10.07.2015 Views

Quantum Zeno effect and the impact of flavor in leptogenesis

Quantum Zeno effect and the impact of flavor in leptogenesis

Quantum Zeno effect and the impact of flavor in leptogenesis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>Contents1. Introduction 22. Unflavoured case 32.1. Unflavoured <strong>leptogenesis</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2. When are flavour <strong>effect</strong>s important? . . . . . . . . . . . . . . . . . . . . . . 63. Maximum flavour <strong>effect</strong>s 84. Neutr<strong>in</strong>o mass bound 105. Limitations <strong>of</strong> a simple rate comparison 126. Conclusions 13Acknowledgments 13References 131. IntroductionThe see-saw mechanism [1]–[6] is an elegant way to underst<strong>and</strong> neutr<strong>in</strong>o masses <strong>and</strong>mix<strong>in</strong>g <strong>and</strong>, at <strong>the</strong> same time, with <strong>leptogenesis</strong> [7], provides a natural mechanism forgenerat<strong>in</strong>g <strong>the</strong> matter–antimatter asymmetry <strong>of</strong> <strong>the</strong> Universe by virtue <strong>of</strong> CP-violat<strong>in</strong>gdecays N → l + Φ <strong>of</strong> heavy right-h<strong>and</strong>ed Majorana neutr<strong>in</strong>os N <strong>in</strong>to ord<strong>in</strong>ary leptons l<strong>and</strong> Higgs particles Φ. In comparison with o<strong>the</strong>r baryogenesis scenarios, <strong>leptogenesis</strong> has<strong>the</strong> unique advantage <strong>of</strong> rely<strong>in</strong>g on an <strong>in</strong>gredient <strong>of</strong> physics beyond <strong>the</strong> st<strong>and</strong>ard model,neutr<strong>in</strong>o masses, that is experimentally established. Moreover, <strong>the</strong> neutr<strong>in</strong>o mass valuessuggested by flavour oscillation experiments are optimal <strong>in</strong> <strong>the</strong> sense that <strong>leptogenesis</strong>would operate <strong>in</strong> a mildly ‘strong wash-out regime’ [8]. This means that <strong>the</strong> <strong>in</strong>verseprocesses l +Φ → N are efficient enough to wash out all contributions to <strong>the</strong> f<strong>in</strong>alasymmetry that depend on <strong>in</strong>itial conditions, but not too efficient to prevent successful<strong>leptogenesis</strong>. This is true for hierarchical light neutr<strong>in</strong>o schemes, while <strong>in</strong> <strong>the</strong> case <strong>of</strong>quasi-degenerate neutr<strong>in</strong>os, <strong>leptogenesis</strong> provides a str<strong>in</strong>gent upper bound on neutr<strong>in</strong>omasses, m 1 ≤ 0.1 eV, hold<strong>in</strong>g when a hierarchical right-h<strong>and</strong>ed neutr<strong>in</strong>o spectrum isassumed [8].Traditionally, flavour <strong>effect</strong>s were neglected <strong>in</strong> <strong>leptogenesis</strong>, i.e. <strong>the</strong> lepton asymmetryproduced by N → l + Φ <strong>and</strong> <strong>the</strong> wash-out <strong>effect</strong>s caused by <strong>the</strong> <strong>in</strong>verse processeswere treated as if l had no flavour properties. Recently it was recognized, however,that important modifications arise if some <strong>of</strong> <strong>the</strong> charged-lepton Yukawa <strong>in</strong>teractionsare <strong>in</strong> equilibrium [9]–[13]. In particular, <strong>the</strong>re is an additional source <strong>of</strong> CP violationthat can make <strong>the</strong> s<strong>in</strong>gle-flavoured CP asymmetries larger than <strong>the</strong> total. Thisadditional source <strong>in</strong>cludes a dependence on low-energy phases, <strong>in</strong> contrast to unflavoured<strong>leptogenesis</strong> [11, 12]. In fact, successful <strong>leptogenesis</strong> stemm<strong>in</strong>g only from Majorana <strong>and</strong>Dirac phases is possible [14]–[18]. A second consequence is a reduction <strong>of</strong> <strong>the</strong> wash-outefficiency, generally by different amounts <strong>in</strong> each flavour. These modifications toge<strong>the</strong>rcontribute to enhance <strong>the</strong> f<strong>in</strong>al asymmetry, an <strong>effect</strong> that <strong>in</strong>creases for a larger neutr<strong>in</strong>oJCAP03(2007)012Journal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 2


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>mass scale. Therefore, flavour <strong>effect</strong>s can relax <strong>the</strong> neutr<strong>in</strong>o mass bound <strong>of</strong> <strong>the</strong> unflavouredscenario [13].The purpose <strong>of</strong> our present study is to explore <strong>the</strong> conditions for flavour <strong>effect</strong>s to berelevant <strong>in</strong> <strong>leptogenesis</strong> <strong>and</strong> if <strong>the</strong> neutr<strong>in</strong>o mass bound can <strong>in</strong>deed be circumvented. Thepast literature is unclear on this po<strong>in</strong>t <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sense. It was stressed that <strong>the</strong> l<strong>in</strong>teractions with <strong>the</strong> background medium are flavour-sensitive <strong>and</strong> <strong>the</strong> coherence <strong>of</strong> <strong>the</strong>l flavour content def<strong>in</strong>ed by N → l + Φ can be destroyed if some <strong>of</strong> <strong>the</strong> charged-leptonYukawa coupl<strong>in</strong>gs are <strong>in</strong> <strong>the</strong>rmal equilibrium dur<strong>in</strong>g <strong>the</strong> <strong>leptogenesis</strong> epoch. On <strong>the</strong> o<strong>the</strong>rh<strong>and</strong>, <strong>the</strong> reactions N ↔ l + Φ constantly regenerate <strong>the</strong> l flavour composition <strong>and</strong> if<strong>the</strong>se reactions are fast, l is frozen <strong>in</strong> its coherent flavour state by <strong>the</strong> quantum <strong>Zeno</strong><strong>effect</strong> [19, 20]. In o<strong>the</strong>r words, <strong>the</strong> charged-lepton Yukawa coupl<strong>in</strong>gs <strong>and</strong> <strong>the</strong> N ↔ l +Φreactions generally s<strong>in</strong>gle out different directions <strong>in</strong> flavour space. The l density matrix<strong>in</strong> flavour space will dom<strong>in</strong>antly stay <strong>in</strong> <strong>the</strong> direction favoured by <strong>the</strong> fastest term <strong>of</strong><strong>the</strong> k<strong>in</strong>etic equation. Therefore, we expect flavour <strong>effect</strong>s to be important if <strong>the</strong> ‘flavourmeasurements’ by <strong>the</strong> background medium are fast relative to <strong>the</strong> N ↔ l + Φ reactions, acondition that was also stated <strong>in</strong> [12]. