10.10.2014 Views

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF APPLIED PHYSICS 101, 114105 2007<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> epitaxial BiFeO 3 thin films<br />

J. X. Zhang, a Y. L. Li, Y. Wang, Z. K. Liu, and L. Q. Chen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science and Engineering, The Pennsylvania State University,<br />

University Park, Pennsylvania 16802<br />

Y. H. Chu, F. Zavaliche, and R. Ramesh<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science and Engineering and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California,<br />

Berkeley, California 94720<br />

Received 12 November 2006; accepted 15 April 2007; published <strong>on</strong>line 13 June 2007<br />

A single-domain <strong>the</strong>rmodynamic <strong>the</strong>ory is employed to predict <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

001 c , 101 c , and 111 c oriented epitaxial BiFeO 3 thin films grown <strong>on</strong> dissimilar <str<strong>on</strong>g>substrate</str<strong>on</strong>g>s. The<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> were studied. The<br />

dependences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> <strong>on</strong> film orientati<strong>on</strong>s and <strong>the</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> were analyzed. © 2007 American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics. DOI: 10.1063/1.2743733<br />

I. INTRODUCTION<br />

There has been c<strong>on</strong>siderable interest in developing<br />

BiFeO 3 magnetoelectric materials, which are simultaneously<br />

antiferromagnetic and ferroelectric. 1–3 In its bulk form, <strong>the</strong><br />

ferroelectric phase <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 has a rhombohedrally distorted<br />

perovskite structure with space group R3c. The sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 is al<strong>on</strong>g <strong>the</strong> pseudocubic 111 c crystallographic<br />

directi<strong>on</strong>s, and hence <strong>the</strong>re are eight possible<br />

polarizati<strong>on</strong> variants: r + 1 =111 c , r + 2 =111 c , r + +<br />

3 =111 c , r 4<br />

=111 c , r − 1 =111 c , r − 2 =111 c , r − 3 =111 c , and r − 4 =111 c .<br />

However, for epitaxial BiFeO 3 thin films, <strong>the</strong> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

free surface and <str<strong>on</strong>g>substrate</str<strong>on</strong>g> c<strong>on</strong>straint destroys <strong>the</strong> macroscopic<br />

symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system and may significantly affect<br />

<strong>the</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 . Recently, large ferroelectric polarizati<strong>on</strong>s<br />

have been reported in heteroepitaxially c<strong>on</strong>strained<br />

thin films <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 . 1,4,5 Str<strong>on</strong>g dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> polarizati<strong>on</strong><br />

<strong>on</strong> film thickness has also been observed in experiments, and<br />

a likely explanati<strong>on</strong> is <strong>the</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> with film<br />

thickness. 1 Previous studies have shown that <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> can lead to a substantial increase in sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> for c<strong>on</strong>venti<strong>on</strong>al ferroelectric materials,<br />

e.g., BaTiO 3 , PbTiO 3 . 6,7 However, <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain effect for BiFeO 3 thin films is still unclear. For example,<br />

first-principles calculati<strong>on</strong>s showed 8,9 that <strong>the</strong> sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> is ra<strong>the</strong>r insensitive to <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> compared to c<strong>on</strong>venti<strong>on</strong>al ferroelectric systems, while<br />

a recent <strong>the</strong>rmodynamic calculati<strong>on</strong> showed a str<strong>on</strong>g dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous polarizati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> film thickness for 001 c oriented BiFeO 3 thin<br />

films. 10<br />

Landau-type phenomenological <strong>the</strong>ory has been extensively<br />

used to study <strong>the</strong> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> single-domain<br />

ferroelectric thin films. 11–15 In this article, we extend <strong>the</strong><br />

<strong>the</strong>rmodynamic <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> ferroelectric thin films to variously<br />

oriented i.e., 001 c , 101 c , and 111 c epitaxial BiFeO 3<br />

thin films with general <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. We focus<br />

a Electr<strong>on</strong>ic mail: jzz108@psu.edu<br />

<strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 thin films and its<br />

dependence <strong>on</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> at room temperature.<br />

