23.10.2014 Views

Modeling and System-level Simulation of Force-balance MEMS ...

Modeling and System-level Simulation of Force-balance MEMS ...

Modeling and System-level Simulation of Force-balance MEMS ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sensors & Transducers<br />

Volume 127, Issue 4,<br />

April 2011<br />

www.sensorsportal.com ISSN 1726-5479<br />

Editors-in-Chief: pr<strong>of</strong>essor Sergey Y. Yurish, tel.: +34 696067716, fax: +34 93 4011989, e-mail: editor@sensorsportal.com<br />

Editors for Western Europe<br />

Meijer, Gerard C.M., Delft University <strong>of</strong> Technology, The Netherl<strong>and</strong>s<br />

Ferrari, Vittorio, Universitá di Brescia, Italy<br />

Editor South America<br />

Costa-Felix, Rodrigo, Inmetro, Brazil<br />

Editor for Eastern Europe<br />

Sachenko, Anatoly, Ternopil State Economic University, Ukraine<br />

Editors for North America<br />

Datskos, Panos G., Oak Ridge National Laboratory, USA<br />

Fabien, J. Josse, Marquette University, USA<br />

Katz, Evgeny, Clarkson University, USA<br />

Editor for Asia<br />

Ohyama, Shinji, Tokyo Institute <strong>of</strong> Technology, Japan<br />

Editor for Asia-Pacific<br />

Mukhopadhyay, Subhas, Massey University, New Zeal<strong>and</strong><br />

Editorial Advisory Board<br />

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia<br />

Ahmad, Mohd Noor, Nothern University <strong>of</strong> Engineering, Malaysia<br />

Annamalai, Karthigeyan, National Institute <strong>of</strong> Advanced Industrial Science<br />

<strong>and</strong> Technology, Japan<br />

Arcega, Francisco, University <strong>of</strong> Zaragoza, Spain<br />

Arguel, Philippe, CNRS, France<br />

Ahn, Jae-Pyoung, Korea Institute <strong>of</strong> Science <strong>and</strong> Technology, Korea<br />

Arndt, Michael, Robert Bosch GmbH, Germany<br />

Ascoli, Giorgio, George Mason University, USA<br />

Atalay, Selcuk, Inonu University, Turkey<br />

Atghiaee, Ahmad, University <strong>of</strong> Tehran, Iran<br />

Augutis, Vygantas, Kaunas University <strong>of</strong> Technology, Lithuania<br />

Avachit, Patil Lalch<strong>and</strong>, North Maharashtra University, India<br />

Ayesh, Aladdin, De Montfort University, UK<br />

Azamimi, Azian binti Abdullah, Universiti Malaysia Perlis, Malaysia<br />

Bahreyni, Behraad, University <strong>of</strong> Manitoba, Canada<br />

Baliga, Shankar, B., General Monitors Transnational, USA<br />

Baoxian, Ye, Zhengzhou University, China<br />

Barford, Lee, Agilent Laboratories, USA<br />

Barlingay, Ravindra, RF Arrays <strong>System</strong>s, India<br />

Basu, Sukumar, Jadavpur University, India<br />

Beck, Stephen, University <strong>of</strong> Sheffield, UK<br />

Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia<br />

Benachaiba, Chellali, Universitaire de Bechar, Algeria<br />

Binnie, T. David, Napier University, UK<br />

Bisch<strong>of</strong>f, Gerlinde, Inst. Analytical Chemistry, Germany<br />

Bodas, Dhananjay, IMTEK, Germany<br />

Borges Carval, Nuno, Universidade de Aveiro, Portugal<br />

Bousbia-Salah, Mounir, University <strong>of</strong> Annaba, Algeria<br />

Bouvet, Marcel, CNRS – UPMC, France<br />

Brudzewski, Kazimierz, Warsaw University <strong>of</strong> Technology, Pol<strong>and</strong><br />

Cai, Chenxin, Nanjing Normal University, China<br />

Cai, Qingyun, Hunan University, China<br />

Campanella, Luigi, University La Sapienza, Italy<br />

Carvalho, Vitor, Minho University, Portugal<br />

Cecelja, Franjo, Brunel University, London, UK<br />

Cerda Belmonte, Judith, Imperial College London, UK<br />

Chakrabarty, Ch<strong>and</strong>an Kumar, Universiti Tenaga Nasional, Malaysia<br />

Chakravorty, Dipankar, Association for the Cultivation <strong>of</strong> Science, India<br />

Changhai, Ru, Harbin Engineering University, China<br />

Chaudhari, Gajanan, Shri Shivaji Science College, India<br />

Chavali, Murthy, N.I. Center for Higher Education, (N.I. University), India<br />

Chen, Jiming, Zhejiang University, China<br />

Chen, Rongshun, National Tsing Hua University, Taiwan<br />

Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan<br />

Chiang, Jeffrey (Cheng-Ta), Industrial Technol. Research Institute, Taiwan<br />

Chiriac, Horia, National Institute <strong>of</strong> Research <strong>and</strong> Development, Romania<br />

Chowdhuri, Arijit, University <strong>of</strong> Delhi, India<br />

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan<br />

Corres, Jesus, Universidad Publica de Navarra, Spain<br />

Cortes, Camilo A., Universidad Nacional de Colombia, Colombia<br />

Courtois, Christian, Universite de Valenciennes, France<br />

Cusano, Andrea, University <strong>of</strong> Sannio, Italy<br />

D'Amico, Arnaldo, Università di Tor Vergata, Italy<br />

De Stefano, Luca, Institute for Microelectronics <strong>and</strong> Microsystem, Italy<br />

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India<br />

Dickert, Franz L., Vienna University, Austria<br />

Dieguez, Angel, University <strong>of</strong> Barcelona, Spain<br />

Dimitropoulos, Panos, University <strong>of</strong> Thessaly, Greece<br />

Ding, Jianning, Jiangsu Polytechnic University, China<br />

Djordjevich, Alex<strong>and</strong>ar, City University <strong>of</strong> Hong Kong, Hong Kong<br />

Donato, Nicola, University <strong>of</strong> Messina, Italy<br />

Donato, Patricio, Universidad de Mar del Plata, Argentina<br />

Dong, Feng, Tianjin University, China<br />

Drljaca, Predrag, Instersema Sensoric SA, Switzerl<strong>and</strong><br />

Dubey, Venketesh, Bournemouth University, UK<br />

Enderle, Stefan, Univ.<strong>of</strong> Ulm <strong>and</strong> KTB Mechatronics GmbH, Germany<br />

Erdem, Gursan K. Arzum, Ege University, Turkey<br />

Erkmen, Aydan M., Middle East Technical University, Turkey<br />

Estelle, Patrice, Insa Rennes, France<br />

Estrada, Horacio, University <strong>of</strong> North Carolina, USA<br />

Faiz, Adil, INSA Lyon, France<br />

Fericean, Sorin, Balluff GmbH, Germany<br />

Fern<strong>and</strong>es, Joana M., University <strong>of</strong> Porto, Portugal<br />

Francioso, Luca, CNR-IMM Institute for Microelectronics <strong>and</strong> Microsystems, Italy<br />

Francis, Laurent, University Catholique de Louvain, Belgium<br />

Fu, Weiling, South-Western Hospital, Chongqing, China<br />

Gaura, Elena, Coventry University, UK<br />

Geng, Yanfeng, China University <strong>of</strong> Petroleum, China<br />

Gole, James, Georgia Institute <strong>of</strong> Technology, USA<br />

Gong, Hao, National University <strong>of</strong> Singapore, Singapore<br />

Gonzalez de la Rosa, Juan Jose, University <strong>of</strong> Cadiz, Spain<br />

Granel, Annette, Goteborg University, Sweden<br />

Graff, Mason, The University <strong>of</strong> Texas at Arlington, USA<br />

Guan, Shan, Eastman Kodak, USA<br />

Guillet, Bruno, University <strong>of</strong> Caen, France<br />

Guo, Zhen, New Jersey Institute <strong>of</strong> Technology, USA<br />

Gupta, Narendra Kumar, Napier University, UK<br />

Hadjiloucas, Sillas, The University <strong>of</strong> Reading, UK<br />

Haider, Mohammad R., Sonoma State University, USA<br />

Hashsham, Syed, Michigan State University, USA<br />

Hasni, Abdelhafid, Bechar University, Algeria<br />

Hern<strong>and</strong>ez, Alvaro, University <strong>of</strong> Alcala, Spain<br />

