25.10.2014 Views

(PowerPoint) - By Ragnar Arnason

(PowerPoint) - By Ragnar Arnason

(PowerPoint) - By Ragnar Arnason

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ragnar</strong> <strong>Arnason</strong><br />

Ecosystem Management<br />

on the basis of Catch Quotas<br />

Fame Workshop on<br />

Biodiversity: Management, Economics<br />

and the Marine View<br />

Esbjerg, June 11-13 13 2004


Topic:<br />

Ecosystem Fisheries<br />

Approach:<br />

1. General Modelling<br />

2. Optimal Ecosystem Use<br />

3. Ecosystem Management<br />

An example of a marked-based instruments<br />

to solve environmental problems<br />

(Complements yesterday’s talks)


Modelling


The Ecosystem<br />

• Ecosystem consists of<br />

(i) Aquatic biota (living (renewable) resources)<br />

(ii) Habitat (nonliving physical environment)<br />

• I species<br />

• Each species measured by a single<br />

variable, x (biomass)<br />

• H habitat variables, z


Basic Ecosystem Equation<br />

&x<br />

=<br />

G( x, z)<br />

x = ( x , x ,.... x )<br />

1 2<br />

∂x<br />

∂x ∂x ∂x<br />

x&<br />

= =<br />

∂t ∂t ∂t ∂t<br />

z = ( z , z ,... z )<br />

1 2<br />

I<br />

1 2<br />

I<br />

( , ,....., )<br />

H<br />

Gxz xz xz xz<br />

1 2<br />

I<br />

( , ) = ( G ( , ), G ( , ),..., G ( , ))


Assumptions<br />

1. For each species i, ∃ x>0 and z such that<br />

its biomass growth is positive<br />

2. Each biomass growth function is twice<br />

continuously differentiable and concave<br />

3. Each biomass growth function is dome-<br />

shaped in its own biomass


More formally:<br />

i<br />

For all i, ∃ x > 0 , x st . . G ( x, z) > 0<br />

i<br />

The derivatives, G


A typical biomass growth function<br />

Biomass<br />

growth,<br />

G i (x)<br />

[x´]<br />

[x´´]<br />

x i


The Community Matrix<br />

(An (I×I)(<br />

I) non-symmetric matrix<br />

of marginal interaction terms)<br />

G<br />

x<br />

( x)<br />

1 1<br />

⎛Gx<br />

. . G ⎞<br />

1<br />

xI<br />

⎜<br />

⎟<br />

2<br />

∂G( x)<br />

⎜ . G<br />

x<br />

. ⎟<br />

∂x<br />

⎜ . . . ⎟<br />

⎜<br />

I<br />

I<br />

Gx<br />

. . G ⎟<br />

⎝ 1<br />

xI<br />

⎠<br />

2<br />

≡ = ⎜ ⎟<br />

i i<br />

Note: G ≡ G ( x),<br />

i.e. the interaction terms, are functions of biomass<br />

x<br />

j<br />

x<br />

j


If the community matrix is diagonal..<br />

Gx<br />

( x)<br />

⎛G<br />

⎜<br />

⎜<br />

1<br />

x<br />

1<br />

0 . 0<br />

2<br />

0 Gx<br />

0 .<br />

2<br />

= ⎜ ⎟<br />

⎜<br />

⎜<br />

⎝<br />

. 0 . 0<br />

0 . 0<br />

G<br />

I<br />

x<br />

I<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

....then there are no interspecies,<br />

ecological effects


Important things to notice about the<br />

ecosystem equation &x = G( x, z)<br />

1. It may (and probably will) exhibit multiple<br />

equilibria<br />

2. It may easily exhibit complicated<br />

dynamics<br />

(1) Strange attractors<br />

(2) Bifurcations<br />

(3) Chaos


Illustration of multiple equilibria<br />

alpha⋅x<br />

− beta⋅x 2<br />

ay ⋅ − by ⋅<br />

2<br />

4<br />

− cx ⋅ 0<br />

− gamma⋅<br />

y 0<br />

gamma = -1, c = 1<br />

=> x prays on y<br />

Locally<br />

stable<br />

Fxx ( )<br />

Hxx ( )<br />

y<br />

HH( xx)<br />

− 2<br />

0<br />

0 2 4<br />

0 xx<br />

Saddle<br />

point<br />

4


Species interactions creating chaos<br />

- A very simple example -<br />

x − t 1<br />

x = t<br />

a ⋅ x ⋅ + t<br />

(1 − b ⋅ xt)<br />

3<br />

y − 1<br />

y = α ⋅ x ⋅ (1 − +<br />

β ⋅ x ) − γ ⋅ y ⋅ x<br />

t t t t t t<br />

a=1.5 α=2.0<br />

b=0.5 β=0.5<br />

γ = ?