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> actually used requirement<strong>in</strong> <strong>the</strong> previous literature was <strong>the</strong> weaker condition that <strong>the</strong> flavour-sensitive reactions arefast on <strong>the</strong> cosmic expansion scale. Of course, at <strong>the</strong> end <strong>of</strong> <strong>the</strong> <strong>leptogenesis</strong> epoch when<strong>the</strong> N ↔ l+Φ reactions no longer track equilibrium, this weaker condition is correct. Ourma<strong>in</strong> concern is that previous treatments may not properly cover <strong>the</strong> important strongwash-out case, where N ↔ l + Φ is fast relative to <strong>the</strong> expansion rate for most <strong>of</strong> <strong>the</strong><strong>leptogenesis</strong> epoch.In order to identify <strong>the</strong> conditions for flavour <strong>effect</strong>s to be relevant for <strong>the</strong> f<strong>in</strong>albaryon asymmetry we split <strong>the</strong> problem <strong>in</strong>to two parts. First, <strong>in</strong> section 2, wederivea condition for <strong>the</strong> unflavoured treatment to be adequate. Next, <strong>in</strong> section 3, weobta<strong>in</strong>a condition for flavour <strong>effect</strong>s to be maximally <strong>effect</strong>ive (‘fully flavoured regime’). In<strong>the</strong>se cases two different sets <strong>of</strong> classical Boltzmann equations apply to calculate <strong>the</strong> f<strong>in</strong>alasymmetry. In section 4 we consider <strong>the</strong> neutr<strong>in</strong>o mass bound to hold <strong>in</strong> <strong>the</strong> unflavouredcase <strong>and</strong> show that it cannot be circumvented <strong>in</strong> <strong>the</strong> fully flavoured case. However, <strong>the</strong>reis an <strong>in</strong>termediate regime between <strong>the</strong> fully flavoured <strong>and</strong> unflavoured cases where a fullquantum k<strong>in</strong>etic equation is required to decide on <strong>the</strong> neutr<strong>in</strong>o mass bound. In section 5we briefly discuss <strong>the</strong> limitations <strong>of</strong> our simple rate comparison. We summarize ourf<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> section 6.JCAP03(2007)0122. Unflavoured case2.1. Unflavoured <strong>leptogenesis</strong>In order to derive a condition for <strong>the</strong> unflavoured <strong>leptogenesis</strong> treatment to be adequate, wefirst retrace <strong>the</strong> steps lead<strong>in</strong>g to <strong>the</strong> f<strong>in</strong>al asymmetry prediction. Add<strong>in</strong>g to <strong>the</strong> st<strong>and</strong>ardmodel three right-h<strong>and</strong>ed (RH) neutr<strong>in</strong>os with a Majorana mass term M <strong>and</strong> Yukawacoupl<strong>in</strong>gs h, after spontaneous symmetry break<strong>in</strong>g a Dirac mass term, m D = vh, isgenerated by <strong>the</strong> vev v <strong>of</strong> <strong>the</strong> Higgs boson. In <strong>the</strong> see-saw limit, M ≫ m D , <strong>the</strong> spectrum<strong>of</strong> neutr<strong>in</strong>o masses splits <strong>in</strong>to two sets, a very heavy one, M 3 ≥ M 2 ≥ M 1 , almostco<strong>in</strong>cid<strong>in</strong>g with <strong>the</strong> eigenvalues <strong>of</strong> M, <strong>and</strong> a light one, m 3 ≥ m 2 ≥ m 1 , correspond<strong>in</strong>gto <strong>the</strong> eigenvalues <strong>of</strong> <strong>the</strong> light neutr<strong>in</strong>o mass matrix. It is given by <strong>the</strong> see-sawJournal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 3


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>formula [1]–[6],1m ν = −m DM mT D. (1)Neutr<strong>in</strong>o oscillation experiments measure two light neutr<strong>in</strong>o mass squared differences. Ina normal scheme one has m3 2 − m 2 2 =Δm2 atm <strong>and</strong> m 3 2 − m 1 2 =Δm2 sol , whereas <strong>in</strong> an√<strong>in</strong>verted scheme one has m3 2 − m2 2 =Δm 2 sol <strong>and</strong> m2 2 − m1 2 =Δm 2 atm. For m 1 ≫ m atm ≡Δm2atm +Δm 2 sol <strong>the</strong> spectrum is quasi-degenerate, while for m 1 ≪ m sol ≡ √ Δm 2 solit isfully hierarchical.In <strong>the</strong> early Universe, <strong>the</strong> decays <strong>of</strong> <strong>the</strong> RH neutr<strong>in</strong>os <strong>in</strong>to leptons <strong>and</strong> Higgs bosonsgenerally produce a net lepton number that is partly converted <strong>in</strong>to a net baryon numberby sphaleron processes if <strong>the</strong> temperature exceeds about 100 GeV. We will follow commonpractice <strong>and</strong> assume that <strong>the</strong> f<strong>in</strong>al asymmetry is determ<strong>in</strong>ed only by <strong>the</strong> decays <strong>of</strong> <strong>the</strong>lightest RH neutr<strong>in</strong>o, although a scenario where <strong>the</strong> asymmetry is produced by <strong>the</strong> nextto-lighteststates is also possible [21, 22].For now we also assume that <strong>the</strong> flavour composition <strong>of</strong> <strong>the</strong> leptons produced <strong>in</strong><strong>the</strong> decays does not affect <strong>the</strong> f<strong>in</strong>al asymmetry (unflavoured limit). Neglect<strong>in</strong>g <strong>the</strong>rmal<strong>effect</strong>s <strong>in</strong> ΔL = 1 scatter<strong>in</strong>gs [23] <strong>and</strong> spectator processes [24, 25], <strong>the</strong> f<strong>in</strong>al asymmetry isdeterm<strong>in</strong>ed by a simple set <strong>of</strong> two k<strong>in</strong>etic equations, one for <strong>the</strong> RH neutr<strong>in</strong>o abundance<strong>and</strong> one for <strong>the</strong> B–L asymmetry [26],dN N1dzdN B−Ldz= −D ( N N1 − N eqN 1)= ε 1 D ( N N1 − N eqN 1)−(WID1 +ΔW ) N B−L , (3)where z ≡ M 1 /T . With N B−L <strong>and</strong> N N1 we denote <strong>the</strong> abundances per RH neutr<strong>in</strong>o N 1 ,taken to be <strong>in</strong> ultra-relativistic <strong>the</strong>rmal equilibrium. The actual N 1 equilibrium abundanceis N eqN 1= z 2 K 2 (z)/2, where K i (z) are <strong>the</strong> modified Bessel functions.Introduc<strong>in</strong>g <strong>the</strong> decay parameter K 1 ≡ ˜Γ 1 /H T =M1 , def<strong>in</strong>ed as <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> totaldecay width to <strong>the</strong> expansion rate at T = M 1 , <strong>the</strong> decay term can be written as(2)JCAP03(2007)012D ≡ Γ DHz = K 1 z 〈 〉γ1−1 , (4)where 〈γ1 −1 〉 = K 1(z)/K 2 (z) is <strong>the</strong> <strong>the</strong>rmally averaged Lorentz dilation factor. Theexpansion rate is√8 π3 g ⋆H ≃90M 2 1M Pl1z 2 ≃ 1.66 √ g ⋆M 2 1M Pl1z 2 (5)<strong>and</strong> g ⋆ = g SM = 106.75 is <strong>the</strong> total number <strong>of</strong> <strong>the</strong>rmally excited degrees <strong>of</strong> freedom.The wash-out term caused by <strong>in</strong>verse decays is, after subtract<strong>in</strong>g <strong>the</strong> resonant ΔL =2processes,W ID1 (z) ≡ 1 2Γ ID1 (z)H(z) z = 1 4 K 1 K 1 (z) z 3 , (6)where Γ ID1 =Γ D N eqN 1/N eqlis <strong>the</strong> <strong>in</strong>verse decay rate. The non-resonant ΔL = 2 contributionJournal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 4


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>dom<strong>in</strong>ates <strong>in</strong> <strong>the</strong> non-relativistic regime <strong>and</strong> is approximatelyΔW (z) ≃ w () 2 M1 m, (7)z 2 10 GeV)( 10 eVwherew = 9√ 5 M Pl × 10 −8 GeV 34π 9/2 √ ≃ 0.186 (8)g l g⋆ v 4<strong>and</strong> m ≡ √ ∑i m2 i .The evolution <strong>of</strong> N B−L is explicitly, denot<strong>in</strong>g <strong>in</strong>itial quantities with <strong>the</strong> subscript ‘<strong>in</strong>’,with <strong>the</strong> efficiency factor∫ zN B−L (z) =NB−L {−<strong>in</strong> exp z <strong>in</strong>κ 1 (z) ≡−∫ zdz ′ dN N 1z <strong>in</strong>dz ′dz ′ [ W ID1 (z′ )+ΔW (z ′ ) ]} + ε 1 κ 1 (z) (9)[ ∫ z]exp − dz ′′ [W1 ID (z ′′ )+ΔW (z ′′ )] . (10)z ′An approximate analytic expression for <strong>the</strong> f<strong>in</strong>al efficiency factor at <strong>the</strong> end <strong>of</strong> <strong>the</strong><strong>leptogenesis</strong> epoch <strong>and</strong> valid <strong>in</strong> <strong>the</strong> strong wash-out regime (K 1 ≫ 1) is[κ f 1 (m 1,M 1 ,K 1 ) ≃ κ(K 1 )exp −w (M1( ¯m) 2](11)z B (K 1 ) 10 GeV) 10 eVwhere2 (κ(K 1 ) ≃) 1 − e−K 1 z B (K 1 )/2. (12)K 1 z B (K 1 )Fur<strong>the</strong>r,z B (K 1 ) ≃ 2+4K1 0.13 e −2.5/K 1(13)is an approximate expression for that value <strong>of</strong> z where W1 ID (z B ) ≃ 1, i.e. where <strong>the</strong>wash-out term from <strong>in</strong>verse decays becomes <strong>in</strong><strong>effect</strong>ive [27]. In <strong>the</strong> weak wash-out regime<strong>the</strong> expression for <strong>the</strong> f<strong>in</strong>al efficiency factor depends on <strong>the</strong> value <strong>of</strong> NN <strong>in</strong>1. For an <strong>in</strong>itial<strong>the</strong>rmal equilibrium abundance <strong>the</strong> given expression still holds. For an <strong>in</strong>itial vanish<strong>in</strong>gabundance <strong>the</strong> f<strong>in</strong>al efficiency factor is <strong>the</strong> sum <strong>of</strong> two contributions with opposite sign<strong>and</strong> approximate analytic expressions can be found <strong>in</strong> [26]. The weak wash-out, act<strong>in</strong>gless efficiently on <strong>the</strong> positive contribution, prevents a full cancellation.Assum<strong>in</strong>g ei<strong>the</strong>r that <strong>the</strong> <strong>in</strong>itial asymmetry is negligible or that it is efficiently washedout, <strong>the</strong> f<strong>in</strong>al B–L asymmetry is NB−L f ≃ ε 1 κ f 1. Assum<strong>in</strong>g fur<strong>the</strong>r a st<strong>and</strong>ard <strong>the</strong>rmalhistory <strong>of</strong> <strong>the</strong> Universe <strong>and</strong> account<strong>in</strong>g for <strong>the</strong> sphaleron conversion coefficient a sph ∼ 1/3,<strong>the</strong> f<strong>in</strong>al baryon-to-photon ratio at recomb<strong>in</strong>ation (rec) isJCAP03(2007)012NB−Lf η B = a sph ≃ 0.96 × 10 −2 εNγrec1 κ f 1 . (14)This is <strong>the</strong> number to be compared with <strong>the</strong> measured value [28]ηB CMB =(6.1 ± 0.2) × 10 −10 . (15)Journal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 5