Hern<strong>and</strong>ez, Wilmar, Universidad Politecnica de Madrid, Spain<br />

Homentcovschi, Dorel, SUNY Binghamton, USA<br />

Horstman, Tom, U.S. Automation Group, LLC, USA<br />

Hsiai, Tzung (John), University <strong>of</strong> Southern California, USA<br />

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan<br />

Huang, Star, National Tsing Hua University, Taiwan<br />

Huang, Wei, PSG Design Center, USA<br />

Hui, David, University <strong>of</strong> New Orleans, USA<br />

Jaffrezic-Renault, Nicole, Ecole Centrale de Lyon, France<br />

Jaime Calvo-Galleg, Jaime, Universidad de Salamanca, Spain<br />

James, Daniel, Griffith University, Australia<br />

Janting, Jakob, DELTA Danish Electronics, Denmark<br />

Jiang, Liudi, University <strong>of</strong> Southampton, UK<br />

Jiang, Wei, University <strong>of</strong> Virginia, USA<br />

Jiao, Zheng, Shanghai University, China<br />

John, Joachim, IMEC, Belgium<br />

Kalach, Andrew, Voronezh Institute <strong>of</strong> Ministry <strong>of</strong> Interior, Russia<br />

Kang, Moonho, Sunmoon University, Korea South<br />

Kaniusas, Eugenijus, Vienna University <strong>of</strong> Technology, Austria<br />

Katake, Anup, Texas A&M University, USA<br />

Kausel, Wilfried, University <strong>of</strong> Music, Vienna, Austria<br />

Kavasoglu, Nese, Mugla University, Turkey<br />

Ke, Cathy, Tyndall National Institute, Irel<strong>and</strong><br />

Khelfaoui, Rachid, Université de Bechar, Algeria<br />

Khan, Asif, Aligarh Muslim University, Aligarh, India<br />

Kim, Min Young, Kyungpook National University, Korea South<br />

Ko, Sang Choon, Electronics. <strong>and</strong> Telecom. Research Inst., Korea South<br />

Kotulska, Malgorzata, Wroclaw University <strong>of</strong> Technology, Pol<strong>and</strong><br />

Kratz, Henrik, Uppsala University, Sweden<br />

Kockar, Hakan, Balikesir University, Turkey<br />

Kong, Ing, RMIT University, Australia


Kumar, Arun, University <strong>of</strong> South Florida, USA<br />

Kumar, Subodh, National Physical Laboratory, India<br />

Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan<br />

Lacnjevac, Caslav, University <strong>of</strong> Belgrade, Serbia<br />

Lay-Ekuakille, Aime, University <strong>of</strong> Lecce, Italy<br />

Lee, Jang Myung, Pusan National University, Korea South<br />

Lee, Jun Su, Amkor Technology, Inc. South Korea<br />

Lei, Hua, National Starch <strong>and</strong> Chemical Company, USA<br />

Li, Genxi, Nanjing University, China<br />

Li, Hui, Shanghai Jiaotong University, China<br />

Li, Xian-Fang, Central South University, China<br />

Li, Yuefa, Wayne State University, USA<br />

Liang, Yuanchang, University <strong>of</strong> Washington, USA<br />

Liawruangrath, Saisunee, Chiang Mai University, Thail<strong>and</strong><br />

Liew, Kim Meow, City University <strong>of</strong> Hong Kong, Hong Kong<br />

Lin, Hermann, National Kaohsiung University, Taiwan<br />

Lin, Paul, C<strong>level</strong><strong>and</strong> State University, USA<br />

Linderholm, Pontus, EPFL - Microsystems Laboratory, Switzerl<strong>and</strong><br />

Liu, Aihua, University <strong>of</strong> Oklahoma, USA<br />

Liu Changgeng, Louisiana State University, USA<br />

Liu, Cheng-Hsien, National Tsing Hua University, Taiwan<br />

Liu, Songqin, Southeast University, China<br />

Lodeiro, Carlos, University <strong>of</strong> Vigo, Spain<br />

Lorenzo, Maria Encarnacio, Universidad Autonoma de Madrid, Spain<br />

Lukaszewicz, Jerzy Pawel, Nicholas Copernicus University, Pol<strong>and</strong><br />

Ma, Zhanfang, Northeast Normal University, China<br />

Majstorovic, Vidosav, University <strong>of</strong> Belgrade, Serbia<br />

Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico<br />

Matay, Ladislav, Slovak Academy <strong>of</strong> Sciences, Slovakia<br />

Mathur, Prafull, National Physical Laboratory, India<br />

Maurya, D.K., Institute <strong>of</strong> Materials Research <strong>and</strong> Engineering, Singapore<br />

Mekid, Samir, University <strong>of</strong> Manchester, UK<br />

Melnyk, Ivan, Photon Control Inc., Canada<br />

Mendes, Paulo, University <strong>of</strong> Minho, Portugal<br />

Mennell, Julie, Northumbria University, UK<br />

Mi, Bin, Boston Scientific Corporation, USA<br />

Minas, Graca, University <strong>of</strong> Minho, Portugal<br />

Moghavvemi, Mahmoud, University <strong>of</strong> Malaya, Malaysia<br />

Mohammadi, Mohammad-Reza, University <strong>of</strong> Cambridge, UK<br />

Molina Flores, Esteban, Benemérita Universidad Autónoma de Puebla,<br />

Mexico<br />

Moradi, Majid, University <strong>of</strong> Kerman, Iran<br />

Morello, Rosario, University "Mediterranea" <strong>of</strong> Reggio Calabria, Italy<br />

Mounir, Ben Ali, University <strong>of</strong> Sousse, Tunisia<br />

Mulla, Imtiaz Sirajuddin, National Chemical Laboratory, Pune, India<br />

Nabok, Aleksey, Sheffield Hallam University, UK<br />

Neelamegam, Periasamy, Sastra Deemed University, India<br />

Neshkova, Milka, Bulgarian Academy <strong>of</strong> Sciences, Bulgaria<br />

Oberhammer, Joachim, Royal Institute <strong>of</strong> Technology, Sweden<br />

Ould Lahoucine, Cherif, University <strong>of</strong> Guelma, Algeria<br />

Pamidighanta, Sayanu, Bharat Electronics Limited (BEL), India<br />

Pan, Jisheng, Institute <strong>of</strong> Materials Research & Engineering, Singapore<br />

Park, Joon-Shik, Korea Electronics Technology Institute, Korea South<br />

Penza, Michele, ENEA C.R., Italy<br />

Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal<br />

Petsev, Dimiter, University <strong>of</strong> New Mexico, USA<br />

Pogacnik, Lea, University <strong>of</strong> Ljubljana, Slovenia<br />

Post, Michael, National Research Council, Canada<br />

Prance, Robert, University <strong>of</strong> Sussex, UK<br />

Prasad, Ambika, Gulbarga University, India<br />

Prateepasen, Asa, Kingmoungut's University <strong>of</strong> Technology, Thail<strong>and</strong><br />

Pullini, Daniele, Centro Ricerche FIAT, Italy<br />

Pumera, Martin, National Institute for Materials Science, Japan<br />

Radhakrishnan, S. National Chemical Laboratory, Pune, India<br />

Rajanna, K., Indian Institute <strong>of</strong> Science, India<br />

Ramadan, Qasem, Institute <strong>of</strong> Microelectronics, Singapore<br />

Rao, Basuthkar, Tata Inst. <strong>of</strong> Fundamental Research, India<br />

Rao<strong>of</strong>, Kosai, Joseph Fourier University <strong>of</strong> Grenoble, France<br />

Rastogi Shiva, K. University <strong>of</strong> Idaho, USA<br />

Reig, C<strong>and</strong>id, University <strong>of</strong> Valencia, Spain<br />

Restivo, Maria Teresa, University <strong>of</strong> Porto, Portugal<br />

Robert, Michel, University Henri Poincare, France<br />

Rezazadeh, Ghader, Urmia University, Iran<br />

Royo, Santiago, Universitat Politecnica de Catalunya, Spain<br />

Rodriguez, Angel, Universidad Politecnica de Cataluna, Spain<br />

Rothberg, Steve, Loughborough University, UK<br />

Sadana, Ajit, University <strong>of</strong> Mississippi, USA<br />

Sadeghian Marnani, Hamed, TU Delft, The Netherl<strong>and</strong>s<br />

S<strong>and</strong>acci, Serghei, Sensor Technology Ltd., UK<br />

Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia<br />

Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India<br />

Schneider, John K., Ultra-Scan Corporation, USA<br />

Sengupta, Deepak, Advance Bio-Photonics, India<br />

Seif, Selemani, Alabama A & M University, USA<br />

Seifter, Achim, Los Alamos National Laboratory, USA<br />

Shah, Kriyang, La Trobe University, Australia<br />

Silva Girao, Pedro, Technical University <strong>of</strong> Lisbon, Portugal<br />