Dynamics<br />

γ = 0<br />

γ = 0.233<br />

2.067<br />

3<br />

2.067<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0.8<br />

x i<br />

200<br />

0<br />

0 100 200<br />

0.8<br />

x i<br />

200<br />

0<br />

0 100 200<br />

1 i<br />

1 i<br />

3<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0 50 100<br />

1 i<br />

100<br />

y i<br />

0.039<br />

y i<br />

100<br />

0<br />

0 50 100<br />

1 i


Harvesting Activity<br />

• Harvesting sector consists of<br />

(i)<br />

N harvesting firms (here aggregated)<br />

(ii) Rest of the economy<br />

• Rest of the economy represented by prices<br />

(assumed to be constant => not a GE model)


Fishing effort<br />

Vector of species directed fishing effort<br />

e = (e 1 ,e 2 ,....e I )<br />

• If the e i s can be freely selected, we have<br />

perfect targetting<br />

• If not, e.g. e i = F(e j ) ..etc, we have<br />

limited targetting.


Harvesting function<br />

i<br />

y = Y ( ex , ), i = 1, 2,... I<br />

i<br />

∂Y<br />

∂x<br />

∂Y<br />

∂e<br />

i<br />

j<br />

j<br />

i<br />

≠<br />

≠<br />

0, cross species stock effects<br />

0, by-catch<br />

y<br />

= Yex (, )


Biomass Evolution<br />

&x = G( x, z) −Y( e, x)<br />

i<br />

i<br />

x& = G ( xz , ) −Y ( ex , ), i=1,2,...<br />

I<br />

i


Cost Function<br />

i<br />

c = C ( ew , ), i = 1, 2,... I<br />

i<br />

∂C<br />

∂e<br />

j<br />

i<br />

≠<br />

0, production externality<br />

c=C( e,w)


Profits<br />

i<br />

i<br />

π<br />

i<br />

= Y ( ex , ) − C ( ew , ), i = 1, 2,... I<br />

π = Yex (, ) − Ce,w ( )<br />

I<br />

i<br />

i<br />

π = π = Y (, ) −C<br />

(, )<br />

i<br />

i= 1 i=<br />

1<br />

I<br />

∑ ∑ ex ew<br />

= 1⋅( Yex ( , ) − Cew ( , )) = 1⋅π


Present value of profits<br />

∞<br />

−rt<br />

⋅<br />

−rt<br />

⋅<br />

V = π ⋅ e dt = 1⋅( Yex ( , ) −Cew<br />

( , )) ⋅e dt<br />

∫ ∫<br />

0 0<br />


Optimal Ecosystem Use


Optimal Ecosystem Fisheries<br />

−rt<br />

⋅<br />

−rt<br />

⋅<br />

Max V = π ⋅ e dt = ⋅( Yex ( , ) −Cew<br />

( , )) ⋅e dt<br />

{} e<br />

∞<br />

0 0<br />

∞<br />

∫ ∫ 1<br />

Such that &x = G( x) -Y( e,x)<br />

e ≥ 0<br />

x ≥ 0


Necessary Conditions<br />

(Assuming e, x>0) x<br />

H = λ 0<br />

⋅1⋅( Y( e, x) − C( e, w)) + λ ⋅( G( x) -Y( e,x))<br />

λ<br />

0<br />

= 1<br />

1<br />

e e<br />

⋅Π − λ ⋅Y<br />

=<br />

λ&<br />

−r<br />

⋅ λ=−1⋅Y −λ⋅(<br />

G −Y<br />

0<br />

x x x<br />

)<br />

&x<br />

=<br />

G( x) -Y( e,x)<br />

(3⋅I conditions to determine 3 ⋅I unknowns)


Interpretation<br />

Rule for optimal vector of fishing effort at each<br />

point of time:<br />

⋅Π − λ ⋅Y<br />

= 0<br />

1<br />

e e<br />

Rule for determining the vector of shadow values<br />

of biomass:<br />

λ&<br />

−r<br />

⋅ λ=−1⋅<br />

−λ⋅(<br />

−<br />

Y G Y<br />

x x x<br />

)


Note!<br />

• Single species solutions are appropriate<br />

only if all four (I×I)(<br />

) matrices;<br />

Y e , Y x , C e and G x<br />

are diagonal!<br />

Theorem<br />

Even when there are no ecosystem interactions,<br />

economic interactions (bycatch, cross stock<br />

externalities and production externalities) will<br />

generate similar complexities


Concentrated Solution<br />

λ&<br />

=− 1⋅Y + λ⋅ ( Y + r ⋅I<br />

−G<br />

x x x<br />

),<br />

λ =<br />

1<br />

e e<br />

⋅Π ⋅( Y ) −1<br />

&x<br />

=<br />

G( x) -Y( e,x)<br />

This system of 2⋅I2<br />

differential equations may<br />

exhibit very complex dynamics!<br />

(incl. multiple equilibria, , strange attractors and chaos)