Our results are compared to previous experimental and<br />

<strong>the</strong>oretical studies.<br />

II. RESULTS AND DISCUSSION<br />

We c<strong>on</strong>sider a single-domain 001 c oriented BiFeO 3<br />

thin film grown <strong>on</strong> a dissimilar <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. For a phenomenological<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 with coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> ferroelectric<br />

and antiferromagnetic orders, in principle, both <strong>the</strong> sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> P =P 1 , P 2 , P 3 and sp<strong>on</strong>taneous<br />

magnetizati<strong>on</strong> M =M 1 ,M 2 ,M 3 should be chosen as <strong>the</strong> order<br />

parameters. If we set up a rectangular coordinate system<br />

x =x 1 ,x 2 ,x 3 with <strong>the</strong> x 1 , x 2 , and x 3 axes al<strong>on</strong>g <strong>the</strong> 100 c ,<br />

010 c , and 001 c crystallographic directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3<br />

film, respectively, <strong>the</strong> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 using a Landau<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> can be written as 16<br />

FP,M, = 1 P 1 2 + P 2 2 + P 32 + 11 P 1 4 + P 2 4 + P 34 + 12<br />

P 1 2 P 2 2 + P 1 2 P 3 2 + P 2 2 P 32 + 1 M 1 2 + M 2 2 + M 32 <br />

+ 11 M 1 4 + M 2 4 + M 34 + 12 M 1 2 M 2 2 + M 1 2 M 3<br />

2<br />

+ M 2 2 M 32 + ijkl P i P j M k M l + 1 2 c ijkl ij kl<br />

− 1 2 q ijkl ij P k P l − 1 2 ijkl ij M k M l + ¯ ,<br />

where ij are <strong>the</strong> strain comp<strong>on</strong>ents, 1 , ij , 1 , and ij are<br />

<strong>the</strong> phenomenological Landau expansi<strong>on</strong> coefficients, ijkl<br />

are <strong>the</strong> magnetoelectric coupling coefficients, c ijkl and q ijkl<br />

are <strong>the</strong> elastic c<strong>on</strong>stants and electrostrictive c<strong>on</strong>stants, respectively,<br />

and ijkl are <strong>the</strong> magnetoelastic coupling coefficients.<br />

The summati<strong>on</strong> c<strong>on</strong>venti<strong>on</strong> for <strong>the</strong> repeated indices is<br />

1<br />

0021-8979/2007/10111/114105/6/$23.00<br />

101, 114105-1<br />

© 2007 American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-2 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

employed and i, j,k,l=1,2,3. The electrostrictive coefficients,<br />

q ijkl , defined here can be easily obtained from<br />

q ijkl =2c ijmn Q mnkl ,<br />

where Q mnkl are <strong>the</strong> electrostrictive coefficients typically<br />

measured experimentally. Although sixth-order terms in polarizati<strong>on</strong><br />

are required for a first-order ferroelectric transiti<strong>on</strong><br />

in BiFeO 3 , 17 we <strong>on</strong>ly c<strong>on</strong>sidered terms up to fourth order due<br />

to <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient experimental data to obtain <strong>the</strong> numerical<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> coefficients. Since our focus is <strong>on</strong><br />

<strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous<br />

polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 thin films at room temperature, such<br />

approximati<strong>on</strong> will not impact <strong>the</strong> main results <str<strong>on</strong>g>of</str<strong>on</strong>g> this article.<br />

We also neglect <strong>the</strong> magnetoelectric coupling term in Eq. 1<br />

due to fact that BiFeO 3 has a large polarizati<strong>on</strong> but a quite<br />

small saturated magnetizati<strong>on</strong>, 2 and <strong>the</strong> coupling term should<br />

have small effect <strong>on</strong> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong>. With <strong>the</strong>se<br />

approximati<strong>on</strong>s, <strong>the</strong> free-energy expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was<br />

reduced to<br />

FP, = 1 P 1 2 + P 2 2 + P 32 + 11 P 1 4 + P 2 4 + P 34 <br />

+ 12 P 1 2 P 2 2 + P 1 2 P 3 2 + P 2 2 P 32 <br />

2<br />

+ 1 2 c ijkl ij kl − 1 2 q ijkl ij P k P l . 3<br />

The elastic c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic phase BiFeO 3 are used, c 1111<br />

