong><br />

in BiFeO 3 , 17 we <strong>on</strong>ly c<strong>on</strong>sidered terms up to fourth order due<br />

to <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient experimental data to obtain <strong>the</strong> numerical<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> coefficients. Since our focus is <strong>on</strong><br />

<strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 thin films at room temperature, such<br />

approximati<strong>on</strong> will not impact <strong>the</strong> main results <str<strong>on</strong>g>of</str<strong>on</strong>g> this article.<br />

We also neglect <strong>the</strong> magnetoelectric coupling term in Eq. 1<br />

due to fact that BiFeO 3 has a large polarizati<strong>on</strong> but a quite<br />

small saturated magnetizati<strong>on</strong>, 2 and <strong>the</strong> coupling term should<br />

have small effect <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong>. With <strong>the</strong>se<br />

approximati<strong>on</strong>s, <strong>the</strong> free-energy expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was<br />

reduced to<br />

FP, = 1 P 1 2 + P 2 2 + P 32 + 11 P 1 4 + P 2 4 + P 34 <br />

+ 12 P 1 2 P 2 2 + P 1 2 P 3 2 + P 2 2 P 32 <br />

2<br />

+ 1 2 c ijkl ij kl − 1 2 q ijkl ij P k P l . 3<br />

The elastic c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic phase BiFeO 3 are used, c 1111<br />

=3.0210 11 Nm −2 , c 1122 =1.6210 11 Nm −2 , and c 1212<br />

=0.6810 11 Nm −2 , which were obtained from firstprinciples<br />

calculati<strong>on</strong>s. The Landau expansi<strong>on</strong> coefficients<br />

and <strong>the</strong> electrostrictive coefficients were obtained by fitting<br />

<strong>the</strong>m to experimental measurements, 18–21 i.e., 1 =4.9T<br />

−110310 5 C −2 m 2 N, 11 =6.510 8 C −4 m 6 N, 12<br />

=1.010 8 C −4 m 6 N, Q 1111 =0.032 C −2 m 4 , Q 1122 =<br />

−0.016 C −2 m 4 , and Q 1212 =0.01 C −2 m 4 , where T is temperature<br />

in Kelvin. It should be noted that, due to <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reliable experimental data about <strong>the</strong> ferroelectric properties<br />

TABLE I. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 films at room temperature, T=300 K.<br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 films<br />

<strong>on</strong> SrTiO 3 <str<strong>on</strong>g>substrate</str<strong>on</strong>g>s<br />

This work a Experimental<br />

measurements<br />

Polarizati<strong>on</strong> P 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.63 0.55, b 0.64 c<br />

001 c BiFeO 3 film C/m 2 <br />

Polarizati<strong>on</strong> P 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.80 0.80, b 0.81 c<br />

101 c BiFeO 3 film C/m 2 <br />

Polarizati<strong>on</strong> P 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.96 1.00, b 0.96 c<br />

111 c BiFeO 3 film C/m 2 <br />

Dielectric c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> 111 c BiFeO 3 film 62 45, b 60 c<br />

a The <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> were assumed to be 0 11 = 0 0<br />

22 =−0.015, 12<br />

=0 in <strong>the</strong> calculati<strong>on</strong>s.<br />

b Reference 20.<br />

c Reference 21.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bulk BiFeO 3 , we calculated <strong>the</strong> ferroelectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different oriented BiFeO 3 films grown <strong>on</strong> SrTiO 3 <str<strong>on</strong>g>substrate</str<strong>on</strong>g>s,<br />

and fitted <strong>the</strong>m with <strong>the</strong> corresp<strong>on</strong>ding experimental measurements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 films 20,21 to obtain <strong>the</strong> needed coefficients.<br />

The calculated ferroelectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3<br />

films at room temperature are compared in Table I with <strong>the</strong><br />

available experimentally measured values.<br />

For a general case, <str<strong>on</strong>g>strains</str<strong>on</strong>g> are imposed al<strong>on</strong>g <strong>the</strong> x 1 -x 2<br />

directi<strong>on</strong>s, while all <strong>the</strong> stress comp<strong>on</strong>ents involving <strong>the</strong> x 3<br />

directi<strong>on</strong> are zero due to <strong>the</strong> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> free film surface,<br />

i.e.,<br />

11 = 0 11 ,<br />

22 = 0 22 ,<br />

12 = 21 = 0 12 ,<br />

13 = 31 = 23 = 32 = 33 =0,<br />

where <strong>the</strong> misfit <str<strong>on</strong>g>strains</str<strong>on</strong>g> 0 ij depend <strong>on</strong> <strong>the</strong> lattice parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film and <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. With such specified boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