Singh, V. R., National Physical Laboratory, India<br />

Slomovitz, Daniel, UTE, Uruguay<br />

Smith, Martin, Open University, UK<br />

Soleymanpour, Ahmad, Damghan Basic Science University, Iran<br />

Somani, Prakash R., Centre for Materials for Electronics Technol., India<br />

Srinivas, Talabattula, Indian Institute <strong>of</strong> Science, Bangalore, India<br />

Srivastava, Arvind K., NanoSonix Inc., USA<br />

Stefan-van Staden, Raluca-Ioana, University <strong>of</strong> Pretoria, South Africa<br />

Sumriddetchka, Sarun, National Electronics <strong>and</strong> Computer Technology Center,<br />

Thail<strong>and</strong><br />

Sun, Chengliang, Polytechnic University, Hong-Kong<br />

Sun, Dongming, Jilin University, China<br />

Sun, Junhua, Beijing University <strong>of</strong> Aeronautics <strong>and</strong> Astronautics, China<br />

Sun, Zhiqiang, Central South University, China<br />

Suri, C. Raman, Institute <strong>of</strong> Microbial Technology, India<br />

Sysoev, Victor, Saratov State Technical University, Russia<br />

Szewczyk, Roman, Industrial Research Inst. for Automation <strong>and</strong> Measurement,<br />

Pol<strong>and</strong><br />

Tan, Ooi Kiang, Nanyang Technological University, Singapore,<br />

Tang, Dianping, Southwest University, China<br />

Tang, Jaw-Luen, National Chung Cheng University, Taiwan<br />

Teker, Kasif, Frostburg State University, USA<br />

Thirunavukkarasu, I., Manipal University Karnataka, India<br />

Thumbavanam Pad, Kartik, Carnegie Mellon University, USA<br />

Tian, Gui Yun, University <strong>of</strong> Newcastle, UK<br />

Tsiantos, Vassilios, Technological Educational Institute <strong>of</strong> Kaval, Greece<br />

Tsigara, Anna, National Hellenic Research Foundation, Greece<br />

Twomey, Karen, University College Cork, Irel<strong>and</strong><br />

Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal<br />

Vanga, Raghav Rao, Summit Technology Services, Inc., USA<br />

Vaseashta, Ashok, Marshall University, USA<br />

Vazquez, Carmen, Carlos III University in Madrid, Spain<br />

Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal<br />

Vigna, Benedetto, STMicroelectronics, Italy<br />

Vrba, Radimir, Brno University <strong>of</strong> Technology, Czech Republic<br />

W<strong>and</strong>elt, Barbara, Technical University <strong>of</strong> Lodz, Pol<strong>and</strong><br />

Wang, Jiangping, Xi'an Shiyou University, China<br />

Wang, Kedong, Beihang University, China<br />

Wang, Liang, Pacific Northwest National Laboratory, USA<br />

Wang, Mi, University <strong>of</strong> Leeds, UK<br />

Wang, Shinn-Fwu, Ching Yun University, Taiwan<br />

Wang, Wei-Chih, University <strong>of</strong> Washington, USA<br />

Wang, Wensheng, University <strong>of</strong> Pennsylvania, USA<br />

Watson, Steven, Center for NanoSpace Technologies Inc., USA<br />

Weiping, Yan, Dalian University <strong>of</strong> Technology, China<br />

Wells, Stephen, Southern Company Services, USA<br />

Wolkenberg, Andrzej, Institute <strong>of</strong> Electron Technology, Pol<strong>and</strong><br />

Woods, R. Clive, Louisiana State University, USA<br />

Wu, DerHo, National Pingtung Univ. <strong>of</strong> Science <strong>and</strong> Technology, Taiwan<br />

Wu, Zhaoyang, Hunan University, China<br />

Xiu Tao, Ge, Chuzhou University, China<br />

Xu, Lisheng, The Chinese University <strong>of</strong> Hong Kong, Hong Kong<br />

Xu, Sen, Drexel University, USA<br />

Xu, Tao, University <strong>of</strong> California, Irvine, USA<br />

Yang, Dongfang, National Research Council, Canada<br />

Yang, Shuang-Hua, Loughborough University, UK<br />

Yang, Wuqiang, The University <strong>of</strong> Manchester, UK<br />

Yang, Xiaoling, University <strong>of</strong> Georgia, Athens, GA, USA<br />

Yaping Dan, Harvard University, USA<br />

Ymeti, Aurel, University <strong>of</strong> Twente, Netherl<strong>and</strong><br />

Yong Zhao, Northeastern University, China<br />

Yu, Haihu, Wuhan University <strong>of</strong> Technology, China<br />

Yuan, Yong, Massey University, New Zeal<strong>and</strong><br />

Yufera Garcia, Alberto, Seville University, Spain<br />

Zakaria, Zulkarnay, University Malaysia Perlis, Malaysia<br />

Zagnoni, Michele, University <strong>of</strong> Southampton, UK<br />

Zamani, Cyrus, Universitat de Barcelona, Spain<br />

Zeni, Luigi, Second University <strong>of</strong> Naples, Italy<br />

Zhang, Minglong, Shanghai University, China<br />

Zhang, Qintao, University <strong>of</strong> California at Berkeley, USA<br />

Zhang, Weiping, Shanghai Jiao Tong University, China<br />

Zhang, Wenming, Shanghai Jiao Tong University, China<br />

Zhang, Xueji, World Precision Instruments, Inc., USA<br />

Zhong, Haoxiang, Henan Normal University, China<br />

Zhu, Qing, Fujifilm Dimatix, Inc., USA<br />

Zorzano, Luis, Universidad de La Rioja, Spain<br />

Zourob, Mohammed, University <strong>of</strong> Cambridge, UK<br />

Sensors & Transducers Journal (ISSN 1726-5479) is a peer review international journal published monthly online by International Frequency Sensor Association (IFSA).<br />

Available in electronic <strong>and</strong> on CD. Copyright © 2011 by International Frequency Sensor Association. All rights reserved.


Sensors & Transducers Journal<br />

Contents<br />

Volume 127<br />

Issue 4<br />

April 2011<br />

www.sensorsportal.com ISSN 1726-5479<br />

Research Articles<br />

Going Fabless with <strong>MEMS</strong><br />

Bhaskar Choubey ............................................................................................................................... 1<br />

Micromachined Polycrystalline Si Thermopiles in a T-shirt<br />

Vladimir Leonov, Yvonne van Andel, Ziyang Wang, Ruud J. M. Vullers <strong>and</strong> Chris Van Ho<strong>of</strong>........... 15<br />

Virtual Fabrication <strong>of</strong> Silicon Nitride Based Multifunctional <strong>MEMS</strong> Pressure Sensor<br />

Mahesh Kumar Patankar.................................................................................................................... 27<br />

General Development <strong>of</strong> a New Hall Effect Sensor<br />

Vlassis N. Petoussis, Panos D. Dimitropoulos, George Stamoulis.................................................... 36<br />

Inspection <strong>of</strong> Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor<br />

based Rotating Probe<br />

Vimal Agarwal, Harutoshi Ogai, Kentarou Nishijima <strong>and</strong> Bishakh Bhattacharya............................... 45<br />

Ultrasonic <strong>System</strong> Approach to Obstacle Detection <strong>and</strong> Edge Detection<br />

Yin Thu Win, Hla Thar Htun, Nitin Afzulpurkar, Chumnarn Punyasai ................................................ 56<br />

Monitoring <strong>of</strong> Various Glucose Concentrations Based on Optical Spectroscopic<br />

Reflectometry<br />

Hariyadi Soetedjo ............................................................................................................................... 69<br />

Studies <strong>of</strong> Gas Sensing Performance <strong>of</strong> Barium Zirconate (BaZrO 3 )<br />

R. M. Chaudhari, V. B. Gaikwad, P. D. Hire, R. L. Patil,S. D. Shinde, N. U. Patil, G. H. Jain. .......... 76<br />

<strong>Modeling</strong> <strong>and</strong> <strong>System</strong>-<strong>level</strong> <strong>Simulation</strong> <strong>of</strong> <strong>Force</strong>-<strong>balance</strong> <strong>MEMS</strong> Comb Accelerometers<br />

Hao Chen, Limei Xu ........................................................................................................................... 88<br />

Design <strong>and</strong> Fabrication <strong>of</strong> a Lab-on-a-chip for Point-<strong>of</strong>-care Diagnostics<br />

Anne Balck, Monika Michalzik, Laila Al-Halabi, Stefan Dübel, <strong>and</strong> Stephanus Büttgenbach............ 102<br />

Authors are encouraged to submit article in MS Word (doc) <strong>and</strong> Acrobat (pdf) formats by e-mail: editor@sensorsportal.com<br />

Please visit journal’s webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm<br />

International Frequency Sensor Association (IFSA).