=3.0210 11 Nm −2 , c 1122 =1.6210 11 Nm −2 , and c 1212<br />

=0.6810 11 Nm −2 , which were obtained from firstprinciples<br />

calculati<strong>on</strong>s. The Landau expansi<strong>on</strong> coefficients<br />

and <strong>the</strong> electrostrictive coefficients were obtained by fitting<br />

<strong>the</strong>m to experimental measurements, 18–21 i.e., 1 =4.9T<br />

−110310 5 C −2 m 2 N, 11 =6.510 8 C −4 m 6 N, 12<br />

=1.010 8 C −4 m 6 N, Q 1111 =0.032 C −2 m 4 , Q 1122 =<br />

−0.016 C −2 m 4 , and Q 1212 =0.01 C −2 m 4 , where T is temperature<br />

in Kelvin. It should be noted that, due to <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reliable experimental data about <strong>the</strong> ferroelectric properties<br />

TABLE I. Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 films at room temperature, T=300 K.<br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 films<br />

<strong>on</strong> SrTiO 3 <str<strong>on</strong>g>substrate</str<strong>on</strong>g>s<br />

This work a Experimental<br />

measurements<br />

Polarizati<strong>on</strong> P 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.63 0.55, b 0.64 c<br />

001 c BiFeO 3 film C/m 2 <br />

Polarizati<strong>on</strong> P 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.80 0.80, b 0.81 c<br />

101 c BiFeO 3 film C/m 2 <br />

Polarizati<strong>on</strong> P 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.96 1.00, b 0.96 c<br />

111 c BiFeO 3 film C/m 2 <br />

Dielectric c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> 111 c BiFeO 3 film 62 45, b 60 c<br />

a The <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> were assumed to be 0 11 = 0 0<br />

22 =−0.015, 12<br />

=0 in <strong>the</strong> calculati<strong>on</strong>s.<br />

b Reference 20.<br />

c Reference 21.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bulk BiFeO 3 , we calculated <strong>the</strong> ferroelectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different oriented BiFeO 3 films grown <strong>on</strong> SrTiO 3 <str<strong>on</strong>g>substrate</str<strong>on</strong>g>s,<br />

and fitted <strong>the</strong>m with <strong>the</strong> corresp<strong>on</strong>ding experimental measurements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 films 20,21 to obtain <strong>the</strong> needed coefficients.<br />

The calculated ferroelectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3<br />

films at room temperature are compared in Table I with <strong>the</strong><br />

available experimentally measured values.<br />

For a general case, <str<strong>on</strong>g>strains</str<strong>on</strong>g> are imposed al<strong>on</strong>g <strong>the</strong> x 1 -x 2<br />

directi<strong>on</strong>s, while all <strong>the</strong> stress comp<strong>on</strong>ents involving <strong>the</strong> x 3<br />

directi<strong>on</strong> are zero due to <strong>the</strong> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> free film surface,<br />

i.e.,<br />

11 = 0 11 ,<br />

22 = 0 22 ,<br />

12 = 21 = 0 12 ,<br />

13 = 31 = 23 = 32 = 33 =0,<br />

where <strong>the</strong> misfit <str<strong>on</strong>g>strains</str<strong>on</strong>g> 0 ij depend <strong>on</strong> <strong>the</strong> lattice parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film and <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. With such specified boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

<strong>the</strong> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 001 c oriented BiFeO 3 thin film is<br />