<strong>the</strong> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 001 c oriented BiFeO 3 thin film is<br />

given by<br />

4<br />

F = 1 − c 1111q 1111 − c 1122 q 1122 0 0<br />

11 + c 1111 q 1122 − c 1122 q 1122 22 2<br />

P<br />

2c 1<br />

1111<br />

+ 1 − c 1111q 1122 − c 1122 q 1122 0 0<br />

11 + c 1111 q 1111 − c 1122 q 1122 22 2<br />

P<br />

2c 2<br />

1111<br />

+ 1 − c 1111q 1122 − c 1122 q 1111 0 0<br />

11 + c 1111 q 1122 − c 1122 q 1111 22 2<br />

P<br />

2c 3<br />

1111<br />

−2q 1212 0 12 P 1 P 2 + 12 − q 2<br />

1122<br />

4c 1<br />

1111P 2 P 2 2 + 12 − q 1111q 1122<br />

− q 2<br />

1212<br />

4c 1111 2c 1<br />

1212P 2 P 2 3 + P 2 2 P 32 + 11 − q 2<br />

1122<br />

P 4 1 + P 24 + 11 − q 2<br />

1111<br />

8c 3<br />

1111P 4 − c 2<br />

1122 0 11 + 0<br />

22 2<br />

+ 1 2c 1111 2 c 1111 11<br />

8c 1111<br />

0<br />

2 + 0<br />

22 2 + c 1122 0 11 0 22 +2c 1212 12<br />

0<br />

2 . 5<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-3 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

FIG. 1. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> 001 c<br />

oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

The free energy and P s <str<strong>on</strong>g>of</str<strong>on</strong>g> rhombohedral phase R and tetrag<strong>on</strong>al phase T<br />

were also given for comparis<strong>on</strong>.<br />

It should be noted that Eq. 5 is essentially <strong>the</strong> same as that<br />

reported in Ref. 14 except for <strong>the</strong> sixth-order terms and <strong>the</strong><br />

different notati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients. The sp<strong>on</strong>taneous polarizati<strong>on</strong><br />

can be derived from Eq. 5 by solving F/P i =0 i<br />

=1,2,3.<br />

For <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a 001 c oriented BiFeO 3 film epitaxially<br />

grown <strong>on</strong> a 001 c oriented cubic single-crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g><br />

with an in-plane orientati<strong>on</strong> relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BiFeO<br />

100 3 c 100 s c , a c<strong>on</strong>stant dilatati<strong>on</strong>al plane strain, socalled<br />

biaxial strain, is imposed al<strong>on</strong>g <strong>the</strong> x 1 -x 2 directi<strong>on</strong>s,<br />

0 11 = 0 22 , 0 12 =0, 6<br />

where 0 11 = 0 22 =a s −a BiFeO3 /a BiFeO3 , a s and a BiFeO3 are <strong>the</strong><br />

lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g> and film, respectively. The<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polarizati<strong>on</strong>s <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> is shown as Fig. 1. We can see that <strong>the</strong> in-plane comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> polarizati<strong>on</strong> P 1 =P 2 are not equal to <strong>the</strong> out<str<strong>on</strong>g>of</str<strong>on</strong>g>-plane<br />

comp<strong>on</strong>ent P 3 due to <strong>the</strong> c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>.<br />

As expected, compressive <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g><br />

lead to an increase in P 3 and decrease in P 1 and P 2 , while<br />

tensile <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> have <strong>the</strong> opposite effect.<br />

Therefore, <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polarizati<strong>on</strong> vector deviates<br />

from its equilibrium 111 c directi<strong>on</strong>s toward 001 c /001 c<br />

directi<strong>on</strong>s for compressive <str<strong>on</strong>g>strains</str<strong>on</strong>g> and<br />

110 c /110 c /110 c /110 c directi<strong>on</strong>s for tensile <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

As shown in Fig. 1b, BiFeO 3 becomes <strong>the</strong> m<strong>on</strong>oclinic M A<br />

