23.10.2014 Views

One Dimensional Elastic Collision.

One Dimensional Elastic Collision.

One Dimensional Elastic Collision.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

W<br />

2 m/s 1 m/s<br />

4 kg 1 kg<br />

A<br />

spring<br />

B<br />

X<br />

The two boxes are initially moving in the positive<br />

X direction. The ideal spring is connected to A.<br />

The collision between the boxes is assumed to be<br />

elastic since the spring is ideal (no kinetic<br />

converted to internal energy in spring).<br />

(a) Find the speed of each box after the collision.<br />

Since the collision is elastic the total momentum before and after the collision<br />

are the same and the total kinetic energy before and after are the same. Let v A<br />

and v B be the x components of the boxes after collision.<br />

Momentum<br />

Kinetic<br />

:<br />

Energy<br />

4<br />

( 2) + 1( 1)<br />

:<br />

1<br />

2<br />

= 4v<br />

A<br />

1<br />

2<br />

+ 1v<br />

B<br />

⇒<br />

1<br />

2<br />

= 9 − 4v<br />

1<br />

2<br />

( 4)( 2<br />

2 ) + ()( 1 1<br />

2 ) = ( 4) v<br />

2 + () 1 v<br />

2<br />

When v B is substituted into the second equation we obtain:<br />

5v 2 −18v<br />

+ 16=<br />

0 ⇒ v = 2 and 1. 6<br />

A<br />

A<br />

A<br />

v<br />

B<br />

A<br />

m<br />

( )<br />

s<br />

A<br />

B<br />

The first equation gives the corresponding values: v B = 1 and 2.6 (m/s). The<br />

solution pair (2.0 and 1.0) is impossible since it would mean that "A" had passed<br />

through "B". The correct solution is v A = 1.60 m/s and v B = 2.60 (m/s).<br />

(b) Find the speed of the boxes when the spring has maximum compression.<br />

When the spring has its maximum compression box "A" must be at rest relative to<br />

the spring and therefore to "B". Let v be the common speed of box boxes at this<br />

instant. Momentum conservation gives:<br />

( 2) + 11 ( ) = 4v + 1v<br />

⇒ v 1. 80( m<br />

)<br />

4 =<br />

(c) Find the maximum compression of the spring if k = 100 (N/m).<br />

We apply the Energy Principle with "i" being just before the collision and "f"<br />

at maximum spring compression:<br />

1<br />

2 1 2 1 2 1 2<br />

( K − K ) + ( U −U<br />

) = 0 ⇒ ( 4+<br />

11.8 ) − ( 4) 2 − () 11 + ( 100) x −0<br />

f<br />

i<br />

S f<br />

Si<br />

2<br />

Solving we obtain: x f = .0894 (m).<br />

2<br />

s<br />

2<br />

2<br />

f<br />

1


2 m/s 1 m/s<br />

4 1<br />

initial<br />

x<br />

final<br />

(d) Find the speed of both boxes when the spring<br />

compression is “x” (0 < x < .0894 m).<br />

v A<br />

and v B<br />

are the X components of the velocities when spring is compressed by “x”.<br />

4 2 11 = 4v + 1v<br />

⇒ v = 9 − 4v<br />

+ 1<br />

Momentum conservation: ( ) ( )<br />

A B B<br />

A<br />

Energy Conservation:<br />

ΔK<br />

1<br />

2<br />

A<br />

+ ΔK<br />

1<br />

2<br />

+ ΔU<br />

= 0<br />

1<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

( 4) v − ( 4) 2 + () 1 v − () 11 + ( 100) x − 0 = 0<br />

A<br />

B<br />

s<br />

B<br />

1<br />

2<br />

1<br />

2<br />

2<br />

Substitution of v B<br />

from (1) into (2) gives:<br />

5v<br />

v<br />

A<br />

2<br />

A<br />

−18v<br />

18 ±<br />

=<br />

A<br />

+<br />

2<br />

( 16 + 25x<br />

)<br />

4 − 500x<br />

10<br />

2<br />

= 0<br />

(<br />

m<br />

s )<br />

While the spring is being compressed the<br />

speed of “A” is:<br />

v<br />

A<br />

18 +<br />

=<br />

4 − 500x<br />

10<br />

2<br />

(<br />

m<br />

s )<br />

1<br />

While the spring is returning to its<br />

uncompressed length the speed of “A” is:<br />

v<br />

A<br />

18 −<br />

=<br />

4 − 500x<br />

10<br />

2<br />

(<br />

m<br />

s )<br />

2<br />

Check of our solutions:<br />

As spring starts to compress we use (1) and x = 0: v A<br />

= 2.00 (m/s) ;v B<br />

= 9-4v A<br />

=1.00 (m/s).<br />

Just after spring returns to x = 0 we use (2): v A<br />

= 1.6 (m/s) ; v B<br />

= 9-4v A<br />

= 2.60 (m/s).<br />

When x = .0894 (m) we can use either (1) or (2): v A<br />

= 1.80 (m/s) and v B<br />

= (9-4v A<br />

)= 1.80 (m/s)<br />

2


Speeds calculated during the collision using:<br />

v<br />

A<br />

18 ±<br />

=<br />

4 − 500x<br />

10<br />

2<br />

(<br />

m<br />

s )<br />

2.8<br />

2.6<br />

after<br />

speed<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

before<br />

A<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

after<br />

B<br />

before<br />

0 0.02 0.04 0.06 0.08 0.1<br />

spring compression<br />

9<br />

8<br />

7<br />

total energy<br />

kinetic energy<br />

6<br />

energy<br />

5<br />

4<br />

3<br />

2<br />

1<br />

spring potential energy<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

spring compression<br />

3


5 m/s<br />

2kg<br />

5 m/s<br />

2 kg<br />

A<br />

spring<br />

B<br />

We let “x” be the amount spring is compressed. For an elastic collision the total<br />

momentum and total energy ( kinetic + spring potential energy) are conserved<br />

momentum (kg.m/s)<br />

10<br />

8<br />

p a<br />

6<br />

4<br />

2<br />

0<br />

0<br />

-2<br />

0.02 0.04 0.06 0.08 0.1<br />

-4<br />

-6<br />

-8<br />

-10<br />

Energies (J)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

p total 25<br />

20<br />

15<br />

10<br />

U s<br />

5<br />

p b<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

X (m)<br />

X (m)<br />

K<br />

E total<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!