given by<br />

4<br />

F = 1 − c 1111q 1111 − c 1122 q 1122 0 0<br />

11 + c 1111 q 1122 − c 1122 q 1122 22 2<br />

P<br />

2c 1<br />

1111<br />

+ 1 − c 1111q 1122 − c 1122 q 1122 0 0<br />

11 + c 1111 q 1111 − c 1122 q 1122 22 2<br />

P<br />

2c 2<br />

1111<br />

+ 1 − c 1111q 1122 − c 1122 q 1111 0 0<br />

11 + c 1111 q 1122 − c 1122 q 1111 22 2<br />

P<br />

2c 3<br />

1111<br />

−2q 1212 0 12 P 1 P 2 + 12 − q 2<br />

1122<br />

4c 1<br />

1111P 2 P 2 2 + 12 − q 1111q 1122<br />

− q 2<br />

1212<br />

4c 1111 2c 1<br />

1212P 2 P 2 3 + P 2 2 P 32 + 11 − q 2<br />

1122<br />

P 4 1 + P 24 + 11 − q 2<br />

1111<br />

8c 3<br />

1111P 4 − c 2<br />

1122 0 11 + 0<br />

22 2<br />

+ 1 2c 1111 2 c 1111 11<br />

8c 1111<br />

0<br />

2 + 0<br />

22 2 + c 1122 0 11 0 22 +2c 1212 12<br />

0<br />

2 . 5<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-3 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

FIG. 1. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> 001 c<br />

oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

The free energy and P s <str<strong>on</strong>g>of</str<strong>on</strong>g> rhombohedral phase R and tetrag<strong>on</strong>al phase T<br />

were also given for comparis<strong>on</strong>.<br />

It should be noted that Eq. 5 is essentially <strong>the</strong> same as that<br />

reported in Ref. 14 except for <strong>the</strong> sixth-order terms and <strong>the</strong><br />

different notati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients. The sp<strong>on</strong>taneous polarizati<strong>on</strong><br />

can be derived from Eq. 5 by solving F/P i =0 i<br />

=1,2,3.<br />

For <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a 001 c oriented BiFeO 3 film epitaxially<br />

grown <strong>on</strong> a 001 c oriented cubic single-crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g><br />

with an in-plane orientati<strong>on</strong> relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BiFeO<br />

100 3 c 100 s c , a c<strong>on</strong>stant dilatati<strong>on</strong>al plane strain, socalled<br />

biaxial strain, is imposed al<strong>on</strong>g <strong>the</strong> x 1 -x 2 directi<strong>on</strong>s,<br />

0 11 = 0 22 , 0 12 =0, 6<br />

where 0 11 = 0 22 =a s −a BiFeO3 /a BiFeO3 , a s and a BiFeO3 are <strong>the</strong><br />

lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g> and film, respectively. The<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polarizati<strong>on</strong>s <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> is shown as Fig. 1. We can see that <strong>the</strong> in-plane comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> polarizati<strong>on</strong> P 1 =P 2 are not equal to <strong>the</strong> out<str<strong>on</strong>g>of</str<strong>on</strong>g>-plane<br />

comp<strong>on</strong>ent P 3 due to <strong>the</strong> c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>.<br />

As expected, compressive <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g><br />

lead to an increase in P 3 and decrease in P 1 and P 2 , while<br />

tensile <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> have <strong>the</strong> opposite effect.<br />

Therefore, <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polarizati<strong>on</strong> vector deviates<br />

from its equilibrium 111 c directi<strong>on</strong>s toward 001 c /001 c<br />

directi<strong>on</strong>s for compressive <str<strong>on</strong>g>strains</str<strong>on</strong>g> and<br />

110 c /110 c /110 c /110 c directi<strong>on</strong>s for tensile <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

As shown in Fig. 1b, BiFeO 3 becomes <strong>the</strong> m<strong>on</strong>oclinic M A<br />

FIG. 2. Free energy F and P s <str<strong>on</strong>g>of</str<strong>on</strong>g> various polarizati<strong>on</strong> variants for 001 c<br />

oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a anisotropic normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> and b shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

phase and M B phase, 22 respectively, which is c<strong>on</strong>sistent with<br />

prior experimental observati<strong>on</strong>s. 4,23 However, <strong>the</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> absoluti<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> P s<br />

=P with <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> is ra<strong>the</strong>r small as<br />

shown in Fig. 1a. For example, a ra<strong>the</strong>r large compressive<br />

strain <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.6% leads to an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> P s <strong>on</strong>ly about 0.3%. It<br />

should be noted that all eight polarizati<strong>on</strong> variants are degenerate<br />

in energy and hence should exist with <strong>the</strong> same probability<br />

in <strong>the</strong> 001 c oriented BiFeO 3 thin film.<br />

For <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a 001 c oriented BiFeO 3 film epitaxially<br />

grown <strong>on</strong> a 110 o oriented orthorhombic <str<strong>on</strong>g>substrate</str<strong>on</strong>g> for example<br />