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>Figure 1. Comparison between <strong>the</strong> wash-out term W1 ID (z) (thick solid l<strong>in</strong>es),def<strong>in</strong>ed <strong>in</strong> equation (6) <strong>and</strong> plotted for <strong>the</strong> three <strong>in</strong>dicated values <strong>of</strong> K 1 ,<strong>and</strong><strong>the</strong>charged-lepton Yukawa <strong>in</strong>teraction term F τ ,def<strong>in</strong>ed<strong>in</strong>equation(20) <strong>and</strong> plottedfor <strong>the</strong> <strong>in</strong>dicated values <strong>of</strong> M 1 .The wash-out rate by <strong>in</strong>verse decays reaches a maximum W1 ID (z max ) ≃ 0.3 K 1 atz max ≃ 2.4. In <strong>the</strong> weak wash-out regime, when K 1 3.3, one has W1 ID (z) < 1forany value <strong>of</strong> z. In this case <strong>the</strong> wash-out is negligible <strong>and</strong> <strong>the</strong> f<strong>in</strong>al asymmetry dependson <strong>the</strong> <strong>in</strong>itial conditions. In <strong>the</strong> strong wash-out regime, when K 1 3.3, <strong>the</strong>re is an<strong>in</strong>terval [z on ,z <strong>of</strong>f ]whereW1 ID ≥ 1. The asymmetry produced at z z <strong>of</strong>f is very efficientlywashed out <strong>and</strong> thus <strong>the</strong> f<strong>in</strong>al asymmetry is essentially what is produced around z B ≃ z <strong>of</strong>fby out-<strong>of</strong>-equilibrium decays <strong>of</strong> <strong>the</strong> residual RH neutr<strong>in</strong>os whose number correspondsapproximately to <strong>the</strong> f<strong>in</strong>al value <strong>of</strong> <strong>the</strong> efficiency factor.In figure 1 we show <strong>the</strong> wash-out term from <strong>in</strong>verse decays for three different values<strong>of</strong> K 1 .ForK 1 = 100 we show <strong>the</strong> <strong>in</strong>terval [z on ,z <strong>of</strong>f ]. The maximum value W1 ID (z max ) ≃ 33is reached at z max ≃ 2.4. For K 1 ≃ 3.3 one has z on ≃ z max ≃ z <strong>of</strong>f . Thiscanbetakenas<strong>the</strong>threshold value dist<strong>in</strong>guish<strong>in</strong>g between <strong>the</strong> strong <strong>and</strong> <strong>the</strong> weak wash-out regimes. ForK 1 =10 −1 one has W1 ID ≪ 1 for any value <strong>of</strong> z. Notice, however, that even <strong>in</strong> this case<strong>the</strong> weak wash-out can be important for successful <strong>leptogenesis</strong> if <strong>the</strong> <strong>in</strong>itial abundancevanishes, s<strong>in</strong>ce it prevents a full cancellation between two different sign contributions to<strong>the</strong> f<strong>in</strong>al asymmetry [26].JCAP03(2007)0122.2. When are flavour <strong>effect</strong>s important?We now turn to <strong>the</strong> question when flavour <strong>effect</strong>s will modify <strong>the</strong>se results. The crucial<strong>effect</strong> is caused by charged-lepton Yukawa <strong>in</strong>teractions [9] that occur with a rate [29]Γ α ≃ 5 × 10 −3 Th 2 α. The largest one is for α = τ where(Γ τ 10 12H ≃ GeVT). (16)Therefore, if T 10 12 GeV, charged-lepton Yukawa <strong>in</strong>teractions are not <strong>effect</strong>ive <strong>and</strong> allprocesses <strong>in</strong> <strong>the</strong> early Universe are flavour bl<strong>in</strong>d, justify<strong>in</strong>g <strong>the</strong> unflavoured treatment.Journal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 6


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>For T 10 12 GeV, <strong>the</strong> τ Yukawa coupl<strong>in</strong>gs are strong enough that <strong>the</strong> scatter<strong>in</strong>gsτ L ¯τ R → Φ † are <strong>in</strong> equilibrium. However, as stressed <strong>in</strong> <strong>the</strong> <strong>in</strong>troduction, this conditionis not necessarily sufficient for important flavour <strong>effect</strong>s to occur because we need tocompare <strong>the</strong> speed <strong>of</strong> <strong>the</strong> Yukawa <strong>in</strong>teractions with that <strong>of</strong> <strong>the</strong> RH neutr<strong>in</strong>o decays <strong>and</strong><strong>in</strong>verse decays. To this end we study <strong>the</strong> weak <strong>and</strong> strong wash-out regimes separately<strong>and</strong> consider only a two-flavour case because <strong>the</strong> τ lepton Yukawa coupl<strong>in</strong>g causes <strong>the</strong>ma<strong>in</strong> modification.In <strong>the</strong> weak wash-out regime, assum<strong>in</strong>g a vanish<strong>in</strong>g <strong>in</strong>itial abundance, <strong>the</strong> production<strong>of</strong> RH neutr<strong>in</strong>os through <strong>in</strong>verse decays occurs around T ∼ M 1 . At this epoch, <strong>in</strong>versedecays are, by def<strong>in</strong>ition, slower than <strong>the</strong> expansion rate. Therefore, <strong>the</strong> conditionT 10 12 GeV is sufficient to conclude that <strong>the</strong> charged-lepton Yukawa <strong>in</strong>teractions arefaster than <strong>the</strong> <strong>in</strong>verse decay rate. This translates <strong>in</strong>to <strong>the</strong> condition M 1 10 12 GeVbecause <strong>the</strong> RH neutr<strong>in</strong>o production occurs at T ∼ M 1 , <strong>in</strong> agreement with <strong>the</strong> previousliterature [12, 13].However, this condition does not guarantee that flavour <strong>effect</strong>s <strong>in</strong>deed have an <strong>impact</strong>on <strong>the</strong> f<strong>in</strong>al asymmetry, because this <strong>impact</strong> depends on wash-out play<strong>in</strong>g some role. Fora vanish<strong>in</strong>g <strong>in</strong>itial abundance this is <strong>the</strong> case <strong>in</strong> that wash-out <strong>effect</strong>s prevent a full signcancellation between <strong>the</strong> asymmetry produced when N N1 < N eqN 1<strong>and</strong> <strong>the</strong> asymmetryproduced later on. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, for a <strong>the</strong>rmal <strong>in</strong>itial abundance, no such <strong>effect</strong>arises from <strong>the</strong> weak wash-out <strong>and</strong> flavour <strong>effect</strong>s do not modify <strong>the</strong> f<strong>in</strong>al asymmetry. Inany case, one can say that <strong>in</strong> <strong>the</strong> limit K 1 → 0 flavour cannot have <strong>effect</strong>s on <strong>the</strong> f<strong>in</strong>alasymmetry for any <strong>in</strong>itial abundance. We will come back to this po<strong>in</strong>t.In <strong>the</strong> strong wash-out regime <strong>the</strong> situation is very different. The rate <strong>of</strong> RH neutr<strong>in</strong>o<strong>in</strong>verse decays at T ∼ M 1 is larger than <strong>the</strong> expansion rate. Therefore, we need to compare<strong>the</strong> charged-lepton Yukawa rate Γ τ with <strong>the</strong> RH neutr<strong>in</strong>o <strong>in</strong>verse decay rate Γ ID1 .For<strong>the</strong>unflavoured treatment to be valid for z z fl ≤ z B <strong>the</strong>n requiresM 1 1012 GeV2 W1 ID(zfl) , (17)where z fl is that value <strong>of</strong> z where <strong>the</strong> two rates are equal. This condition guarantees thatat temperatures T > T fl = M 1 /z fl flavour <strong>effect</strong>s will not be able to break <strong>the</strong> coherentpropagation <strong>of</strong> lepton states. The f<strong>in</strong>al asymmetry is dom<strong>in</strong>antly produced around z ∼ z B .Therefore, <strong>the</strong> condition for flavour <strong>effect</strong>s to be negligible isM 1 5 × 10 11 GeV, (18)similar to <strong>the</strong> weak wash-out regime. However, <strong>the</strong> correspond<strong>in</strong>g condition on <strong>the</strong>temperatureT 1012 GeV(19)2 z B (K 1 )is now less restrictive.If one starts with a non-vanish<strong>in</strong>g <strong>in</strong>itial abundance, <strong>the</strong>n <strong>the</strong> f<strong>in</strong>al asymmetry isalso determ<strong>in</strong>ed by how efficiently <strong>the</strong> <strong>in</strong>itial value is washed out; this is described by<strong>the</strong> <strong>in</strong>tegral <strong>in</strong> equation (9). In this case even a value <strong>of</strong> z fl


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>We conclude that <strong>the</strong> condition equation (17) obeys <strong>the</strong> <strong>in</strong>tuitive expectation that<strong>the</strong>re is always a threshold value for K 1 above which <strong>the</strong> unflavoured case is recovered. Inthis case <strong>the</strong> temperature below which flavour <strong>effect</strong>s play a role <strong>in</strong>deed becomes smaller<strong>and</strong> smaller. The situation is illustrated <strong>in</strong> figure 1 where we compare W ID withF τ ≡ 1 2Γ τHz ≃ 5 × 1011 GeVM 1, (20)<strong>the</strong> analogous quantity for <strong>the</strong> charged-lepton Yukawa <strong>in</strong>teractions. For any value <strong>of</strong> M 1<strong>and</strong> K 1 , <strong>the</strong>re is a value z fl such that F τ W ID for z>z fl . If M 1 2 × 10 12 GeV/K 1<strong>and</strong> K 1 3.3, correspond<strong>in</strong>g to F τ W ID (z max ) <strong>in</strong> <strong>the</strong> strong wash-out regime, <strong>the</strong>nz fl = 0, mean<strong>in</strong>g that flavour <strong>effect</strong>s are important dur<strong>in</strong>g <strong>the</strong> entire <strong>the</strong>rmal history. On<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, for a fixed value <strong>of</strong> M 1 , one has z fl →∞for K 1 →∞, imply<strong>in</strong>g thatflavour <strong>effect</strong>s tend to disappear for sufficiently large values <strong>of</strong> K 1 . Notice however thatif M 1 5 × 10 11 GeV, <strong>the</strong>n z fl z <strong>of</strong>f ≃ z B for any value <strong>of</strong> K 1 . This confirms that onlyfor M 1 5 × 10 11 GeV can flavour <strong>effect</strong>s be neglected <strong>and</strong> <strong>the</strong> unflavoured regime isrecovered.3. Maximum flavour <strong>effect</strong>sWe now turn to <strong>the</strong> opposite extreme case when flavour <strong>effect</strong>s are maximal, <strong>the</strong> ‘fullyflavoured regime’. In o<strong>the</strong>r words, <strong>the</strong> charged-lepton Yukawa <strong>in</strong>teractions are now takento be so fast that <strong>the</strong> lepton flavour content produced <strong>in</strong> N → l + Φ on average fullycollapses before <strong>the</strong> <strong>in</strong>verse reaction can take place, i.e. <strong>the</strong> l density matrix <strong>in</strong> flavourspace is to be taken diagonal <strong>in</strong> <strong>the</strong> charged-lepton Yukawa basis. In this case each s<strong>in</strong>gleflavour asymmetry has to be calculated separately because generally <strong>the</strong> wash-out by<strong>in</strong>verse decays is different for each flavour. Moreover, <strong>the</strong> s<strong>in</strong>gle-flavoured CP asymmetriesnow have an additional contribution compared to <strong>the</strong> total [12, 13]. F<strong>in</strong>ally, <strong>the</strong> <strong>in</strong>versedecay <strong>in</strong>volv<strong>in</strong>g a lepton <strong>in</strong> <strong>the</strong> flavour α does not wash out as much asymmetry as <strong>the</strong>one produced by one RH neutr<strong>in</strong>o decay. The reduction is quantified by <strong>the</strong> probabilityPiα, 0 averaged over leptons <strong>and</strong> anti-leptons, that <strong>the</strong> lepton l i produced <strong>in</strong> <strong>the</strong> decay <strong>of</strong>N i collapses <strong>in</strong>to <strong>the</strong> flavour eigenstate l α . The relevant Boltzmann equations becomedN N1(= −D 1 NN1 − N eq )Ndz1dN Δαdz= ε 1α D 1(NN1 − N eqN 1)− P01α W ID1 N Δα .S<strong>in</strong>ce we are deal<strong>in</strong>g with <strong>the</strong> two-flavour case, here α = τ or μ where <strong>the</strong> latter st<strong>and</strong>s fora suitable superposition <strong>of</strong> <strong>the</strong> μ <strong>and</strong> e flavour. Notice also that we def<strong>in</strong>ed Δ α ≡ B/3−L α<strong>and</strong> <strong>the</strong>refore <strong>the</strong> total asymmetry is given by N B−L = N Δμ + N Δτ .As <strong>in</strong> <strong>the</strong> unflavoured case, we next identify <strong>the</strong> condition