25.10.2014 Views

Heavy sterile neutrinos - MPP Theory Group

Heavy sterile neutrinos - MPP Theory Group

Heavy sterile neutrinos - MPP Theory Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

566 A.D. Dolgov et al. / Nuclear Physics B 590 (2000) 562–574<br />

and measure all masses in units of m 0 . In terms of these variables the Boltzmann equations<br />

describing the evolution of the <strong>sterile</strong> neutrino, ν s , and the active <strong>neutrinos</strong>, ν a , can be<br />

written as<br />

where<br />

(<br />

ν<br />

∂ x f νs (x, y) = s<br />

− f νs ) 1.48 x 10.75<br />

τ νs /s (T x) 2 g ∗ (T )<br />

[<br />

Ms<br />

× + 3 × 27 T 3 ( 3ζ(3)<br />

E νs Ms<br />

3 + 7π 4 ( ))]<br />

Eνs T<br />

4 144 Ms<br />

2 + p2 ν s<br />

T<br />

3E νs Ms<br />

2 , (10)<br />

∂ x δf νa = D a (x,y,M s ) + S a (x, y), (11)<br />

(f<br />

eq<br />

) 1/2<br />

f eq<br />

ν s<br />

= ( e E/T + 1 ) −1 , δfνa = f νa − ( e y + 1 ) −1 , Eνs =<br />

√<br />

M 2 s + (y/x)2<br />

and p νs = y/x are the energy and momentum of ν s .Further,g ∗ (T ) = ρ tot /(π 2 Tγ 4/30)<br />

is the effective number of massless species in the plasma determined as the ratio of<br />

the total energy density to the equilibrium energy density of one bosonic species with<br />

temperature T γ .<br />

The scattering term in Eq. (11) comes from interactions of active <strong>neutrinos</strong> between<br />

themselves and from their interaction with electrons and positrons. For ν e it has the form<br />

( ) 10.75 1/2<br />

(<br />

S νe (x, y) = 0.26<br />

1 + g<br />

2<br />

g L + g 2 )(<br />

R y/x<br />

4 )<br />

∗<br />

{<br />

× −δf νe + 2 e −y [ (<br />

1 + 0.75 g<br />

2<br />

15 1 + gL 2 + L + gR)]<br />

2<br />

g2 R<br />

[ ∫<br />

× dy 2 y2 3 δf ν e<br />

(x, y 2 ) + 1 ∫<br />

dy 2 y 3 (<br />

2 δfνµ (x, y 2 ) + δf ντ (x, y 2 ) )]<br />

8<br />

+ 3 5 (T x − 1) gL 2 + }<br />

g2 R<br />

1 + gL 2 + e −y (11y/12 − 1) , (12)<br />

g2 R<br />

where g L = sin 2 θ W + 1/2, while g R = sin 2 θ W . The corresponding term for ν µ and ν τ is<br />

given by Eq. (12) with the exchange g L →˜g L = sin 2 θ W − 1/2.<br />

The decay term in Eq. (11) comes from the decay of heavy <strong>sterile</strong> neutrino according to<br />

reactions Eq. (2). This term depends on the mixing channel. For ν τ ↔ ν s mixings we have<br />

D νe ,ν µ<br />

(x, y) = 467<br />

M 3 s τ ν s<br />

x 2 ( 10.75<br />

g ∗<br />

) 1/2 (<br />

1 − 16y<br />

9M s x<br />

D ντ (x, y) = 935<br />

M 3 s τ ν s<br />

x 2 ( 10.75<br />

g ∗<br />

) 1/2 [<br />

1 − 16y<br />

9M s x + 2 3<br />

) (nνs<br />

− n eq<br />

ν s<br />

)<br />

θ(Ms x/2 − y), (13)<br />

(<br />

)(<br />

1 +˜g L 2 + g2 R 1 − 4y )]<br />

3M s x<br />

× ( n νs − n eq<br />

ν s<br />

)<br />

θ(Ms x/2 − y), (14)<br />

where n νs (x) is the number density of ν s and θ(y) is the step function which ensures<br />

energy conservation in the decay. For ν µ ↔ ν s mixing these terms come from Eq. (13) and<br />

Eq. (14) by exchange of ν µ ↔ ν τ .<br />

For ν e ↔ ν s mixing those terms are

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!