110 o oriented DyScO 3 with an in-plane orientati<strong>on</strong><br />

BiFeO<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 3 c 110 s BiFeO<br />

o and 010 3 c 001 s o ,an<br />

anisotropic in-plane strain is imposed al<strong>on</strong>g <strong>the</strong> x 1 -x 2 directi<strong>on</strong>s,<br />

while <strong>the</strong>re is no shear strain.<br />

0 11 0 22 , 0 12 =0, 7<br />

where 0 11 = 2 as +b 2 s −a BiFeO3 /a BiFeO3 , 0 22 =c s −a BiFeO3 /<br />

a BiFeO3 , and a s , b s , and c s are <strong>the</strong> lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

orthorhombic <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. By fixing <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 11 / 0 22 ,we<br />

plot <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> free energy and P s <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> in Fig. 2a. It was interesting to note that all<br />

eight polarizati<strong>on</strong> variants have equal energy even under <strong>the</strong><br />

anisotropic <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. The absoluti<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong> P s is insensitive to <strong>the</strong> normal<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

Shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g> strain may also exist for 001 c oriented<br />

BiFeO 3 films, i.e., 0 11 = 0 22 0, 0 12 0. A potential example<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-4 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

would be a 001 c oriented BiFeO 3 film c<strong>on</strong>strained by a<br />

001 o orthorhombic <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong><br />

BiFeO<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 3 s<br />

BiFeO<br />

c 110 o and 010 3 c 110 s o .<br />

The shear strain is 0 12 = 1 2cos , where is <strong>the</strong> angle between<br />

110 o and 110 o crystallographic axes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. For<br />

simplicity, we assume 0 11 = 0 22 =0 in this work. Unlike previously<br />

studied cases, <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eight polarizati<strong>on</strong><br />

variants are no l<strong>on</strong>ger degenerate under <strong>the</strong> shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain as shown in Fig. 2b. Under a negative shear<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain, four variants r + 2 , r − 2 , r + 4 , and r − 4 <br />

have lower energy, while under a positive shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r four variants r + 1 , r − 1 ,<br />

r + 3 , and r − 3 are lower. From Fig. 2b, <strong>on</strong>e can see that P s<br />

changes with <strong>the</strong> shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain. For example,<br />

P s for r + 1 , r − 1 , r + 3 , and r − 3 increases about 3.6% for a<br />

strain 0 12 =1.6%, which is significant compared to <strong>the</strong> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. However, <strong>the</strong> magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> change is still dramatically smaller than o<strong>the</strong>r traditi<strong>on</strong>al<br />

ferroelectric systems such as BiFeO 3 .<br />

For comparis<strong>on</strong>, we also performed calculati<strong>on</strong>s by assuming<br />

that <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was fixed to be rhombohedral<br />

P 1 =P 2 =P 3 = P s / 3 or tetrag<strong>on</strong>al P1 = P 2<br />

=0, P 3 = P s . By reducing Eq. 5 with such symmetry relati<strong>on</strong>s,<br />

<strong>the</strong> corresp<strong>on</strong>ding sp<strong>on</strong>taneous polarizati<strong>on</strong> can be<br />

obtained by solving F/P i =0. For rhombohedral symmetry,<br />

P 2 s = 6c 1212−6a 1 c 1111 + c 1111 − c 1122 q 1111 +2q 1122 0 11 + 0<br />

22 ±4c 1111 q 1212 12<br />

c 1212 24a 11 + a 12 c 1111 − q 1111 +2q 1122 2 −8c 1111 q 1212<br />

0<br />

<br />

2<br />

, 8<br />

where “+” for <strong>the</strong> variants with P 1 = P 2 and “−” for <strong>the</strong> variants<br />