for <strong>the</strong> fully flavouredapproximation to hold. The f<strong>in</strong>al asymmetry <strong>in</strong> <strong>the</strong> flavour α is dom<strong>in</strong>antly produced atz ≃ z Bα ≡ z B (K 1α ), where K 1α ≡ P1α 0 K 1. Therefore, one must require that Γ α Γ ID1holds already at z ∼ z Bα lest <strong>the</strong> wash-out reduction take place too late. We stress thatflavour <strong>effect</strong>s modify <strong>the</strong> f<strong>in</strong>al asymmetry only if <strong>the</strong> flavour projection takes place before<strong>the</strong> wash-out by <strong>in</strong>verse decays freezes out. O<strong>the</strong>rwise <strong>the</strong> wash-out epoch is over <strong>and</strong> <strong>the</strong>unflavoured behaviour is recovered. It is easy to verify that. If <strong>the</strong> projectors are set to(21)JCAP03(2007)012Journal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 8


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>Figure 2. Relevance <strong>of</strong> flavour <strong>effect</strong>s <strong>in</strong> schematic regions <strong>of</strong> parameters K 1 <strong>and</strong>M 1 . The region above <strong>the</strong> horizontal dashed l<strong>in</strong>e corresponds to <strong>the</strong> condition (18)for z Bα = z max . The vertical dotted–dashed l<strong>in</strong>e is <strong>the</strong> border between <strong>the</strong>weak <strong>and</strong> <strong>the</strong> strong wash-out regime. The region below <strong>the</strong> <strong>in</strong>cl<strong>in</strong>ed dottedl<strong>in</strong>e corresponds to <strong>the</strong> condition (22) forz Bα = z max .unity <strong>and</strong> <strong>the</strong> equations are summed over flavours, <strong>the</strong> k<strong>in</strong>etic equation for N B−L hold<strong>in</strong>g<strong>in</strong> <strong>the</strong> unflavoured regime is recovered (cf equation (3)). Therefore, we require1012 GeVM 1 (22)2 W1 ID (z Bα )as an approximate condition for <strong>the</strong> fully flavoured behaviour.In figure 2 we summarize <strong>the</strong> different possible cases <strong>in</strong> <strong>the</strong> plane <strong>of</strong> parameters K 1<strong>and</strong> M 1 .ForM 1 5 × 10 11 GeV, above <strong>the</strong> dashed l<strong>in</strong>e, flavour <strong>effect</strong>s are not important<strong>in</strong>dependently <strong>of</strong> K 1 . The condition equation (22), <strong>in</strong> <strong>the</strong> most restrictive case whenz Bα = z max <strong>and</strong> W1 ID ≃ 0.3 K 1 , is satisfied below <strong>the</strong> <strong>in</strong>cl<strong>in</strong>ed dotted l<strong>in</strong>e. This casetypically occurs <strong>in</strong> a one-flavour-dom<strong>in</strong>ated scenario, as we expla<strong>in</strong> below. The verticaldotted–dashed l<strong>in</strong>e is <strong>the</strong> border that separates <strong>the</strong> weak from <strong>the</strong> strong wash-out regime<strong>in</strong> <strong>the</strong> unflavoured case. In <strong>the</strong> flavoured case <strong>the</strong> condition K 1 3.3 still implies <strong>the</strong>weak wash-out regime because flavour <strong>effect</strong>s can only reduce <strong>the</strong> wash-out. However,<strong>the</strong> condition for <strong>the</strong> strong wash-out regime can be more restrictive than K 1 3.3, asdiscussed <strong>in</strong> [15]. For K 1 3.3, flavour <strong>effect</strong>s modify <strong>the</strong> f<strong>in</strong>al asymmetry only marg<strong>in</strong>ally<strong>and</strong> more specifically only if <strong>the</strong> <strong>in</strong>itial abundance vanishes, as <strong>in</strong>dicated <strong>in</strong> figure 2. On<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, for K 1 3.3 <strong>and</strong> below <strong>the</strong> diagonal l<strong>in</strong>e, flavour modifications <strong>of</strong> <strong>the</strong>f<strong>in</strong>al asymmetry can be large, especially <strong>in</strong> <strong>the</strong> one-flavour-dom<strong>in</strong>ated scenario.There is a region <strong>in</strong> parameter space where nei<strong>the</strong>r condition equation (17) nor(22)holds. This <strong>in</strong>termediate regime can become very large <strong>in</strong> <strong>the</strong> case <strong>of</strong> a one-flavourdom<strong>in</strong>atedscenario, where an order-<strong>of</strong>-magnitude enhancement <strong>of</strong> <strong>the</strong> f<strong>in</strong>al asymmetryis possible. In this case one <strong>of</strong> <strong>the</strong> two projectors is very small compared to <strong>the</strong> o<strong>the</strong>r<strong>and</strong> so <strong>the</strong> wash-out is very asymmetric <strong>in</strong> <strong>the</strong> two flavours. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, if <strong>the</strong>two-flavoured CP asymmetries are comparable, <strong>the</strong>n <strong>the</strong> f<strong>in</strong>al asymmetry is dom<strong>in</strong>antlyproduced <strong>in</strong>to one flavour <strong>and</strong> deviations from <strong>the</strong> unflavoured regime can become veryJCAP03(2007)012Journal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 9