FIG. 2. Free energy F and P s <str<strong>on</strong>g>of</str<strong>on</strong>g> various polarizati<strong>on</strong> variants for 001 c<br />

oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a anisotropic normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> and b shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

phase and M B phase, 22 respectively, which is c<strong>on</strong>sistent with<br />

prior experimental observati<strong>on</strong>s. 4,23 However, <strong>the</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> absoluti<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> P s<br />

=P with <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> is ra<strong>the</strong>r small as<br />

shown in Fig. 1a. For example, a ra<strong>the</strong>r large compressive<br />

strain <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.6% leads to an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> P s <strong>on</strong>ly about 0.3%. It<br />

should be noted that all eight polarizati<strong>on</strong> variants are degenerate<br />

in energy and hence should exist with <strong>the</strong> same probability<br />

in <strong>the</strong> 001 c oriented BiFeO 3 thin film.<br />

For <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a 001 c oriented BiFeO 3 film epitaxially<br />

grown <strong>on</strong> a 110 o oriented orthorhombic <str<strong>on</strong>g>substrate</str<strong>on</strong>g> for example<br />

110 o oriented DyScO 3 with an in-plane orientati<strong>on</strong><br />

BiFeO<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 3 c 110 s BiFeO<br />

o and 010 3 c 001 s o ,an<br />

anisotropic in-plane strain is imposed al<strong>on</strong>g <strong>the</strong> x 1 -x 2 directi<strong>on</strong>s,<br />

while <strong>the</strong>re is no shear strain.<br />

0 11 0 22 , 0 12 =0, 7<br />

where 0 11 = 2 as +b 2 s −a BiFeO3 /a BiFeO3 , 0 22 =c s −a BiFeO3 /<br />

a BiFeO3 , and a s , b s , and c s are <strong>the</strong> lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

orthorhombic <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. By fixing <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 11 / 0 22 ,we<br />

plot <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> free energy and P s <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> in Fig. 2a. It was interesting to note that all<br />

eight polarizati<strong>on</strong> variants have equal energy even under <strong>the</strong><br />

anisotropic <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. The absoluti<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> P s is insensitive to <strong>the</strong> normal<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

Shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g> strain may also exist for 001 c oriented<br />

BiFeO 3 films, i.e., 0 11 = 0 22 0, 0 12 0. A potential example<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-4 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

would be a 001 c oriented BiFeO 3 film c<strong>on</strong>strained by a<br />

001 o orthorhombic <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong><br />

BiFeO<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 3 s<br />

BiFeO<br />

c 110 o and 010 3 c 110 s o .<br />

The shear strain is 0 12 = 1 2cos , where is <strong>the</strong> angle between<br />

110 o and 110 o crystallographic axes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. For<br />

simplicity, we assume 0 11 = 0 22 =0 in this work. Unlike previously<br />

studied cases, <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eight polarizati<strong>on</strong><br />

variants are no l<strong>on</strong>ger degenerate under <strong>the</strong> shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain as shown in Fig. 2b. Under a negative shear<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain, four variants r + 2 , r − 2 , r + 4 , and r − 4 <br />

have lower energy, while under a positive shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r four variants r + 1 , r − 1 ,<br />

r + 3 , and r − 3 are lower. From Fig. 2b, <strong>on</strong>e can see that P s<br />

changes with <strong>the</strong> shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain. For example,<br />

P s for r + 1 , r − 1 , r + 3 , and r − 3 increases about 3.6% for a<br />

strain 0 12 =1.6%, which is significant compared to <strong>the</strong> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. However, <strong>the</strong> magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> change is still dramatically smaller than o<strong>the</strong>r traditi<strong>on</strong>al<br />

ferroelectric systems such as BiFeO 3 .<br />

For comparis<strong>on</strong>, we also performed calculati<strong>on</strong>s by assuming<br />

that <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was fixed to be rhombohedral<br />

P 1 =P 2 =P 3 = P s / 3 or tetrag<strong>on</strong>al P1 = P 2<br />

=0, P 3 = P s . By reducing Eq. 5 with such symmetry relati<strong>on</strong>s,<br />