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

Sensors & Transducers<br />

ISSN 1726-5479<br />

© 2011 by IFSA<br />

http://www.sensorsportal.com<br />

<strong>Modeling</strong> <strong>and</strong> <strong>System</strong>-<strong>level</strong> <strong>Simulation</strong> <strong>of</strong> <strong>Force</strong>-<strong>balance</strong><br />

<strong>MEMS</strong> Comb Accelerometers<br />

Hao CHEN, Limei XU<br />

Institute <strong>of</strong> Astronautics & Aeronautics<br />

University <strong>of</strong> Electronic Science <strong>and</strong> Technology <strong>of</strong> China<br />

Chengdu, Sichuan 611731, China<br />

Tel.: 028-83205198<br />

E-mail: scuch@uestc.edu.cn<br />

Received: 10 April 2011 /Accepted: 22 April 2011 /Published: 30 April 2011<br />

Abstract: This paper presents a quick system-<strong>level</strong> modeling <strong>and</strong> simulation <strong>of</strong> force-<strong>balance</strong> <strong>MEMS</strong><br />

comb accelerometers. The derivation <strong>of</strong> the system-<strong>level</strong> model including the sense element <strong>and</strong><br />

interface electronics is elaborated <strong>and</strong> the simulation results are obtained from COVENTOR <strong>and</strong><br />

MATLAB respectively. The force-<strong>balance</strong> <strong>MEMS</strong> comb accelerometer, with the size <strong>of</strong> 1920 µm<br />

960 µm 50 µm, the static capacitance <strong>of</strong> 2.25 pF, <strong>and</strong> the inertial mass <strong>of</strong> 5.47 µg, can endure with<br />

over load <strong>of</strong> 2000 g. Through the system-<strong>level</strong> simulation, the sensitivity is 100 mv/g, the full scale<br />

range is 50<br />

g, the nonlinear distortion is smaller than 0.5 % <strong>and</strong> the system b<strong>and</strong>width is 2.2 kHz.<br />

Copyright © 2011 IFSA.<br />

Keywords: Micro-accelerometer; <strong>System</strong>-<strong>level</strong> simulation; Closed-loop system; Differential<br />

capacitive.<br />

1. Introduction<br />

Now, micro-machined sensors are widely used in many different aspects <strong>of</strong> inertial navigation system<br />

as well as the center <strong>of</strong> the vibration examination system for their small size, low cost <strong>and</strong> low power<br />

consumption. Especially, micro-machined accelerometers have been more <strong>and</strong> more popular since the<br />

safety requirement for automobiles has tightened, such like seat belts <strong>and</strong> air-bag systems. This leads<br />

to a high dem<strong>and</strong> for low-cost <strong>and</strong> small-size accelerometers capable <strong>of</strong> sensing up to 50 g (where 1 g<br />

is the acceleration due to earth gravitational force). Thus, integrated capacitive accelerometers that<br />

meet the requirements are well received [1-4]. There are many different types <strong>of</strong> micro-machined<br />

88


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

accelerometers, such as piezoresistive, piezoelectric, <strong>and</strong> capacitive accelerometer. But, most<br />

accelerometers use the capacitive-based mechanism because <strong>of</strong> its structural simplicity, high accuracy,<br />

low temperature sensitivity, low noise performance, good DC response, <strong>and</strong> compatibility with CMOS<br />

readout electronics. Capacitive accelerometers are typically implemented as a differential capacitance,<br />

using the linear relationship between the capacitance change <strong>and</strong> the acceleration [5]. Moreover, force<strong>balance</strong><br />

<strong>MEMS</strong> accelerometers based on capacitive mechanism can improve the system stability <strong>and</strong><br />

widen the measurement range using a closed loop structure [6].<br />

As <strong>MEMS</strong> technology continues to grow, to design <strong>and</strong> simulate <strong>MEMS</strong> device is becoming an<br />

interesting <strong>and</strong> important research issue. FEA/BEA is a commonly used numerical simulation method<br />

in <strong>MEMS</strong> simulation; firstly this method meshes the entity model <strong>and</strong> produces the system matrix, <strong>and</strong><br />

then solves the system matrix to get simulation result. In order to analyze the interaction between<br />

mechanical <strong>and</strong> electrostatic field, we must carry out the iterative calculation on both mechanical <strong>and</strong><br />

electrostatic field until the results <strong>of</strong> these two fields are consistent [8 - 10], but using this method will<br />

cost too much time <strong>and</strong> have a poor convergence performance as the author indicated in [10], so it’s<br />

<strong>of</strong>ten restricted in practical application. To solve the problem <strong>of</strong> force-<strong>balance</strong> <strong>MEMS</strong> comb<br />

accelerometers, three widely used methods have been proposed: signal flow method; multi-emulator<br />

coupling analysis method; unified modeling method.<br />

The signal flow method emphasizes using general principles <strong>of</strong> perspective to simulate the system<br />

behavior, such as simplifying the spring-mass-damper system <strong>and</strong> RLC oscillation circuit to a secondorder<br />

system. The disadvantage <strong>of</strong> the above method is that it can’t directly reflect some local<br />

characteristics <strong>of</strong> the device (like motion parameters etc.) <strong>and</strong> structure parameters (like dimension<br />

parameters etc.), it is very difficult to use this method to research the impact <strong>of</strong> these local<br />

characteristics <strong>and</strong> structure parameters on system performance.<br />

Multi-emulator coupling analysis method uses the coupling <strong>of</strong> different special emulators including<br />

fields <strong>of</strong> circuit, machinery <strong>and</strong> fluid to achieve the overall behavior’s simulation <strong>of</strong> <strong>MEMS</strong> [11, 12], it<br />

has high accuracy <strong>and</strong> also can take the device’s local characteristics into account, but this method has<br />

some disadvantages: non-unified abstract <strong>level</strong>s in coupled fields; poor convergence performance;<br />

relatively long computing time.<br />

The unified modeling method uses the same modeling approach <strong>and</strong> language (such as VHDL-AMS<br />

etc.) to model <strong>and</strong> describe the whole system, hence one can simulate the entire system just by a single<br />

simulator. The models <strong>of</strong> functional structure components constituting the system can be obtained on<br />

the basis on numerical analysis, <strong>and</strong> they can be inserted into the system-<strong>level</strong> simulation model [13].<br />

The models based on numerical analysis have high accuracy, suit for functional structure components<br />

in different shape <strong>and</strong> can realize the top-down verification in <strong>MEMS</strong> design [14, 15], but the models<br />

must be recalculated after changes in geometry dimension or topology <strong>of</strong> the functional structure<br />

components, resulting in long design circle, <strong>and</strong> can’t meet the requirement <strong>of</strong> rapid design.<br />

In order to realize rapid design <strong>of</strong> <strong>MEMS</strong> comb accelerometer <strong>and</strong> analyze the system-<strong>level</strong> behaviors<br />

<strong>of</strong> it, on one h<strong>and</strong>, we use pr<strong>of</strong>essional <strong>MEMS</strong> design s<strong>of</strong>tware to simulate <strong>and</strong> optimize the sensor<br />

part <strong>of</strong> <strong>MEMS</strong> comb accelerometers; on the other h<strong>and</strong>, we use numerical analysis to establish the<br />

system-<strong>level</strong> model <strong>of</strong> force-<strong>balance</strong> accelerometers including interface circuit. This mixed rapid<br />

modeling method has the following advantages: reflecting the impact <strong>of</strong> these local characteristics <strong>and</strong><br />

structure parameters on system performance comparing to signal flow method; less computing time<br />

comparing to multi-emulator coupling analysis method; short design circle comparing to unified<br />

modeling method.<br />

This paper proposes a quick design method on system-<strong>level</strong> simulation <strong>of</strong> <strong>MEMS</strong> comb<br />

accelerometers. Section II describes the derivation <strong>of</strong> the system-<strong>level</strong> model including the sense<br />

