10.10.2014 Views

Phase-field modeling of three-phase electrode microstructures in ...

Phase-field modeling of three-phase electrode microstructures in ...

Phase-field modeling of three-phase electrode microstructures in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

033909-2 Li et al. Appl. Phys. Lett. 101, 033909 (2012)<br />

i.e., C a þ C b þ C c ¼ 1. Therefore, two <strong>in</strong>dependent <strong>field</strong><br />

variables C a and C b are sufficient to def<strong>in</strong>e the conserved<br />

compositions <strong>of</strong> a <strong>three</strong>-<strong>phase</strong> system.<br />

For the fully dense solid <strong>electrode</strong>-a-<strong>phase</strong> and electrolyte-b-<strong>phase</strong>,<br />

the gra<strong>in</strong> orientation order parameters are <strong>in</strong>troduced<br />

with<strong>in</strong> the diffuse-<strong>in</strong>terface context for represent<strong>in</strong>g<br />

gra<strong>in</strong>s <strong>of</strong> a given crystallographic orientation <strong>in</strong> space.<br />

C a ðrÞ; g a 1 ðrÞ; ga 2 ðrÞ; :::; ga p ðrÞ;<br />

C b ðrÞ; g b 1 ðrÞ; gb 2 ðrÞ; :::; gb q ðrÞ; (1)<br />

where p and q are the numbers <strong>of</strong> possible gra<strong>in</strong> orientations<br />

<strong>of</strong> <strong>electrode</strong>-a-<strong>phase</strong> and electrolyte-b-<strong>phase</strong>, respectively.<br />

The non-conserved orientation variables change cont<strong>in</strong>uously<br />

<strong>in</strong> space and assume cont<strong>in</strong>uous values rang<strong>in</strong>g from<br />

1.0 to 1.0. For example, a value <strong>of</strong> g a i ðrÞ ¼1:0 with zero<br />

values for all other orientation variables <strong>in</strong>dicates that the<br />

material at position r belongs to <strong>electrode</strong>-a-<strong>phase</strong> with the<br />

crystallographic orientation labeled as i. Note that all orientation<br />

<strong>field</strong> variables are zero for the pore-c-<strong>phase</strong>.<br />

The total free energy with the composition and orientation<br />

order parameters can be constructed with<strong>in</strong> the diffuse<strong>in</strong>terface<br />

<strong>field</strong> theory 12,13<br />

ð "<br />

F ¼ f 0 ðC a ; C b ; g a i ; gb i Þþja C<br />

2 ðrC aÞ 2<br />

þ jb C<br />

2 ðrC bÞ 2 þ Xp<br />

i¼1<br />

j a i<br />

2 ðrga i Þ2 þ Xq<br />

i¼1<br />

j b i<br />

2 ðrgb i Þ2 #<br />

d 3 r;<br />

where rC a ; rC b ; rg a i ; and rgb i are gradients <strong>of</strong> concentration<br />

and orientation <strong>field</strong>s; j a C , jb C and ja i , jb i are the correspond<strong>in</strong>g<br />

gradient energy coefficients; f 0 is the local free<br />

energy density which is given by<br />

f 0 ¼ f 1 ðC a Þþf 1 ðC b Þþ Xp<br />

where<br />

þ Xp<br />

X p<br />

i¼1 j6¼i<br />

i¼1<br />

f 3 ðg a i ; ga j ÞþXq<br />

i¼1<br />

f 2 ðC a ; g a i ÞþXq<br />

X q<br />

j6¼i<br />

i¼1<br />

f 2 ðC b ; g b i Þ<br />

f 3 ðg b i ; gb j Þþf 4ðC a ; C b Þ;<br />

f 1 ðCÞ¼ ðA=2ÞðC C m Þ 2 þðB=4ÞðC C m Þ 4<br />

þðD a =4ÞðC C 0 Þ 4 ;<br />

f 2 ðC; g i Þ¼ ðc=2ÞðC C 0 Þ 2 ðg i Þ 2 þðd=4Þðg i Þ 4 ;<br />

f 3 ðg i ; g j Þ¼ðe ij =2Þðg i Þ 2 ðg j Þ 2 ; f 4 ðC a ; C b Þ¼ðk=2ÞðC a Þ 2 ðC b<br />

Þ 2 ;<br />

(4)<br />

(2)<br />

(3)<br />

where f 1 ðCÞ is only dependent on the composition variable;<br />

f 2 ðC; g i<br />

Þ i is the function for coupled composition and orientation<br />

<strong>field</strong>s; f 3 ðg i ; g j Þ gives the <strong>in</strong>teraction between orientation<br />