<strong>the</strong> corresp<strong>on</strong>ding sp<strong>on</strong>taneous polarizati<strong>on</strong> can be<br />

obtained by solving F/P i =0. For rhombohedral symmetry,<br />

P 2 s = 6c 1212−6a 1 c 1111 + c 1111 − c 1122 q 1111 +2q 1122 0 11 + 0<br />

22 ±4c 1111 q 1212 12<br />

c 1212 24a 11 + a 12 c 1111 − q 1111 +2q 1122 2 −8c 1111 q 1212<br />

0<br />

<br />

2<br />

, 8<br />

where “+” for <strong>the</strong> variants with P 1 = P 2 and “−” for <strong>the</strong> variants<br />

with P 1 =−P 2 .<br />

For tetrag<strong>on</strong>al symmetry,<br />

P 2 s = −4a 1c 1111 −2c 1122 q 1111 − c 1111 q 1122 0 11 + 22<br />

8a 11 c 1111 − q 1111<br />

0<br />

<br />

2<br />

.<br />

From Eq. 8, <strong>on</strong>e can see that, when BiFeO 3 has <strong>the</strong><br />

rhombohedral symmetry, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> P s is highly related to <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

q 1111 +2q 1122 , which is given by<br />

q 1111 +2q 1122 =2c 1111 +2c 1122 Q 1111 +2Q 1122 .<br />

9<br />

10<br />

For BiFeO 3 also true for many ferroelectrics, <strong>the</strong> magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q 1111 +2Q 1122 is quite small. Therefore, <strong>the</strong> dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P s <strong>on</strong> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> is ra<strong>the</strong>r<br />

weak, and <strong>on</strong>ly a shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain could affect<br />

<strong>the</strong> polarizati<strong>on</strong> effectively. However, P s is <strong>on</strong>ly a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> when BiFeO 3 has a tetrag<strong>on</strong>al<br />

symmetry as shown in Eq. 9. It may explain <strong>the</strong><br />

str<strong>on</strong>g dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous polarizati<strong>on</strong>s <strong>on</strong> normal<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> film thickness shown in Ref. 10,<br />

where <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was assumed to be tetrag<strong>on</strong>al.<br />

It should be noted that <strong>the</strong> BiFeO 3 phases with tetrag<strong>on</strong>al<br />

symmetry and rhombohedral symmetry have higher energy<br />

than <strong>the</strong> phase with m<strong>on</strong>oclinic symmetry as shown in<br />

Fig. 1a; <strong>the</strong>refore, <strong>the</strong>y are unstable in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> we studied.<br />

We now discuss 111 c oriented BiFeO 3 thin films grown<br />

<strong>on</strong> a dissimilar <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. Following Ref. 13, a new coordinate<br />

system, x=x 1 ,x 2 ,x 3 , is set up with <strong>the</strong> x 1 , x 2 , and x 3 <br />

axes al<strong>on</strong>g <strong>the</strong> 011 c , 211 c , and 111 c crystallographic<br />

directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3 film, respectively. The free energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 in <strong>the</strong> coordinate system x is given by<br />

FP, = 1 t i1 P i 2 + t i2 P i 2 + t i3 P i 2 + 11 t i1 P i 4<br />

+ t i2 P i 4 + t i3 P i 4 + 12 t i1 P i 2 t i2 P i 2<br />

+ t i1 P i 2 t i3 P i 2 + t i2 P i 2 t i3 P i 2 <br />

+ 1 2 c ijkl kl − 1 2 q ijkl ij P k P l ,<br />

11<br />

where t ij is <strong>the</strong> transformati<strong>on</strong> matrix from <strong>the</strong> coordinate<br />

system x to <strong>the</strong> coordinate system x. P i , , ij c ijkl , and q<br />

ijkl<br />

are <strong>the</strong> polarizati<strong>on</strong>s, <str<strong>on</strong>g>strains</str<strong>on</strong>g>, elastic c<strong>on</strong>stants, and electrostrictive<br />

c<strong>on</strong>stants in <strong>the</strong> coordinate system x, which are<br />

given by<br />

P i = t ij P j ,<br />

ij = t im t jn mn ,<br />

c ijkl = t im t jn t ko t lp c mnop ,<br />

q ijkl = t im t jn t ko t lp q mnop , 12<br />

with <strong>the</strong> transformati<strong>on</strong> matrix<br />

1 −1<br />

0<br />

2 2<br />

−2 1 1<br />

13<br />

6 6 6<br />

=<br />

111<br />

t c ij<br />

1 1 1<br />

3 3<br />

3.<br />

For a 111 c oriented film deposited <strong>on</strong> a 111 c oriented<br />

cubic crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong> relati<strong>on</strong>ship<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 110 3 c 110 s c , <strong>the</strong> elastic boundary c<strong>on</strong>diti<strong>on</strong> is<br />