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>large. This scenario is realized, <strong>in</strong> particular, when <strong>the</strong> absolute neutr<strong>in</strong>o mass scale<strong>in</strong>creases, relax<strong>in</strong>g <strong>the</strong> traditional neutr<strong>in</strong>o mass bound.However, <strong>the</strong> condition equation (22) strongly restricts <strong>the</strong> applicability <strong>of</strong> <strong>the</strong> oneflavour-dom<strong>in</strong>atedscenario. Even though <strong>the</strong> reduction <strong>of</strong> <strong>the</strong> wash-out is driven byK 1α ≪ K 1 , imply<strong>in</strong>g z Bα ≪ z B , <strong>the</strong> possibility for flavour <strong>effect</strong>s to be relevant relieson <strong>the</strong> dom<strong>in</strong>ance <strong>of</strong> <strong>the</strong> charged-lepton Yukawa <strong>in</strong>teraction rate compared to <strong>the</strong> RHneutr<strong>in</strong>o <strong>in</strong>verse decay rate that, however, is still driven by K 1 . Therefore, <strong>in</strong>creas<strong>in</strong>g K 1 ,one can enhance <strong>the</strong> asymmetry <strong>in</strong> <strong>the</strong> one-flavour-dom<strong>in</strong>ated scenario compared to <strong>the</strong>unflavoured case, if smaller <strong>and</strong> smaller values <strong>of</strong> <strong>the</strong> projector P1α 0 are possible. On <strong>the</strong>o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> <strong>in</strong>verse decay rate <strong>in</strong>creases so that <strong>the</strong> fully flavoured behaviour may nolonger apply. In particular notice that <strong>the</strong> maximum enhancement <strong>of</strong> <strong>the</strong> asymmetry isobta<strong>in</strong>ed when K 1 ≫ K 1α ≃ 1, when z Bα ≃ z max <strong>and</strong> <strong>the</strong> condition (22) is maximallyrestrictive.4. Neutr<strong>in</strong>o mass boundOne possible consequence <strong>of</strong> flavour <strong>effect</strong>s is to relax <strong>the</strong> traditional upper bound on <strong>the</strong>neutr<strong>in</strong>o mass that is implied by successful <strong>leptogenesis</strong>. In order to explore <strong>the</strong> <strong>impact</strong><strong>of</strong> our modified criteria we first recall <strong>the</strong> orig<strong>in</strong> <strong>of</strong> this bound <strong>in</strong> <strong>the</strong> unflavoured case.Maximiz<strong>in</strong>g <strong>the</strong> f<strong>in</strong>al value <strong>of</strong> <strong>the</strong> asymmetry over all see-saw parameters except M 1 <strong>and</strong>m 1 yields [26]ηB max(M( ) 1.2 ( ) [1,m 1 ) m⋆ M1 matm≃ 3.8exp − w M(1 ¯m2]ηBCMBm 1 10 10 GeV m 1 + m 3 z B 10 10 GeV eV)≥ 1, (23)wherewehaveapproximatedκ(K 1 ) ≃ 0.5 K1 −1.2 [30] <strong>and</strong> we have neglected <strong>the</strong> dependence<strong>of</strong> z B on K 1 <strong>in</strong> <strong>the</strong> derivative. This constra<strong>in</strong>t translates <strong>in</strong>to m 1


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>Figure 3. Relevance <strong>of</strong> flavour <strong>effect</strong>s similar to figure 2, now mapped toschematic regions <strong>of</strong> parameters m 1 <strong>and</strong> M 1 . The region above <strong>the</strong> horizontaldashed l<strong>in</strong>e corresponds to <strong>the</strong> condition equation (18) for <strong>the</strong> applicability <strong>of</strong> <strong>the</strong>unflavoured regime. The region below <strong>the</strong> <strong>in</strong>cl<strong>in</strong>ed thick dashed l<strong>in</strong>e correspondsto <strong>the</strong> condition equation (22) calculated for that value <strong>of</strong> z Bα that maximizes<strong>the</strong> f<strong>in</strong>al asymmetry <strong>in</strong> <strong>the</strong> one-flavour-dom<strong>in</strong>ated scenario <strong>and</strong> for K 1 = m 1 /m ⋆ .In this same case, <strong>the</strong> lower <strong>in</strong>cl<strong>in</strong>ed dotted–dashed l<strong>in</strong>es <strong>in</strong>cludes also <strong>the</strong> <strong>effect</strong><strong>of</strong> scatter<strong>in</strong>gs <strong>in</strong> <strong>the</strong> condition equation (22) while <strong>the</strong> upper <strong>in</strong>cl<strong>in</strong>ed <strong>and</strong> <strong>the</strong>horizontal dotted–dashed l<strong>in</strong>es <strong>in</strong>clude <strong>the</strong> <strong>effect</strong> <strong>of</strong> oscillations. The area between<strong>the</strong> two <strong>in</strong>cl<strong>in</strong>ed dotted–dashed l<strong>in</strong>es gives an estimation <strong>of</strong> <strong>the</strong> uncerta<strong>in</strong>ty on <strong>the</strong>condition for <strong>the</strong> fully flavoured regime to hold. The area between <strong>the</strong> horizontalth<strong>in</strong> dotted–dashed l<strong>in</strong>e <strong>and</strong> <strong>the</strong> horizontal thick dashed l<strong>in</strong>e gives an estimation<strong>of</strong> <strong>the</strong> uncerta<strong>in</strong>ty on <strong>the</strong> condition for <strong>the</strong> unflavoured regime to hold. The twothick solid l<strong>in</strong>es border <strong>the</strong> region where successful <strong>leptogenesis</strong> is possible: on<strong>the</strong> left <strong>in</strong> <strong>the</strong> unflavoured regime <strong>and</strong> above <strong>in</strong> <strong>the</strong> fully flavoured regime. Theth<strong>in</strong> solid l<strong>in</strong>e is a more restrictive border obta<strong>in</strong>ed for a specific choice <strong>of</strong> <strong>the</strong> seesaworthogonal matrix <strong>and</strong> <strong>the</strong> th<strong>in</strong> dashed l<strong>in</strong>e is <strong>the</strong> correspond<strong>in</strong>g condition,equation (22). In this case one has K 1 >m 1 /m ⋆ .JCAP03(2007)012whereε(M 1 ) ≡ 316π( )M 1 m atm≃ 10 −6 M1 ( matm). (27)v 2 10 10 GeV 0.05 eVIt is <strong>the</strong>n possible to f<strong>in</strong>d <strong>the</strong> value <strong>of</strong> P1α 0 that maximizes <strong>the</strong> asymmetry as a function<strong>of</strong> K 1 <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>g value <strong>of</strong> z Bα .Impos<strong>in</strong>gηBmax ≥ ηBCMB implies a lower boundon M 1 as a function <strong>of</strong> K 1 .This limit can be translated <strong>in</strong>to a lower bound on M 1 as a function <strong>of</strong> m 1 by replac<strong>in</strong>gK 1 with its m<strong>in</strong>imum value m 1 /m ⋆ . In this way <strong>the</strong> wash-out is always m<strong>in</strong>imized<strong>and</strong> <strong>the</strong> f<strong>in</strong>al efficiency factor <strong>and</strong> <strong>the</strong> f<strong>in</strong>al asymmetry are maximized. Notice that <strong>the</strong>s<strong>in</strong>gle-flavoured CP asymmetries, like <strong>the</strong> total, vanish for K 1 = m 1 /m ⋆ . Therefore,this lower bound cannot be saturated. Notice, moreover, that for m 1 m ⋆ <strong>the</strong> oneflavour-dom<strong>in</strong>atedscenario does not necessarily hold because it is possible that K 1 1.Actually for K 1 → 0, flavour <strong>effect</strong>s disappear <strong>and</strong> one has to recover <strong>the</strong> usual asymptoticJournal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 11