89


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

element <strong>and</strong> interface electronics. <strong>Simulation</strong> results are obtained from COVENTOR <strong>and</strong> MATLAB in<br />

Section III. The conclusions are reported in Section IV.<br />

2. Theoretical Principles <strong>of</strong> <strong>MEMS</strong> Comb Accelerometers<br />

The <strong>MEMS</strong> comb accelerometer system consists <strong>of</strong> two main parts: the sense element <strong>and</strong> the interface<br />

electronics. As shown in Fig. 1, the sense element comprises a pro<strong>of</strong> mass suspended by two folded<br />

beams on each end, differential sensing <strong>and</strong> feedback capacitances. Movable fingers are mounted on<br />

the mass, <strong>and</strong> stator fingers are attached to substrate. The movable fingers <strong>and</strong> the stators establish<br />

differential sensing capacitances that can be evaluated by a signal pick-<strong>of</strong>f circuit. In the initial state,<br />

there is no acceleration <strong>and</strong> the pro<strong>of</strong> mass rests in the null position. The differential capacitances are<br />

equal, <strong>and</strong> the output voltage is zero. If an external acceleration is applied on the pro<strong>of</strong> mass in the x<br />

direction, the <strong>balance</strong> breaks <strong>and</strong> position variation <strong>of</strong> the pro<strong>of</strong> mass is sensed, causing relative<br />

changes <strong>of</strong> differential capacitances ( C ). With proper interface electronics, C can be converted to<br />

a voltage signal, which is proportional to the magnitude <strong>of</strong> the external acceleration. In order to<br />

improve the system stability <strong>and</strong> widen the measurement range, we use a closed loop structure, <strong>and</strong><br />

this can be realized by applying the feedback voltage signal to the pro<strong>of</strong> mass, which can pull back the<br />

deflected pro<strong>of</strong> mass to the null position.<br />

Anchor<br />

F EXT<br />

Anchor<br />

C a1<br />

C b1<br />

y<br />

x<br />

Pro<strong>of</strong> Mass: M<br />

Air Damping: B<br />

Spring Constant: K<br />

Movable fingers<br />

Stator fingers<br />

C a2<br />

C b2<br />

Anchor<br />

X<br />

Anchor<br />

Fig. 1. Simplified model <strong>of</strong> the <strong>MEMS</strong> comb accelerometer.<br />

2.1. Sense Element<br />

The structure design <strong>of</strong> a <strong>MEMS</strong> comb accelerometer is shown in Fig. 2. Lateral accelerometers have<br />

been developed using comb electrodes <strong>and</strong> differentially detecting parallel electrodes to obtain linear<br />

output. The movable parts <strong>of</strong> this sense element consist <strong>of</strong> four U-shape folded beams, a pro<strong>of</strong> mass<br />

<strong>and</strong> some movable fingers. The fixed parts include four anchors <strong>and</strong> stator fingers. The pro<strong>of</strong> mass is<br />

connected to four anchors through four folded beams. The stator fingers <strong>and</strong> the movable fingers form<br />

four capacitances, which are C a1 , C a2 , C b1 <strong>and</strong> C b2 respectively.<br />

The specific structure parameters <strong>of</strong> the sense element are shown in Table 1.<br />

90


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

Fig. 2. 3D model <strong>of</strong> the sense element.<br />

Table 1. Structure parameters for the sense element.<br />

Serial<br />

number<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Name<br />

Length <strong>of</strong><br />

mass L<br />

Width <strong>of</strong><br />

mass B<br />

Length <strong>of</strong><br />

superposition<br />

l fr<br />

Length <strong>of</strong><br />

comb finger<br />

l f<br />

Width <strong>of</strong><br />

comb finger<br />

w f<br />

Length <strong>of</strong><br />

girder l b<br />

Value<br />

Serial<br />

number<br />

1880 7<br />

200 8<br />

270 9<br />

300 10<br />

5 11<br />

300 12<br />

Name<br />

Width <strong>of</strong> girder<br />

w b<br />

Plate distance<br />

1 d f1<br />

Plate distance<br />

2 d f2<br />

Ratio <strong>of</strong> plate<br />

distance η<br />

Thickness <strong>of</strong><br />

accelerometer<br />

h<br />

Number <strong>of</strong><br />

comb fingers n<br />

Value<br />

6<br />

4<br />

40<br />

10<br />

50<br />

50<br />

Dynamic behavior <strong>of</strong> the sense element is governed by the Newton’s second law <strong>of</strong> motion:<br />

2<br />

d x dx<br />

M B Kx F<br />

2 ext<br />

Ma<br />

(1)<br />

dt dt<br />

The effective spring constant (K) <strong>of</strong> the sense element is expressed by [16]<br />

K K K<br />

(2)<br />

mechanical<br />

electrical<br />

The mechanical <strong>and</strong> electrical stiffness <strong>of</strong> the structure are given by [17]<br />

K<br />

mechanical<br />

3<br />

2Eb h<br />

(3)<br />

l<br />

3<br />

b<br />

91


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

K<br />

electrical<br />

1<br />

V<br />

2<br />

2<br />

DC<br />

n<br />

hl<br />

d<br />

f<br />

2<br />

1<br />

,<br />

(4)<br />

where E is the Young’s modulus <strong>of</strong> silicon in the sense direction; b, h, l b are the width, height <strong>and</strong><br />

length <strong>of</strong> the U-shape folded beams, respectively; n is the total number <strong>of</strong> movable fingers; is the<br />

dielectric constant; the initial distances between movable finger <strong>and</strong> fixed are shown as d 1 <strong>and</strong> d 2<br />

(d 1


2.2. Interface Electronics<br />

Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

n order to measure the capacitance change, it’s not only to apply the excitation signal on the sense<br />

element, but also need to pick up signals from it for subsequent conditioning circuit’s processing. The<br />

excitation signal can be either a voltage or current signal, <strong>and</strong> also are the picked signals. When using<br />

the current signal as the excitation signal, the magnitude <strong>of</strong> the current signal through the sense<br />

element is determined by the admittance <strong>of</strong> the excitation node, which means it’s related to the<br />

magnitude <strong>of</strong> the parasitic capacitance. Hence, it’s better to use the voltage signal as the excitation<br />

signal. If the picked signals are voltage signal, it’s also affected by the parasitic capacitance, so it’s<br />

more <strong>of</strong>ten used to pick up current signals from the sense element. To sum up, it’s a suitable way to use<br />

a voltage signal to excite the sense element <strong>and</strong> pick up current signals from it.<br />

Based on the above reasons, we build the interface electronics in Fig. 3. The capacitances changes<br />

( C1, C2<br />

) can be converted into two voltage signals at the input terminals <strong>of</strong> the high pass filter.<br />

The signals are filtered <strong>and</strong> then sent to the differential operational amplifier, <strong>and</strong> the output <strong>of</strong> the<br />

differential operational amplifier is demodulated, amplified, <strong>and</strong> then filtered by a low pass filter. The<br />

output <strong>of</strong> the low pass filter is the output signal <strong>of</strong> circuit, which we can use a PID controller to<br />

improve the dynamic characteristics <strong>of</strong> the whole system. Proportional to the output signal, the<br />

feedback voltage is continuously applied to the pro<strong>of</strong> mass, <strong>and</strong> then the deflected is pulled back to the<br />

original position.<br />

C 1<br />

U drive<br />

C 2<br />

Fig. 3. The schematic diagram <strong>of</strong> interface electronics in a force-<strong>balance</strong> <strong>MEMS</strong> comb accelerometer.<br />

The voltage signals coming out <strong>of</strong> the high pass amplifier can be expressed as:<br />