BiFeO<br />

given by<br />

11 = 0 11 ,<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-5 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

FIG. 3. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

polarizati<strong>on</strong> variants for 111 c oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

FIG. 4. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

polarizati<strong>on</strong> variants for 101 c oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

22 = 0 22 ,<br />

12 = 21 =0,<br />

13 = 31 = 23 = 32 = 33 =0,<br />

14<br />

where 0 11 = 0 22 =a s −a BiFeO3 /a BiFeO3 , a s and a BiFeO3 are <strong>the</strong><br />

lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g> and film, respectively. Unlike<br />

<strong>the</strong> 001 c oriented film, under a biaxial <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain <strong>the</strong> polarizati<strong>on</strong> variants do not have equal<br />

energy except for a critical point at 0 11 = 0 22 0% as shown<br />

in Fig. 3a. For a large compressive strain, <strong>the</strong> two polarizati<strong>on</strong><br />

variants perpendicular to <strong>the</strong> film surface r + 1 and r − 1 <br />

have lower energy than <strong>the</strong> o<strong>the</strong>rs, and <strong>the</strong> compressive<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> increase <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variants,<br />

which is c<strong>on</strong>sistent with prior first-principles calculati<strong>on</strong>s. 8,9<br />

It should be noted that in such a case, BiFeO 3 retains <strong>the</strong><br />

rhombohedral R symmetry P 1 =P 2 =P 3 as shown in<br />

Fig. 3b, and indeed rhombohedral symmetry is found experimentally<br />

in 111 c epitaxial BiFeO 3 film deposited <strong>on</strong> a<br />

111 c surface <str<strong>on</strong>g>of</str<strong>on</strong>g> SrTiO 3 , which has smaller lattice parameters<br />

than BiFeO 3 . 4,5,24 At <strong>the</strong> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> critical point<br />

in Fig. 3a, <strong>the</strong> o<strong>the</strong>r six polarizati<strong>on</strong> variants become more<br />

stable energetically. One can see that <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> also increase <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se polarizati<strong>on</strong> variants.<br />

However, <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 is no l<strong>on</strong>ger rhombohedral,<br />

and <strong>the</strong> stable phases have been marked in Fig. 3b.<br />

We also study 101 c oriented BiFeO 3 thin films. The<br />

coordinate system x was set up with <strong>the</strong> x 1 , x 2 , and x 3 axes<br />

al<strong>on</strong>g <strong>the</strong>010 c , 101 c , and 101 c crystallographic directi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3 film, and <strong>the</strong> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 101 c oriented<br />

BiFeO 3 thin films can be given by Eq. 11 with <strong>the</strong><br />

transformati<strong>on</strong> matrix from <strong>the</strong> coordinate system x to <strong>the</strong><br />

coordinate system x,<br />

0 1 0<br />

− 1 1<br />

0<br />

2 2<br />

15<br />

=<br />

101<br />

t c ij<br />

1<br />

2<br />

0<br />

1<br />

2.<br />

For a 101 c oriented BiFeO 3 film deposited <strong>on</strong> a 101 c<br />

oriented cubic crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong><br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 010 c<br />

BiFeO 3<br />

010 c s , <strong>the</strong> elastic boundary c<strong>on</strong>diti<strong>on</strong><br />

is given by<br />

11 = 0 11 ,<br />

22 = 0 22 ,<br />

12 = 21 =0,<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-6 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

13 = 31 = 23 = 32 = 33 =0,<br />

16<br />

where 0 11 = 0 0<br />

22 =a s −a BiFeO3 /a BiFeO3 . At a critical point 11<br />

= 0 22 0.25%, <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> eight polarizati<strong>on</strong> variants are<br />

