10.10.2014 Views

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

114105-4 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

would be a 001 c oriented BiFeO 3 film c<strong>on</strong>strained by a<br />

001 o orthorhombic <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong><br />

BiFeO<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 3 s<br />

BiFeO<br />

c 110 o and 010 3 c 110 s o .<br />

The shear strain is 0 12 = 1 2cos , where is <strong>the</strong> angle between<br />

110 o and 110 o crystallographic axes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. For<br />

simplicity, we assume 0 11 = 0 22 =0 in this work. Unlike previously<br />

studied cases, <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eight polarizati<strong>on</strong><br />

variants are no l<strong>on</strong>ger degenerate under <strong>the</strong> shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain as shown in Fig. 2b. Under a negative shear<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain, four variants r + 2 , r − 2 , r + 4 , and r − 4 <br />

have lower energy, while under a positive shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r four variants r + 1 , r − 1 ,<br />

r + 3 , and r − 3 are lower. From Fig. 2b, <strong>on</strong>e can see that P s<br />

changes with <strong>the</strong> shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain. For example,<br />

P s for r + 1 , r − 1 , r + 3 , and r − 3 increases about 3.6% for a<br />

strain 0 12 =1.6%, which is significant compared to <strong>the</strong> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. However, <strong>the</strong> magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> change is still dramatically smaller than o<strong>the</strong>r traditi<strong>on</strong>al<br />

ferroelectric systems such as BiFeO 3 .<br />

For comparis<strong>on</strong>, we also performed calculati<strong>on</strong>s by assuming<br />

that <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was fixed to be rhombohedral<br />

P 1 =P 2 =P 3 = P s / 3 or tetrag<strong>on</strong>al P1 = P 2<br />

=0, P 3 = P s . By reducing Eq. 5 with such symmetry relati<strong>on</strong>s,<br />

<strong>the</strong> corresp<strong>on</strong>ding sp<strong>on</strong>taneous polarizati<strong>on</strong> can be<br />

obtained by solving F/P i =0. For rhombohedral symmetry,<br />

P 2 s = 6c 1212−6a 1 c 1111 + c 1111 − c 1122 q 1111 +2q 1122 0 11 + 0<br />

22 ±4c 1111 q 1212 12<br />

c 1212 24a 11 + a 12 c 1111 − q 1111 +2q 1122 2 −8c 1111 q 1212<br />

0<br />

<br />

2<br />

, 8<br />

where “+” for <strong>the</strong> variants with P 1 = P 2 and “−” for <strong>the</strong> variants<br />

with P 1 =−P 2 .<br />

For tetrag<strong>on</strong>al symmetry,<br />

P 2 s = −4a 1c 1111 −2c 1122 q 1111 − c 1111 q 1122 0 11 + 22<br />

8a 11 c 1111 − q 1111<br />

0<br />

<br />

2<br />

.<br />

From Eq. 8, <strong>on</strong>e can see that, when BiFeO 3 has <strong>the</strong><br />

rhombohedral symmetry, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> P s is highly related to <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

q 1111 +2q 1122 , which is given by<br />

q 1111 +2q 1122 =2c 1111 +2c 1122 Q 1111 +2Q 1122 .<br />

9<br />

10<br />

For BiFeO 3 also true for many ferroelectrics, <strong>the</strong> magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q 1111 +2Q 1122 is quite small. Therefore, <strong>the</strong> dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P s <strong>on</strong> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> is ra<strong>the</strong>r<br />

weak, and <strong>on</strong>ly a shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain could affect<br />

<strong>the</strong> polarizati<strong>on</strong> effectively. However, P s is <strong>on</strong>ly a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> when BiFeO 3 has a tetrag<strong>on</strong>al<br />

symmetry as shown in Eq. 9. It may explain <strong>the</strong><br />

str<strong>on</strong>g dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous polarizati<strong>on</strong>s <strong>on</strong> normal<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> film thickness shown in Ref. 10,<br />

where <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was assumed to be tetrag<strong>on</strong>al.<br />

It should be noted that <strong>the</strong> BiFeO 3 phases with tetrag<strong>on</strong>al<br />

symmetry and rhombohedral symmetry have higher energy<br />

than <strong>the</strong> phase with m<strong>on</strong>oclinic symmetry as shown in<br />

Fig. 1a; <strong>the</strong>refore, <strong>the</strong>y are unstable in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> we studied.<br />

We now discuss 111 c oriented BiFeO 3 thin films grown<br />

<strong>on</strong> a dissimilar <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. Following Ref. 13, a new coordinate<br />

system, x=x 1 ,x 2 ,x 3 , is set up with <strong>the</strong> x 1 , x 2 , and x 3 <br />

axes al<strong>on</strong>g <strong>the</strong> 011 c , 211 c , and 111 c crystallographic<br />

directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3 film, respectively. The free energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 in <strong>the</strong> coordinate system x is given by<br />

FP, = 1 t i1 P i 2 + t i2 P i 2 + t i3 P i 2 + 11 t i1 P i 4<br />

+ t i2 P i 4 + t i3 P i 4 + 12 t i1 P i 2 t i2 P i 2<br />

+ t i1 P i 2 t i3 P i 2 + t i2 P i 2 t i3 P i 2 <br />

+ 1 2 c ijkl kl − 1 2 q ijkl ij P k P l ,<br />

11<br />

where t ij is <strong>the</strong> transformati<strong>on</strong> matrix from <strong>the</strong> coordinate<br />

system x to <strong>the</strong> coordinate system x. P i , , ij c ijkl , and q<br />

ijkl<br />

are <strong>the</strong> polarizati<strong>on</strong>s, <str<strong>on</strong>g>strains</str<strong>on</strong>g>, elastic c<strong>on</strong>stants, and electrostrictive<br />

c<strong>on</strong>stants in <strong>the</strong> coordinate system x, which are<br />

given by<br />

P i = t ij P j ,<br />

ij = t im t jn mn ,<br />

c ijkl = t im t jn t ko t lp c mnop ,<br />

q ijkl = t im t jn t ko t lp q mnop , 12<br />

with <strong>the</strong> transformati<strong>on</strong> matrix<br />

1 −1<br />

0<br />

2 2<br />

−2 1 1<br />

13<br />

6 6 6<br />

=<br />

111<br />

t c ij<br />

1 1 1<br />

3 3<br />

3.<br />

For a 111 c oriented film deposited <strong>on</strong> a 111 c oriented<br />

cubic crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong> relati<strong>on</strong>ship<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 110 3 c 110 s c , <strong>the</strong> elastic boundary c<strong>on</strong>diti<strong>on</strong> is<br />

BiFeO<br />

given by<br />

11 = 0 11 ,<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!