C<br />

U () t - Acos( t)<br />

(11)<br />

1<br />

1 0<br />

CCA<br />

C<br />

U () t - Acos( w t)<br />

(12)<br />

2<br />

2 0<br />

CCA<br />

where C CA is the magnitude <strong>of</strong> feedback capacitance in charge amplifier; U drive is the excitation signal,<br />

which frequency is w 0 <strong>and</strong> amplitude is A.<br />

The differential operational amplifier can translate the two voltage signals (U 1 <strong>and</strong> U 2 ) into one voltage<br />

signal, which is U pos . It can be expressed as:<br />

93


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

C C C<br />

U<br />

pos<br />

K Acos( w t) K Acos( w t)<br />

(13)<br />

C<br />

1 2<br />

1 0 1 0<br />

CCA<br />

CA<br />

The synchronous demodulator is composed <strong>of</strong> the multiplier <strong>and</strong> low pass filter, which can demodulate<br />

the dc flow signal related to the acceleration signal. The output signal <strong>of</strong> the multiplier can be<br />

expressed as:<br />

KA C<br />

U U Acos( w t) [1 cos(2 w t)]<br />

(14)<br />

mult<br />

pos<br />

2<br />

1<br />

0 0<br />

2 CCA<br />

In order to filter out the high frequency signal in it, we select the second voltage-controlled voltage<br />

type low pass filter, which amplitude-frequency characteristics is closer to the ideal low pass filter <strong>and</strong><br />

has some gain amplification. The output signal <strong>of</strong> this low pass filter is:<br />

1<br />

2 C<br />

Uout<br />

K1Alp<br />

A<br />

2 C<br />

CA<br />

(15)<br />

where A lp is the amplification <strong>of</strong> the low pass filter. In general, the greater open-loop gain <strong>of</strong> the<br />

system, the higher the accuracy <strong>of</strong> it, but the system is prone to oscillation when the gain is very large.<br />

Hence, it’s very important to have an appropriate gain <strong>of</strong> the system, <strong>and</strong> usually we use the amplitudefrequency<br />

characteristics <strong>of</strong> the system to determine it. If open-loop gain amplification <strong>of</strong> the system is<br />

K 2 , we can express the feedback voltage as:<br />

1<br />

2 C<br />

U<br />

fb<br />

K2K1Alp<br />

A<br />

2<br />

C<br />

CA<br />

(16)<br />

3. <strong>System</strong>-<strong>level</strong> <strong>Simulation</strong> <strong>of</strong> the <strong>Force</strong>-<strong>balance</strong> <strong>MEMS</strong> Comb Accelerometer<br />

Section II describes the derivation <strong>of</strong> the system-<strong>level</strong> model including sensor part <strong>and</strong> interface<br />

electronics, <strong>and</strong> we use pr<strong>of</strong>essional <strong>MEMS</strong> design s<strong>of</strong>tware COVENTOR to model, simulate <strong>and</strong><br />

optimize the sensor element. After that we use numerical analysis s<strong>of</strong>tware MATLAB to establish <strong>and</strong><br />

simulate the system-<strong>level</strong> model <strong>of</strong> force-<strong>balance</strong> accelerometers including interface circuit.<br />

The design way <strong>of</strong> our quick system-<strong>level</strong> modeling <strong>and</strong> simulation method is shown in Fig. 4. In the<br />

beginning, we have an initial design for a <strong>MEMS</strong> comb accelerometer, including the sensor part’s<br />

structural parameters <strong>and</strong> the interface electronics; after that, we use COVENTOR to establish the<br />

architect model <strong>of</strong> the sensor part according to its parameters. We can get the macro model’s<br />

parameters from the architect model, <strong>and</strong> also can analyze the parameters’ influence on the macro<br />

model; Using the macro model from the COVENTOR <strong>and</strong> the transfer functions <strong>of</strong> interface<br />

electronics we can build the system-<strong>level</strong> model <strong>of</strong> the <strong>MEMS</strong> comb accelerometer in MATLAB, <strong>and</strong><br />

get the performance parameters <strong>of</strong> it; Finally, if the performance parameters cannot meet the<br />

requirements, we can change the parameters in the architect model until we get the performance<br />

parameters that meet the requirement.<br />

94


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

Fig. 4. The quick system-<strong>level</strong> modeling <strong>and</strong> simulation method in <strong>MEMS</strong> comb accelerometers.<br />

3.1. <strong>Simulation</strong> <strong>of</strong> the Sense Element<br />

We build the architect model <strong>of</strong> the sense element in COVENTOR, which is shown in Fig. 5. Using<br />

this architect model we can easily simulate the sense element, if some parameters <strong>of</strong> the sense element<br />

change, we can easily analyze the parameters’ influences on the sense element, unlike CAE traditional<br />

way that we need to reestablish the three-dimensional model <strong>and</strong> analyze it in finite element analysis<br />

s<strong>of</strong>tware. Architect model can quickly model <strong>and</strong> analyze the sense element, <strong>and</strong> also doesn’t lose<br />

accuracy.<br />

Fig. 5. The architect model <strong>of</strong> a <strong>MEMS</strong> comb accelerometer in COVENTOR.<br />

According the known, the sense element <strong>of</strong> <strong>MEMS</strong> comb accelerometer was a mass-spring system, the<br />

vibration was occurred on the condition <strong>of</strong> acceleration. So the significant limitation <strong>of</strong> accelerometer<br />

sensor was the narrow range for frequency response, whose main factors were the resonant frequency.<br />

We did the modal analysis <strong>of</strong> the sense element in COVENTOR, <strong>and</strong> the modal results are shown in<br />

Fig. 6. The first mode is lateral vibration in the sense direction x, which is preferable for stable device<br />

95


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

operation, <strong>and</strong> the modal frequency is 7.72 kHz; the second mode is lateral vibration in the direction z,<br />

which modal frequency is 32.06 kHz; the third mode is torsional vibration in the direction z, which<br />

modal frequency is 70 kHz; the fourth mode is torsional vibration in the direction y, which modal<br />

frequency is 72.75 kHz. The result <strong>of</strong> theoretical analysis was about 7.1 kHz, <strong>and</strong> the error was below<br />

10 % compared with the data <strong>of</strong> simulation, which was in the range <strong>of</strong> error for engineering.<br />

Fig. 6. Resonant modes <strong>of</strong> the sense element (by COVENTOR).<br />

In order to scale the anti-shock ability <strong>of</strong> the sense element, we simulated the sense element with an<br />

external acceleration <strong>of</strong> 2000 g in x, y, z direction. The result shows that the maximum stress is<br />

47 MPa. Because the maximum stress <strong>of</strong> the silicon can hold is 7 GPa, so the sense element can endure<br />

with over load <strong>of</strong> 2000 g.<br />

From the above data we can have a conclusion that the first mode <strong>of</strong> the sense element is isolated with<br />

the second, third <strong>and</strong> fourth mode. So we can see that the design <strong>of</strong> the sense element can meet the<br />

basic requirements <strong>of</strong> the modal analysis.<br />

Although the above analysis can meet the requirements <strong>of</strong> the modal analysis, it is necessary to be sure<br />

that the sense element has good linearity in working range, which means we should be sure that the<br />

applied load has linear relationship with the pro<strong>of</strong> mass’s displacement. By using the architect model,<br />

we can easily change the applied load for analysis. Therefore, we applied external acceleration from<br />

0-40 g (1g=9.8 m 2 /s), the displacement <strong>of</strong> the pro<strong>of</strong> mass is shown in Fig. 7. From Fig. 7 we can say<br />

that the sense element has good linearity when the external acceleration is in the range <strong>of</strong> 40 g.<br />

96


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

60 Displacement[nm] Acceleration(g)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Fig. 7. The relationship between external acceleration <strong>and</strong> the displacement <strong>of</strong> the pro<strong>of</strong> mass.<br />

From the dc analysis, we can get the initial capacitances C1 <strong>and</strong> C2 are 2.25 pF. Through applying<br />

different external acceleration, we can get the capacitance change (C1-C2), the relationship between<br />

them is shown in Fig. 8. From Fig. 8 we can see that when the external acceleration is in the range <strong>of</strong><br />

4g, the relationship is linear between them. But when the external acceleration is above 4 g, the<br />

relationship is not linear. If the sense element is controlled by open-loop system, the work range <strong>of</strong><br />

<strong>MEMS</strong> comb accelerometer will be subject to the nonlinear effect <strong>of</strong> capacitor plates. So we use closeloop<br />

system to sense <strong>and</strong> feedback the sense element, which the work range will not be affected by the<br />

nonlinear effect <strong>of</strong> capacitor plates.<br />

10<br />

Capacitance Change [10 -2 pF]<br />

8<br />

6<br />

4<br />

2<br />

Real relationship<br />

Linear relationship<br />

0<br />

0 2 4 6 8 10<br />

Acceleration [g]<br />

Fig. 8. The relationship between external acceleration <strong>and</strong> the capacitance change.<br />