Equilibrium equations<br />

x&<br />

= e&<br />

= 0<br />

λ Π I<br />

1<br />

⋅ [ G ( ) −<br />

x<br />

+ Ce⋅ e<br />

⋅Yx<br />

−r<br />

⋅ ) = 0<br />

λ =<br />

1<br />

e e<br />

⋅Π ⋅( Y ) −1<br />

G( x) -Y( e,x) = 0


Properties of equilibrium<br />

1. There may be many solutions (equilibria(<br />

equilibria)<br />

2. The stability properties of these equilibria may<br />

be of many kinds<br />

3. In the single species case, I=1, the system<br />

reduces to the usual Clark-Munro equilibrium<br />

solution<br />

Ce⋅Yx<br />

Gx ( ) + = r<br />

π<br />

Gx ( ) − Yex ( , ) = 0<br />

e


Properties of equilibrium ...cont.<br />

4. If (and only if) all the Jacobian matrices, Y e , Y x , C e<br />

and G x are diagonal, the equilibrium system<br />

reduces to a collection of Clark-Munro single<br />

species equilibrium expressions.<br />

5. The shadow values of biomass, λs, do not have to<br />

be positive!


Example of equilibrium<br />

Two species<br />

λ Π I<br />

1<br />

⋅ [ G ( ) −<br />

x<br />

+ Ce⋅ e<br />

⋅Yx<br />

−r<br />

⋅ ) = 0<br />

1 1 1 1 1 1<br />

−1<br />

⎛<br />

1 1<br />

⎛Gx G ⎞ ⎛<br />

x<br />

Ce C ⎞ ⎛<br />

e<br />

Πe Π ⎞ ⎛<br />

e<br />

Yx Y ⎞<br />

x 1 0<br />

⎞<br />

⎛ ⎞<br />

⋅ ⎜ + ⋅ ⋅ −r<br />

⋅ ⎟=<br />

1 2 1 2 1 2 1 2<br />

( λ1, λ2) 0<br />

2 2 2 2 2 2 2 2<br />

⎜⎜G 0 1<br />

x<br />

G ⎟ ⎜<br />

1 x<br />

C<br />

2 e<br />

C ⎟ ⎜ ⎟ ⎜ ⎜ ⎟<br />

1 e2 e1 e<br />

Y<br />

2 x<br />

Y ⎟ ⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝<br />

Π Π<br />

⎠ ⎝ 1 x ⎝ ⎠<br />

2 ⎠<br />

⎝<br />

λ<br />

G + Ψ + ( G + Ψ ) ⋅ = r,<br />

λ<br />

1 1 2 2 2<br />

x1 1 x1<br />

1<br />

1<br />

λ<br />

G + Ψ + ( G + Ψ ) ⋅ = r<br />

2 2 1 1 1<br />

x2 2 x2<br />

2<br />

λ<br />

2<br />

⎠<br />

where<br />

⎛<br />

1 1 1 1<br />

−1<br />

1 1<br />

1 1<br />

Ψ Ψ ⎞ Ce Ce Πe Πe Yx Yx<br />

≡ ⋅ ⋅<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

1 ¨2<br />

1 2 1 2 1 2<br />

⎜ 2 2 ⎟<br />

2 2 2 2 2 2<br />

⎝Ψ1 Ψ2<br />

⎠<br />

⎜Ce C ⎟ ⎜ ⎟ ⎜<br />

1 e2 e1 e<br />

Y<br />

2 x<br />

Y ⎟<br />

⎝ ⎠ ⎝<br />

Π Π<br />

⎠ ⎝ 1 x2<br />


Ecosystem Management


Behaviour<br />

Optimal<br />

1<br />

e e<br />

⋅Π − λ ⋅Y<br />

=<br />

I<br />

I<br />

i i i i<br />

ej ej ∑λ<br />

ej<br />

i= 1 i=<br />

1<br />

∑<br />

( Y −C ) − ⋅ Y = 0, j = 1, 2,... I<br />

0<br />

Common Property<br />

⋅Π =0 1<br />

e<br />

So, the management problem is to<br />

impose the shadow prices, λ i s !


Taxes<br />

Optimal shadow prices:<br />

Define the tax (on harvest):<br />

λ =<br />

τ =<br />

⋅Π ⋅( Y ) −1<br />

1<br />

e e<br />

⋅Π ⋅( Y ) −1<br />

1<br />

e e<br />

Profits become:<br />

1⋅Π(, ex) −τ ⋅Y( e,x)<br />

Behaviour becomes: 1⋅Π − τ ⋅Y<br />

= 1⋅Π − λ⋅Y<br />

= 0<br />

e e e e<br />

Optimal!