<strong>field</strong>s; and f 4 ðC a ; C b Þ denotes the coupl<strong>in</strong>g between<br />

composition <strong>field</strong>s. The phenomenological parameters <strong>in</strong> Eq.<br />

(4) are assumed as C 0 ¼ 0.0, C m ¼ 0.5, A ¼ 1.0, e ij ¼ 3.0,<br />

d ¼ 1.0, k ¼ 3.0, c ¼ d, B ¼ 4 A, and D a ¼ c 2 =d. They are<br />

chosen <strong>in</strong> such a way that f 0 has degenerate m<strong>in</strong>ima with<br />

equal depth located at equilibrium states C a ðrÞ ¼1; g a i ¼ 1<br />

for ith gra<strong>in</strong> <strong>of</strong> <strong>electrode</strong>-a-<strong>phase</strong>; C b ðrÞ ¼1; g b j ¼ 1 for jth<br />

gra<strong>in</strong> <strong>of</strong> electrolyte-b-<strong>phase</strong>; C c ðrÞ ¼1 for pore-c-<strong>phase</strong>.<br />

This requirement ensures that each po<strong>in</strong>t <strong>in</strong> space can only<br />

belong to a gra<strong>in</strong> with a given orientation <strong>of</strong> a given <strong>phase</strong>.<br />

The spatial/temporal k<strong>in</strong>etics evolution <strong>of</strong> gra<strong>in</strong> growth<br />

and <strong>phase</strong> coarsen<strong>in</strong>g can be described by the timedependent<br />

G<strong>in</strong>zburg-Landau equations and Cahn-Hilliard<br />

equations<br />

@g a i ðr; tÞ<br />

@t<br />

@g b i ðr; tÞ<br />

@t<br />

<br />

¼ L a i r df <br />

0<br />

dg a j a i<br />

i ðr; tÞ<br />

r2 g a i ; i ¼ 1; 2; :::; p<br />

" #<br />

¼ L b i r df 0<br />

dg b j b i<br />

i ðr; tÞ<br />

r2 g b i ; i ¼ 1; 2; :::; q<br />

<br />

<br />

@C a ðr; tÞ<br />

¼r MC a @t<br />

r @f 0<br />

@C a ðr; tÞ<br />

<br />

@C b ðr; tÞ<br />

@t<br />

¼r M b C r @f 0<br />

@C b ðr; tÞ<br />

j a C r2 C a ;<br />

<br />

j b C r2 C b ;<br />

where L i and M C are k<strong>in</strong>etic coefficients related to gra<strong>in</strong><br />

boundary mobilities and atomic diffusion coefficient, and t is<br />

time. The difference between k<strong>in</strong>etic equations for orientation<br />

<strong>field</strong>s and composition <strong>field</strong>s comes from the fact that<br />

composition is a conserved <strong>field</strong> which satisfies local and<br />

global conservation <strong>of</strong> <strong>phase</strong>-volume fractions <strong>in</strong> a system,<br />

whereas the volume fraction <strong>of</strong> gra<strong>in</strong>s <strong>of</strong> a given orientation<br />

is not conserved.<br />

It should be emphasized that the driv<strong>in</strong>g force for microstructure<br />

evolution is the total <strong>in</strong>terfacial boundary energy.<br />

Therefore, the gradient energy coefficients together with the<br />

k<strong>in</strong>etic mobilities are the most important factors to control<br />

the k<strong>in</strong>etics <strong>of</strong> microstructure evolution. The contact angles<br />

at triple junctions obta<strong>in</strong>ed by two-dimension simulations<br />

are shown <strong>in</strong> Fig. 2 for the prescribed <strong>three</strong> sets <strong>of</strong> gradient<br />

energy coefficients. It is found that the equilibrium contact<br />

angles at triple junctions are well exam<strong>in</strong>ed and the gradient<br />

coefficients play a key role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the contact angles<br />

as well as microstructure features <strong>of</strong> the <strong>three</strong>-<strong>phase</strong> system.<br />

Unfortunately, it is very difficult to obta<strong>in</strong> the actual gradient<br />

coefficients and the k<strong>in</strong>etic mobilities for the SOFC<br />

<strong>electrode</strong> materials. In order to perform the <strong>phase</strong>-<strong>field</strong><br />

(5)<br />

FIG. 2. Equilibrium contact angles at triple<br />

junctions for <strong>three</strong> sets <strong>of</strong> gradient energy coefficients.<br />

(a) j a C ¼ 2:5 and jb C ¼ 2:5; (b) ja C ¼ 1:5<br />

and j b C ¼ 3:5; and (c) ja C ¼ 0:5 and jb C ¼ 5:5:<br />

Downloaded 26 Sep 2012 to 146.186.211.66. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!