Through the modal analysis, we found that the first mode is also the sense direction, which can<br />

improve the sensitivity <strong>of</strong> the detection axis, <strong>and</strong> its second <strong>and</strong> high order modes are isolated with the<br />

first mode, that can avoid cross-coupling; through the static analysis, we found that when the<br />

acceleration is in the range <strong>of</strong> 40 g, the displacement <strong>of</strong> the pro<strong>of</strong> mass has good linear relationship<br />

with it.; finally, we analyzed the relationship between the capacitance change <strong>and</strong> the external<br />

acceleration, <strong>and</strong> found the nonlinear effect <strong>of</strong> capacitor plates.<br />

97


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

3.2. <strong>System</strong>-<strong>level</strong> <strong>Simulation</strong> <strong>of</strong> the <strong>Force</strong>-<strong>balance</strong> <strong>MEMS</strong> Comb Accelerometer<br />

The above analysis <strong>of</strong> the sense element proved that the design structure <strong>and</strong> parameters are<br />

appropriate, <strong>and</strong> from the architect model’s analysis we can get the macro model’s parameters <strong>of</strong> the<br />

sense element: the mass is 5.47 µg; the damping is 2.1 mNm/s; the mechanical spring constant is<br />

357.8 N/m; the initial capacitances (C1 <strong>and</strong> C2) are 2.25 pF. So we can use these parameters to derive<br />

corresponding transfer function <strong>of</strong> the sense element. We also designed the electronic circuits in Fig. 3,<br />

which are the charge amplifier, the high pass filter, the differential operation amplifier, the<br />

synchronous demodulator, <strong>and</strong> the PID controller, <strong>and</strong> derived the transfer functions <strong>of</strong> them. Thus we<br />

established the system-<strong>level</strong> model <strong>of</strong> the <strong>MEMS</strong> comb accelerometer using the transfer functions<br />

according to the real parts in the numerical analysis s<strong>of</strong>tware MATLAB, which is shown in Fig. 9.<br />

a<br />

Acceleration<br />

Subtract1<br />

Subtract<br />

-K-<br />

Gain<br />

Gain1<br />

1<br />

x'<br />

s<br />

Integrator<br />

1 x<br />

s<br />

Integrator1<br />

x<br />

-K-<br />

Gain2<br />

-K-<br />

f(u)<br />

x to c1<br />

C1<br />

Signal<br />

Generator<br />

f(u)<br />

x to c<br />

Product<br />

-1.64E-3s 2<br />

den(s)<br />

Transfer Fcn<br />

Delta C<br />

f(u)<br />

x to c2<br />

C2<br />

-10<br />

-1<br />

Gain4<br />

Switch<br />

Gain3<br />

Subtract2<br />

Demodulation V<br />

Switch1<br />

Signal<br />

Generator1<br />

Sign<br />

-K-<br />

Gain7<br />

1<br />

s<br />

Integrator2<br />

butter<br />

-10<br />

Analog<br />

Filter Design<br />

Gain5<br />

-K-<br />

du/dt<br />

Subtract3<br />

Vf<br />

Gain8<br />

Derivative<br />

signal before PI<br />

Gain6<br />

-K-<br />

Fig. 9. <strong>System</strong>-<strong>level</strong> model <strong>of</strong> the force-<strong>balance</strong> <strong>MEMS</strong> comb accelerometer system in MATLAB.<br />

98


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

When the external step acceleration is 1 g, 2 g, 4 g, 6 g, 8 g, the displacement <strong>of</strong> the pro<strong>of</strong> mass is<br />

shown in Fig. 10-a. We can see that the displacement <strong>of</strong> the pro<strong>of</strong> mass gradually increases firstly<br />

because <strong>of</strong> the external acceleration, but the displacement starts to decrease after a very short time,<br />

which is caused by the influences <strong>of</strong> feedback electrostatic force <strong>and</strong> the beam’s spring force. After<br />

about 0.008 second, the displacements decrease to zero.<br />

The according output voltage, which is also the feedback electrostatic voltage, is shown in Fig. 10-b.<br />

When the external step acceleration is 1 g, after a very short vibration (about 0.003 second) the output<br />

voltage can hold a stable value <strong>of</strong> 0.1 V; as is shown in Fig. 10-b, the stable value <strong>of</strong> the output voltage<br />

has a good linear relationship with the external acceleration. From Fig. 10, we can get the sensitivity <strong>of</strong><br />

the <strong>MEMS</strong> comb accelerometer is 100 mV/g.<br />

14<br />

Displacement [nm]<br />

Output Voltage(V)<br />

1.2<br />

12<br />

10<br />

8<br />

6<br />

4<br />

8g<br />

6g<br />

4g<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

8g<br />

6g<br />

4g<br />

2 2g<br />

0.2 2g<br />

1g<br />

0<br />

1g<br />

0.000 0.002 0.004 0.006 0.008 0.010 0.0<br />

Time[s] 0.000 0.002 0.004 0.006 0.008 0.010<br />

Time(s)<br />

(a)<br />

(b)<br />

Fig. 10. (a) the displacement response <strong>of</strong> the pro<strong>of</strong> mass in 1 g step external acceleration Fig.10-b;<br />

(b) the output voltage response <strong>of</strong> the accelerometer system in 1 g step external acceleration.<br />

The relationship between the external acceleration <strong>and</strong> the final output voltage is shown in Fig. 11.<br />

Because we defined the bias voltage <strong>of</strong> the <strong>MEMS</strong> comb accelerometer as 5 V, so the output voltage is<br />

constrained to [-5 V, 5 V]. From Fig. 11, we can see that when the external acceleration is in the range<br />

<strong>of</strong> [-50 g, 50 g], it can hold a very good linear relationship with the output voltage, <strong>and</strong> we can get the<br />

range <strong>of</strong> the <strong>MEMS</strong> comb accelerometer is 50g , <strong>and</strong> the nonlinear distortion is smaller than 0.5 %. If<br />

we want to extend the range <strong>of</strong> the <strong>MEMS</strong> comb accelerometer, we can reduce the feedback<br />

coefficient <strong>of</strong> the output voltage, which will reduce the sensitivity; <strong>and</strong> if we want to increase the<br />

sensitivity <strong>of</strong> the <strong>MEMS</strong> comb accelerometer, we need to enlarge the feedback coefficient <strong>of</strong> the<br />

output voltage, but this will cause the loss the range that the <strong>MEMS</strong> comb accelerometer can measure.<br />

So when we design the real electronic interfaces <strong>of</strong> the <strong>MEMS</strong> comb accelerometer, one resistance <strong>of</strong><br />

the differential operation amplifier can be designed as an adjustable resistance in order to adjust the<br />

sensitivity <strong>and</strong> range <strong>of</strong> the accelerometer manually.<br />

The amplitude-frequency response <strong>of</strong> the <strong>MEMS</strong> comb accelerometer is shown in Fig. 12. When we<br />

load 20 acceleration signals on the <strong>MEMS</strong> comb accelerometer with the same amplitude but different<br />

frequencies, the final output voltage changes as the frequency change. As is shown in Fig. 12, in the<br />

low frequency scale (


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-50 -40 -30 -20 -10 0 10 20 30 40 50<br />

5 Output voltage[V] Acceleration[g]<br />

Fig. 11. the relationship between the external acceleration <strong>and</strong> the output voltage.<br />

Output Voltage(V)<br />

0.32<br />

0.30<br />

0.28<br />

0.26<br />

0.24<br />

0.22<br />

0.20<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

1 10 100 1000 10000<br />

Frequency[Hz]<br />

Fig. 12. The amplitude-frequency response <strong>of</strong> the force-<strong>balance</strong> <strong>MEMS</strong> comb accelerometer system.<br />

4. Conclusions<br />

To aid system designers, the system-<strong>level</strong> modeling <strong>and</strong> simulation <strong>of</strong> force-<strong>balance</strong> <strong>MEMS</strong> comb<br />

accelerometers is studied. A mathematical model, which involves both the sense element <strong>and</strong> interface<br />

electronics, is developed <strong>and</strong> governing equations are derived. The sense element is designed <strong>and</strong><br />

simulated in COVENTOR. The modal analysis shows that the resonance frequency <strong>of</strong> the sense<br />

element in detecting direction is 7.1 kHz; the static analysis shows that the sense element can endure<br />

with over load <strong>of</strong> 2000 g, <strong>and</strong> the displacement <strong>of</strong> the pro<strong>of</strong> mass has a very good linear relationship<br />

with the external acceleration in the range <strong>of</strong> ±40 g. The whole accelerometer system is derived <strong>and</strong><br />

simulated in MATLAB. The results show that the force-<strong>balance</strong> <strong>MEMS</strong> comb accelerometer system’s<br />

sensitivity is 100 mv/g, the full scale range is ±50 g, the nonlinear distortion is smaller than 0.5 % <strong>and</strong><br />

the system b<strong>and</strong>width is 2.2 kHz.<br />

References<br />

[1]. ADXL50 – Monolithic Accelerometer With Signal Conditioning, Data Sheet Analog Devices Inc., 1996.<br />

