10.10.2014 Views

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

Effect of substrate-induced strains on the spontaneous polarization ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

114105-5 Zhang et al. J. Appl. Phys. 101, 114105 2007<br />

FIG. 3. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

polarizati<strong>on</strong> variants for 111 c oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

FIG. 4. a Free energy F and P s ; b polarizati<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

polarizati<strong>on</strong> variants for 101 c oriented BiFeO 3 thin films as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

normal <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g>.<br />

22 = 0 22 ,<br />

12 = 21 =0,<br />

13 = 31 = 23 = 32 = 33 =0,<br />

14<br />

where 0 11 = 0 22 =a s −a BiFeO3 /a BiFeO3 , a s and a BiFeO3 are <strong>the</strong><br />

lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g> and film, respectively. Unlike<br />

<strong>the</strong> 001 c oriented film, under a biaxial <str<strong>on</strong>g>substrate</str<strong>on</strong>g><str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

strain <strong>the</strong> polarizati<strong>on</strong> variants do not have equal<br />

energy except for a critical point at 0 11 = 0 22 0% as shown<br />

in Fig. 3a. For a large compressive strain, <strong>the</strong> two polarizati<strong>on</strong><br />

variants perpendicular to <strong>the</strong> film surface r + 1 and r − 1 <br />

have lower energy than <strong>the</strong> o<strong>the</strong>rs, and <strong>the</strong> compressive<br />

<str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> increase <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variants,<br />

which is c<strong>on</strong>sistent with prior first-principles calculati<strong>on</strong>s. 8,9<br />

It should be noted that in such a case, BiFeO 3 retains <strong>the</strong><br />

rhombohedral R symmetry P 1 =P 2 =P 3 as shown in<br />

Fig. 3b, and indeed rhombohedral symmetry is found experimentally<br />

in 111 c epitaxial BiFeO 3 film deposited <strong>on</strong> a<br />

111 c surface <str<strong>on</strong>g>of</str<strong>on</strong>g> SrTiO 3 , which has smaller lattice parameters<br />

than BiFeO 3 . 4,5,24 At <strong>the</strong> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> critical point<br />

in Fig. 3a, <strong>the</strong> o<strong>the</strong>r six polarizati<strong>on</strong> variants become more<br />

stable energetically. One can see that <strong>the</strong> <str<strong>on</strong>g>substrate</str<strong>on</strong>g>-<str<strong>on</strong>g>induced</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> also increase <strong>the</strong> P s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se polarizati<strong>on</strong> variants.<br />

However, <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> BiFeO 3 is no l<strong>on</strong>ger rhombohedral,<br />

and <strong>the</strong> stable phases have been marked in Fig. 3b.<br />

We also study 101 c oriented BiFeO 3 thin films. The<br />

coordinate system x was set up with <strong>the</strong> x 1 , x 2 , and x 3 axes<br />

al<strong>on</strong>g <strong>the</strong>010 c , 101 c , and 101 c crystallographic directi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> BiFeO 3 film, and <strong>the</strong> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 101 c oriented<br />

BiFeO 3 thin films can be given by Eq. 11 with <strong>the</strong><br />

transformati<strong>on</strong> matrix from <strong>the</strong> coordinate system x to <strong>the</strong><br />

coordinate system x,<br />

0 1 0<br />

− 1 1<br />

0<br />

2 2<br />

15<br />

=<br />

101<br />

t c ij<br />

1<br />

2<br />

0<br />

1<br />

2.<br />

For a 101 c oriented BiFeO 3 film deposited <strong>on</strong> a 101 c<br />

oriented cubic crystal <str<strong>on</strong>g>substrate</str<strong>on</strong>g> with an in-plane orientati<strong>on</strong><br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> 010 c<br />

BiFeO 3<br />

010 c s , <strong>the</strong> elastic boundary c<strong>on</strong>diti<strong>on</strong><br />

is given by<br />

11 = 0 11 ,<br />

22 = 0 22 ,<br />

12 = 21 =0,<br />

Downloaded 23 Oct 2007 to 128.118.53.4. Redistributi<strong>on</strong> subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!