Problem<br />

The optimal tax vector depends on e* and x*<br />

τ = Y F x e<br />

parameters<br />

−1<br />

1⋅Πe⋅ (<br />

e) = ( *, *, )<br />

Therefore to calculate the optimal tax, one must<br />

first solve the dynamic optimization problem<br />

This is a hard task indeed!!


An ITQ system<br />

1. Fishing firms hold fractions of the TAC for each<br />

species: Share quotas, α(i,t)<br />

2. The share quotas are permanent assets<br />

3. “Annual” catch quota: q(i,t)= α(i,t)⋅TAC(t)<br />

4. Both types of quotas are divisible and tradable ⇒<br />

(i)<br />

quota holdings can be adjusted over time<br />

(ii) there will be quota prices<br />

5. Fisheries authorities decide on<br />

(i)<br />

initial allocation of share quotas<br />

(ii) total allowable catches “annually” TAC(t)


Quota prices<br />

• Under this ITQ system, the quotas (both catch quotas<br />

and the share quotas) will have a price<br />

• Let s be the price of the catch quota<br />

• Note that s can be negative!<br />

• Now, s represents the opportunity cost of harvest<br />

(just as a tax or a shadow value)<br />

• It follows that behaviour will be:<br />

1<br />

e e<br />

⋅Π − sY ⋅ =<br />

0


Optimal behaviour under ITQs<br />

• If s=λ ⇒ behaviour will be optimal!<br />

• But s depends on the<br />

vector of TACs (the<br />

total allowable catches)!<br />

s<br />

TAC<br />

⇒ <strong>By</strong> setting the right TACs the quota authority<br />

will induce the optimal fishing behaviour


How to set the right TAC?<br />

• To calculate the right TAC requires solving the<br />

dynamic maximization problem<br />

• Not really feasible<br />

• However, the best knowledge about the conditions<br />

of the fishery and thus the “best” possible TAC<br />

resides within the fishing industry<br />

• This information is revealed in permanent quota<br />

prices!!


I<br />

∑<br />

i=<br />

1<br />

Can show that:<br />

∞<br />

−rt<br />

Si<br />

= 1⋅ S = ∫ 1⋅π<br />

⋅e dt<br />

0<br />

S = Share quota price<br />

Theorem<br />

Permanent quota prices equal<br />

expected present value of profits in<br />

the fisheries


So in order to find the “best” TAC,<br />

the quota authority only has to play<br />

around with the TACs !!


Example for one species<br />

Quota values,<br />

resource<br />

rents<br />

Total allowable catch, TAC


Example for two species<br />

Quota<br />

value<br />

TAC 2<br />

M<br />

TAC 1


Will this work?<br />

1. Needs well functioning quota markets<br />

2. Will not be fully optimal (unless<br />

information is perfect)<br />

3. It will be as good as socially possible, i.e.<br />

it will use (and generate) information<br />

efficiently<br />

[Market arbitrage arguments]


Optimal ecosystem fisheries<br />

(Probable outcome)<br />

Quota price<br />

Total Quota, TAC<br />

Negative<br />

(i.e., stock enhancement)<br />

Positive<br />

(i.e., fishery)<br />

Negative<br />

Positive<br />

Unprofitable stock<br />

enhancement<br />

(subsidized releases)<br />

Profitable stock<br />

enhancement<br />

(ocean ranching)<br />

Unprofitable fishery<br />

(subsidized removal<br />

of predators/competitors)<br />

Profitable fishery<br />

(Commercial fishery)


Summary<br />

1. Ecosystems are exceedingly complex<br />

2. There is virtually no chance that empirical<br />

research will reveal their structure within our<br />

lifetimes<br />

3. It follows that sensible management is very<br />

difficult to achieve<br />

– Akin to groping in the dark<br />

– Decision making under extreme uncertainty and very<br />

high risk.


Summary ....cont.<br />

4. Under these circumstances centralized<br />

management is particularly unattractive<br />

– Inappropriate incentives<br />

– Information collection and processing<br />

5. Decentralized decision making collects and<br />

processes available information much better<br />

– Cf. the market system<br />

6. Ecosystem ITQs greatly facilitate dealing with<br />

this ecosystem uses.


Summary ....cont.<br />

7. Analysis of the workings of ecosystem ITQs<br />

reveals unexpected fisheries management<br />

outcomes<br />

8. Similar approach should apply in natural<br />

resource use in general, .....provided<br />

sufficiently<br />

high quality property rights can be defined and<br />

enforced.<br />

9. This approach does not apply in the case of<br />

environmental public goods.<br />

(In fact, it’s hard to see that market-based approaches<br />

can apply to such to public goods at all)


Strange attractors: Lorenz attractor

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!