[2]. ADXL150/ADXL250 – ±5 g to ±50 g, low Noise, low Power, Single/Dual Axis i<strong>MEMS</strong> Accelerometers,<br />

Data Sheet Analog Devices Inc., 1998.<br />

[3]. ADXL78 – full range <strong>of</strong> ±35 g, ±50 g, ±70 g, low Noise, low Power, Single Axis i<strong>MEMS</strong> Accelerometers,<br />

Data Sheet Analog Devices Inc., 2005.<br />

[4]. MMA2202D – Surface Mount Micromachined Accelerometer, Data Sheet Motorola, 2001.<br />

100


Sensors & Transducers Journal, Vol. 127, Issue 4, April 2011, pp. 88-101<br />

[5]. J. Bernstein, An Overview <strong>of</strong> <strong>MEMS</strong> Inertial Sensing Technology, Sensors Magazine Online, Feb. 2003.<br />

[6]. Van Kampen, R. P. <strong>and</strong> Wolffenbuttel, R. F., Application <strong>of</strong> electrostatic feedback to critical damping <strong>of</strong> an<br />

integrated silicon accelerometer, Sensors <strong>and</strong> Actuators, A, 43, 1994, pp. 100-106.<br />

[7]. Gilbert J R, Legtenberg R, Senturia S D., 3D Coupled Electro – Mechanics for <strong>MEMS</strong>: Applications <strong>of</strong><br />

Cosolve_EM, Micro Electro Mechanical <strong>System</strong>s, Proceedings, IEEE, Jan 29 – Feb, 1995, pp. 122-127.<br />

[8]. Zhulin V I, Owen S J, Ostergaard D F, Finite Element Based Electrostatic—Structural Coupled Analysis<br />

with Automated Mesh Morphing, in Proceedings <strong>of</strong> the international Conference on <strong>Modeling</strong> <strong>and</strong><br />

<strong>Simulation</strong> <strong>of</strong> Microsystems (MSM’ 2000), San Diego, CA, 2000.<br />

[9]. Zheng Ying-bin, Su Wei, He Xiao-ping, Coupled electrostatic-mechanical analysis for a multi-finger microaccelerometer,<br />

Journal <strong>of</strong> Transducer Technology, 05, 2002.<br />

[10]. Robert M. K., George E. K., Mikulchenko O., et al. An integrated simulator for coupled domain problems,<br />

Journal <strong>of</strong> Micro electromechanical <strong>System</strong>s, 10, 3, 2001, pp. 379-391.<br />

[11]. Ramaswamy D, Aluru N, White J., Fast coupled-domain, mixed regime electromechanical simulation, In:<br />

Proc. Int Conf Solid-State Sensors <strong>and</strong> Actuators, Japan: The Institute <strong>of</strong> Electrical Engineers <strong>of</strong> Japan,<br />

1999, pp. 314 - 317.<br />

[12]. Gabbay L D, Senturia S D. Computer-aided generation <strong>of</strong> nonlinear reduced-order dynamic macromodels.<br />

I. Non-stress stiffened case, Journal <strong>of</strong> Micro electromechanical <strong>System</strong>s, 9, 2, 2000, pp. 262 - 269.<br />

[13]. Romanowicz B F, Bart S F, Gilbert J R. Integrated CAD tools for top-down design <strong>of</strong> <strong>MEMS</strong>/MOEMS<br />

systems, SPIE, 3680, 1999, pp. 171 - 178.<br />

[14]. Nguyen Linh, Lee Hee Jung, Maher Marr Ann, et al. Structured CAD methodology for integrated <strong>MEMS</strong><br />

<strong>and</strong> IC design, Proceedings <strong>of</strong> SPIE, 3680, 1999, pp. 259 - 265.<br />

[15]. S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, 2001.<br />

[16]. A. M. Lemkin, Micro accelerometer design with digital feedback control, Doctoral Thesis, U. C. Berkeley,<br />

1997.<br />

[17]. James B. Starr, Squeeze film damping in solid-state accelerometers, in Tech. Dig. IEEE Solid State Sensor<br />

<strong>and</strong> Actuator Workshop, June 1990, pp. 44 – 47.<br />

[18]. T. Veijola, H. Kuisma, <strong>and</strong> J. Lahdenperä, Model for gas film damping in a silicon accelerometer, in Proc.<br />

<strong>of</strong> the Transducers'97, June 1997, pp. 1097 – 1100.<br />

[19]. A. Selvakumar, A multifunctional silicon micromachining technology for high performance microsensors<br />

<strong>and</strong> microactuators, Doctoral Thesis, U. Michigan, 1997.<br />

[20]. R. P. Van Kampen, Bulk-micromachined capacitive servo-accelerometer, Doctoral Thesis, Delft University,<br />

Netherl<strong>and</strong>s, 1995.<br />

[21]. Zheng Ying-bin, Coupled-Field Analysis for comb finger accelerometer, Master Degree Thesis, China<br />

academy <strong>of</strong> engineering physics, 2, 2002, pp. 13-17.<br />

___________________<br />

2011 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved.<br />

(http://www.sensorsportal.com)<br />

101


Sensors & Transducers Journal<br />

Guide for Contributors<br />

Aims <strong>and</strong> Scope<br />

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science <strong>and</strong> technology<br />

<strong>of</strong> physical, chemical sensors <strong>and</strong> biosensors. It publishes state-<strong>of</strong>-the-art reviews, regular research <strong>and</strong><br />

application specific papers, short notes, letters to Editor <strong>and</strong> sensors related books reviews as well as<br />

academic, practical <strong>and</strong> commercial information <strong>of</strong> interest to its readership. Because <strong>of</strong> it is a peer reviewed<br />

international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high<br />

publicity. The journal is published monthly as twelve issues per year by International Frequency Sensor<br />

Association (IFSA). In additional, some special sponsored <strong>and</strong> conference issues published annually. Sensors &<br />

Transducers Journal is indexed <strong>and</strong> abstracted very quickly by Chemical Abstracts, IndexCopernicus Journals<br />

Master List, Open J-Gate, Google Scholar, etc. Since 2011 the journal is covered <strong>and</strong> indexed (including a<br />

Scopus, Embase, Engineering Village <strong>and</strong> Reaxys) in Elsevier products.<br />

Topics Covered<br />

Contributions are invited on all aspects <strong>of</strong> research, development <strong>and</strong> application <strong>of</strong> the science <strong>and</strong> technology<br />

<strong>of</strong> sensors, transducers <strong>and</strong> sensor instrumentations. Topics include, but are not restricted to:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Physical, chemical <strong>and</strong> biosensors;<br />

Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors <strong>and</strong><br />

transducers;<br />

Theory, principles, effects, design, st<strong>and</strong>ardization <strong>and</strong> modeling;<br />

Smart sensors <strong>and</strong> systems;<br />

Sensor instrumentation;<br />

Virtual instruments;<br />

Sensors interfaces, buses <strong>and</strong> networks;<br />

Signal processing;<br />

Frequency (period, duty-cycle)-to-digital converters, ADC;<br />

Technologies <strong>and</strong> materials;<br />

Nanosensors;<br />

Microsystems;<br />

Applications.<br />

Submission <strong>of</strong> papers<br />

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 8-14<br />

pages article (including abstract, illustrations (color or grayscale), photos <strong>and</strong> references) in both: MS Word<br />

(doc) <strong>and</strong> Acrobat (pdf) formats. Detailed preparation instructions, paper example <strong>and</strong> template <strong>of</strong> manuscript<br />

are available from the journal’s webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors<br />

must follow the instructions strictly when submitting their manuscripts.<br />

Advertising Information<br />

Advertising orders <strong>and</strong> enquires may be sent to sales@sensorsportal.com Please download also our media kit:<br />

http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2011.pdf

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!