with P 1 =−P 2 .<br />

For tetrag<strong>on</strong>al symmetry,<br />

P 2 s = −4a 1c 1111 −2c 1122 q 1111 − c 1111 q 1122 0 11 + 22<br />

8a 11 c 1111 − q 1111<br />

0<br />

<br />

2<br />

.<br />

From Eq. 8, <strong>on</strong>e can see that, when BiFeO 3 has <strong>the</strong><br />

rhombohedral symmetry, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> P s is highly related to <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

q 1111 +2q 1122 , which is given by<br />

q 1111 +2q 1122 =2c 1111 +2c 1122 Q 1111 +2Q 1122 .<br />

9<br />

10<br />

For BiFeO 3 also true for many ferroelectrics, <strong>the</strong> magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q 1111 +2Q 1122 is quite small. Therefore, <strong>the</strong> dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P s <strong>on</strong> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> is ra<strong>the</strong>r<br />

weak, and <strong>on</strong>ly a shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain could affect<br />

<strong>the</strong> polarizati<strong>on</strong> effectively. However, P s is <strong>on</strong>ly a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> when BiFeO 3 has a tetrag<strong>on</strong>al<br />

symmetry as shown in Eq. 9. It may explain <strong>the</strong><br />

str<strong>on</strong>g dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous polarizati<strong>on</strong>s <strong>on</strong> normal<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> film thickness shown in Ref. 10,<br />

where <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 was assumed to be tetrag<strong>on</strong>al.<br />

It should be noted that <strong>the</strong> BiFeO 3 phases with tetrag<strong>on</strong>al<br />

symmetry and rhombohedral symmetry have higher energy<br />

than <strong>the</strong> phase with m<strong>on</strong>oclinic symmetry as shown in<br />

Fig. 1a; <strong>the</strong>refore, <strong>the</strong>y are unstable in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> we studied.<br />

We now discuss 111 c oriented BiFeO 3 thin films grown<br />

<strong>on</strong> a dissimilar <str<strong>on</strong>g>substrate</str<strong>on</strong>g>. Following Ref. 13, a new coordinate<br />

system, x=x 1 ,x 2 ,x 3 , is set up with <strong>the</strong> x 1 , x 2 , and x 3 <br />

axes al<strong>on</strong>g <strong>the</strong> 011 c , 211 c , and 111 c crystallographic<br />

directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3 film, respectively. The free energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 in <strong>the</strong> coordinate system x is given by<br />

FP, = 1 t i1 P i 2 + t i2 P i 2 + t i3 P i 2 + 11 t i1 P i 4<br />

+ t i2 P i 4 + t i3 P i 4 + 12 t i1 P i 2 t i2 P i 2<br />

+ t i1 P i 2 t i3 P i 2 + t i2 P i 2 t i3 P i 2 <br />

+ 1 2 c ijkl kl − 1 2 q ijkl ij P k P l ,<br />

11<br />

where t ij is <strong>the</strong> transformati<strong>on</strong> matrix from <strong>the</strong> coordinate<br />

system x to <strong>the</strong> coordinate system x. P i , , ij c ijkl , and q<br />

ijkl<br />

are <strong>the</strong> polarizati<strong>on</strong>s, <str<strong>on</strong>g>strains</str<strong>on</strong>g>, elastic c<strong>on</strong>stants, and electrostrictive<br />

c<strong>on</strong>stants in <strong>the</strong> coordinate system x, which are<br />

given by<br />

P i = t ij P j ,<br />

ij = t im t jn mn ,<br />

c ijkl = t im t jn t ko t lp c mnop ,<br />

q ijkl = t im t jn t ko t lp q mnop , 12<br />

with <strong>the</strong> transformati<strong>on</strong> matrix<br />

1 −1<br />

0<br />

2 2<br />

−2 1 1<br />

13<br />

6 6 6<br />

=<br />

111<br />

t c ij<br />

1 1 1<br />

3 3<br />

3.<br />

For a 111 c oriented film deposited <strong>on</strong> a 111 c oriented<br />

cubic crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong> relati<strong>on</strong>ship<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 110 3 c 110 s c , <strong>the</strong> elastic boundary c<strong>on</strong>diti<strong>on</strong> is<br />

BiFeO<br />

given by<br />

11 = 0 11 ,<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-5 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