<strong>the</strong> same; o<strong>the</strong>rwise <strong>the</strong>ir energies are different. Polarizati<strong>on</strong><br />

variants r + 1 , r − 1 , r + 4 , and r − 4 have lower energy <strong>on</strong> <strong>the</strong> left side<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> critical point, while <strong>the</strong> o<strong>the</strong>r four polarizati<strong>on</strong> variants<br />

are more stable energetically <strong>on</strong> <strong>the</strong> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> critical<br />

point. C<strong>on</strong>sistent with <strong>the</strong> experimental observati<strong>on</strong>, 4,25 <strong>the</strong><br />

crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> 101 c BiFeO 3 film loses <strong>the</strong> rhombohedral<br />

symmetry as shown in Fig. 4b. The <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> also change <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se variants as shown in Fig.<br />

4a.<br />

III. SUMMARY<br />

In summary, we have extended <strong>the</strong> <strong>the</strong>rmodynamic<br />

<strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> ferroelectric thin films to a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

oriented 001 c , 101 c , and 111 c epitaxial BiFeO 3 thin<br />

films with general <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. Our calculati<strong>on</strong>s<br />

show that <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g> effect <strong>on</strong> ferroelectric polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BiFeO 3 films depends <strong>on</strong> <strong>the</strong> film orientati<strong>on</strong>s and <strong>the</strong> types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. For 001 c oriented BiFeO 3<br />

films, <strong>on</strong>ly shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain will have a significant<br />

effect <strong>on</strong> <strong>the</strong> absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong><br />

P s , while <strong>the</strong> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong>ly<br />

rotate <strong>the</strong> polarizati<strong>on</strong> directi<strong>on</strong> without changing its magnitude.<br />

However, for 111 c and 101 c oriented BiFeO 3 films,<br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> can significantly alter <strong>the</strong><br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong>.<br />

ACKNOWLEDGMENTS<br />

The authors are grateful for <strong>the</strong> financial support by <strong>the</strong><br />

Nati<strong>on</strong>al Science Foundati<strong>on</strong> under Grant Nos. DMR-<br />

0507146, DMR-0213623, and DMR-0205232, and a Penn<br />

State MRI seed grant.<br />

1 J. Wang, J. B. Neat<strong>on</strong>, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.<br />

Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin,<br />

K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 2003.<br />

2 T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz,<br />

Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C.<br />

B. Eom, and R. Ramesh, Nat. Mater. 5, 8232006.<br />

3 R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 212007.<br />

4 J. F. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P.<br />

Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261<br />

2004.<br />

5 F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. P. Pyatakov, A. K.<br />

Zvezdin, L. E. Cross, and D. Viehland, Appl. Phys. Lett. 86, 032511<br />

2005.<br />

6 K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P.<br />

Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and<br />

C. B. Eom, Science 306, 1005 2004.<br />

7 C. Bungaro and K. M. Rabe, Phys. Rev. B 69, 184101 2004.<br />

8 C. Ederer and N. A. Spaldin, Phys. Rev. Lett. 95, 257601 2005.<br />

9 C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 224103 2005.<br />

10 Q. Jiang and J. H. Qiu, J. Appl. Phys. 99, 103901 2006.<br />

11 N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett.<br />

80, 1988 1998.<br />

12 N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 61, R825<br />

2000.<br />

13 A. K. Tagantsev, N. A. Pertsev, P. Muralt, and N. Setter, Phys. Rev. B 65,<br />

012104 2001.<br />

14 Z. G. Ban and S. P. Alpay, J. Appl. Phys. 91, 9288 2002.<br />

15 A. G. Zembilgotov, N. A. Pertsev, U. Böttger, and R. Waser, Appl. Phys.<br />

Lett. 86, 052903 2005.<br />

16 G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 4751982.<br />

17 R. Haum<strong>on</strong>t, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B 73,<br />

132101 2006.<br />

18 F. Kubel and H. Schmid, Acta Crystallogr. 46, 698 1990.<br />

19 B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A.<br />

K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 0641142004.<br />

20 J. Wang, Ph.D. <strong>the</strong>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland, 2005.<br />

21 Y. H. Chu unpublished.<br />

22 D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 2001.<br />

23 G. Y. Xu, H. Hiraka, G. Shirane, J. F. Li, J. L. Wang, and D. Viehland,<br />

Appl. Phys. Lett. 86, 182905 2005.<br />

24 M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, Appl. Phys. Lett. 88,<br />

042907 2006.<br />

25 G. Y. Xu, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 222901 2006.<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!