FIG. 3. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

polarizati<strong>on</strong> variants for 111 c oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

FIG. 4. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

polarizati<strong>on</strong> variants for 101 c oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

22 = 0 22 ,<br />

12 = 21 =0,<br />

13 = 31 = 23 = 32 = 33 =0,<br />

14<br />

where 0 11 = 0 22 =a s −a BiFeO3 /a BiFeO3 , a s and a BiFeO3 are <strong>the</strong><br />

lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g> and film, respectively. Unlike<br />

<strong>the</strong> 001 c oriented film, under a biaxial <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain <strong>the</strong> polarizati<strong>on</strong> variants do not have equal<br />

energy except for a critical point at 0 11 = 0 22 0% as shown<br />

in Fig. 3a. For a large compressive strain, <strong>the</strong> two polarizati<strong>on</strong><br />

variants perpendicular to <strong>the</strong> film surface r + 1 and r − 1 <br />

have lower energy than <strong>the</strong> o<strong>the</strong>rs, and <strong>the</strong> compressive<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> increase <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variants,<br />

which is c<strong>on</strong>sistent with prior first-principles calculati<strong>on</strong>s. 8,9<br />

It should be noted that in such a case, BiFeO 3 retains <strong>the</strong><br />

rhombohedral R symmetry P 1 =P 2 =P 3 as shown in<br />

Fig. 3b, and indeed rhombohedral symmetry is found experimentally<br />

in 111 c epitaxial BiFeO 3 film deposited <strong>on</strong> a<br />

111 c surface <str<strong>on</strong>g>of</str<strong>on</strong>g> SrTiO 3 , which has smaller lattice parameters<br />

than BiFeO 3 . 4,5,24 At <strong>the</strong> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> critical point<br />

in Fig. 3a, <strong>the</strong> o<strong>the</strong>r six polarizati<strong>on</strong> variants become more<br />

stable energetically. One can see that <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> also increase <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se polarizati<strong>on</strong> variants.<br />

However, <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 is no l<strong>on</strong>ger rhombohedral,<br />

and <strong>the</strong> stable phases have been marked in Fig. 3b.<br />

We also study 101 c oriented BiFeO 3 thin films. The<br />

coordinate system x was set up with <strong>the</strong> x 1 , x 2 , and x 3 axes<br />

al<strong>on</strong>g <strong>the</strong>010 c , 101 c , and 101 c crystallographic directi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3 film, and <strong>the</strong> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 101 c oriented<br />

BiFeO 3 thin films can be given by Eq. 11 with <strong>the</strong><br />

transformati<strong>on</strong> matrix from <strong>the</strong> coordinate system x to <strong>the</strong><br />

coordinate system x,<br />

0 1 0<br />

− 1 1<br />

0<br />

2 2<br />

15<br />

=<br />

101<br />

t c ij<br />

1<br />

2<br />

0<br />

1<br />

2.<br />

For a 101 c oriented BiFeO 3 film deposited <strong>on</strong> a 101 c<br />

oriented cubic crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong><br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 010 c<br />

BiFeO 3<br />

010 c s , <strong>the</strong> elastic boundary c<strong>on</strong>diti<strong>on</strong><br />

is given by<br />

11 = 0 11 ,<br />

22 = 0 22 ,<br />

12 = 21 =0,<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


114105-6 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

13 = 31 = 23 = 32 = 33 =0,<br />

16<br />

where 0 11 = 0 0<br />

22 =a s −a BiFeO3 /a BiFeO3 . At a critical point 11<br />

= 0 22 0.25%, <strong>the</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> eight polarizati<strong>on</strong> variants are<br />

<strong>the</strong> same; o<strong>the</strong>rwise <strong>the</strong>ir energies are different. Polarizati<strong>on</strong><br />

variants r + 1 , r − 1 , r + 4 , and r − 4 have lower energy <strong>on</strong> <strong>the</strong> left side<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> critical point, while <strong>the</strong> o<strong>the</strong>r four polarizati<strong>on</strong> variants<br />

are more stable energetically <strong>on</strong> <strong>the</strong> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> critical<br />

point. C<strong>on</strong>sistent with <strong>the</strong> experimental observati<strong>on</strong>, 4,25 <strong>the</strong><br />

crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> 101 c BiFeO 3 film loses <strong>the</strong> rhombohedral<br />

symmetry as shown in Fig. 4b. The <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> also change <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se variants as shown in Fig.<br />

4a.<br />

III. SUMMARY<br />

In summary, we have extended <strong>the</strong> <strong>the</strong>rmodynamic<br />

<strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> ferroelectric thin films to a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

oriented 001 c , 101 c , and 111 c epitaxial BiFeO 3 thin<br />

films with general <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. Our calculati<strong>on</strong>s<br />

show that <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g> effect <strong>on</strong> ferroelectric polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BiFeO 3 films depends <strong>on</strong> <strong>the</strong> film orientati<strong>on</strong>s and <strong>the</strong> types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>. For 001 c oriented BiFeO 3<br />

films, <strong>on</strong>ly shear <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> strain will have a significant<br />

effect <strong>on</strong> <strong>the</strong> absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong><br />

P s , while <strong>the</strong> normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong>ly<br />

rotate <strong>the</strong> polarizati<strong>on</strong> directi<strong>on</strong> without changing its magnitude.<br />

However, for 111 c and 101 c oriented BiFeO 3 films,<br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> can significantly alter <strong>the</strong><br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sp<strong>on</strong>taneous polarizati<strong>on</strong>.<br />

ACKNOWLEDGMENTS<br />

The authors are grateful for <strong>the</strong> financial support by <strong>the</strong><br />

Nati<strong>on</strong>al Science Foundati<strong>on</strong> under Grant Nos. DMR-<br />

0507146, DMR-0213623, and DMR-0205232, and a Penn<br />

State MRI seed grant.<br />

1 J. Wang, J. B. Neat<strong>on</strong>, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.<br />

Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin,<br />

K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 2003.<br />

2 T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz,<br />

Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C.<br />

B. Eom, and R. Ramesh, Nat. Mater. 5, 8232006.<br />

3 R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 212007.<br />

4 J. F. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P.<br />

Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261<br />

2004.<br />

5 F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. P. Pyatakov, A. K.<br />

Zvezdin, L. E. Cross, and D. Viehland, Appl. Phys. Lett. 86, 032511<br />

2005.<br />

6 K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P.<br />

Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and<br />

C. B. Eom, Science 306, 1005 2004.<br />

7 C. Bungaro and K. M. Rabe, Phys. Rev. B 69, 184101 2004.<br />

8 C. Ederer and N. A. Spaldin, Phys. Rev. Lett. 95, 257601 2005.<br />

9 C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 224103 2005.<br />

10 Q. Jiang and J. H. Qiu, J. Appl. Phys. 99, 103901 2006.<br />

11 N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett.<br />

80, 1988 1998.<br />

12 N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 61, R825<br />

2000.<br />

13 A. K. Tagantsev, N. A. Pertsev, P. Muralt, and N. Setter, Phys. Rev. B 65,<br />

012104 2001.<br />

14 Z. G. Ban and S. P. Alpay, J. Appl. Phys. 91, 9288 2002.<br />

15 A. G. Zembilgotov, N. A. Pertsev, U. Böttger, and R. Waser, Appl. Phys.<br />

Lett. 86, 052903 2005.<br />

16 G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 4751982.<br />

17 R. Haum<strong>on</strong>t, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B 73,<br />

132101 2006.<br />

18 F. Kubel and H. Schmid, Acta Crystallogr. 46, 698 1990.<br />

19 B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A.<br />

K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 0641142004.<br />

20 J. Wang, Ph.D. <strong>the</strong>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland, 2005.<br />

21 Y. H. Chu unpublished.<br />

22 D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 2001.<br />

23 G. Y. Xu, H. Hiraka, G. Shirane, J. F. Li, J. L. Wang, and D. Viehland,<br />

Appl. Phys. Lett. 86, 182905 2005.<br />

24 M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, Appl. Phys. Lett. 88,<br />

042907 2006.<br />

25 G. Y. Xu, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 222901 2006.<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!