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>value <strong>of</strong> <strong>the</strong> lower bound obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> unflavoured case for <strong>the</strong>rmal <strong>in</strong>itial abundance,M 1 4 × 10 8 GeV. For <strong>in</strong>termediate values <strong>of</strong> K 1 one can use a simple <strong>in</strong>terpolation. Thef<strong>in</strong>al result is shown <strong>in</strong> <strong>the</strong> bottom part <strong>of</strong> figure 3 as a thick solid l<strong>in</strong>e.In figure 3 we also show <strong>the</strong> condition equation (22), calculated for <strong>the</strong> same value<strong>of</strong> z Bα that maximizes <strong>the</strong> f<strong>in</strong>al asymmetry, but replac<strong>in</strong>g K 1 with its m<strong>in</strong>imum valuem 1 /m ⋆ (thick dashed l<strong>in</strong>e). S<strong>in</strong>ce W1 ID <strong>in</strong>creases with K 1 , this produces a necessary,but not sufficient, condition <strong>in</strong> <strong>the</strong> m 1 –M 1 plane for <strong>the</strong> fully flavoured behaviour. Thiscondition matches <strong>the</strong> validity <strong>of</strong> <strong>the</strong> unflavoured regime at m 1 ≃ 3 × 10 −3 eV <strong>and</strong> <strong>the</strong>lower bound on M 1 at m 1 ≃ 2 eV. This means that for m 1 2 eV <strong>the</strong> fully flavouredbehaviour does not obta<strong>in</strong>. Notice also that this upper limit is quite conservative because<strong>the</strong> lower bound on M 1 has been obta<strong>in</strong>ed neglect<strong>in</strong>g that, for K 1 = m 1 /m ⋆ , <strong>the</strong> flavouredCP asymmetry vanishes <strong>and</strong> thus <strong>the</strong> bound cannot be saturated. Moreover we haveassumed that P1α 0 can always assume <strong>the</strong> value that maximizes <strong>the</strong> asymmetry.In figure 3 we also show (th<strong>in</strong> solid l<strong>in</strong>e) a lower bound M 1 (m 1 ) <strong>in</strong> a specificscenario [15], correspond<strong>in</strong>g to a particular choice <strong>of</strong> <strong>the</strong> orthogonal see-saw matrix [32]Ω=R 13 , that represents a complex rotation <strong>in</strong> <strong>the</strong> 13-plane, where Ω 2 13 is taken purelyimag<strong>in</strong>ary. In this case <strong>the</strong> value <strong>of</strong> z Bα is not necessarily <strong>the</strong> same that maximizes <strong>the</strong>asymmetry <strong>in</strong> <strong>the</strong> one-flavour-dom<strong>in</strong>ated scenario <strong>and</strong> K 1 >m 1 /m ⋆ . Therefore, a specificcalculation is necessary <strong>in</strong> order to work out correctly <strong>the</strong> condition equation (22). Theresult is shown <strong>in</strong> figure 3 with a th<strong>in</strong> dashed l<strong>in</strong>e.In this case <strong>the</strong> upper limit on m 1 for <strong>the</strong> applicability <strong>of</strong> <strong>the</strong> fully flavoured regime ismuch smaller, m 1 ≃ 0.1 eV. Allow<strong>in</strong>g for a non-vanish<strong>in</strong>g real part <strong>of</strong> Ω 2 13 , slightly largervalues are possible. It should, however, be kept <strong>in</strong> m<strong>in</strong>d that <strong>the</strong>se values are <strong>in</strong>dicatives<strong>in</strong>ce <strong>the</strong>y rely on a condition for <strong>the</strong> fully flavoured regime that comes from a simple ratecomparison.5. Limitations <strong>of</strong> a simple rate comparisonJCAP03(2007)012We have exploited a somewhat qualitative rate comparison for <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong>region where <strong>the</strong> fully flavoured regime obta<strong>in</strong>s. While we believe that our approachnicely illustrates <strong>the</strong> modifications that derive from our more restrictive criterion for <strong>the</strong>significance <strong>of</strong> flavour <strong>effect</strong>s, <strong>the</strong>re are also important shortcom<strong>in</strong>gs. First, we havesimply compared <strong>the</strong> <strong>in</strong>verse decay rate with <strong>the</strong> charged-lepton Yukawa <strong>in</strong>teraction rate,ignor<strong>in</strong>g flavour oscillations caused by <strong>the</strong> flavour-dependent lepton dispersion relation <strong>in</strong><strong>the</strong> medium. If <strong>the</strong> oscillations are much faster than <strong>the</strong> <strong>in</strong>verse decay rate, <strong>the</strong>y alsocontribute <strong>effect</strong>ively, toge<strong>the</strong>r with <strong>in</strong>elastic scatter<strong>in</strong>gs, to project <strong>the</strong> lepton state on<strong>the</strong> flavour basis. Therefore, <strong>in</strong>clud<strong>in</strong>g oscillations will tend to enlarge <strong>the</strong> region where<strong>the</strong> fully flavoured behaviour obta<strong>in</strong>s (<strong>the</strong> <strong>in</strong>cl<strong>in</strong>ed upper dotted–dashed l<strong>in</strong>e <strong>in</strong> figure 3)<strong>and</strong> to reduce that one where <strong>the</strong> unflavoured behaviour obta<strong>in</strong>s (<strong>the</strong> horizontal upperdotted–dashed l<strong>in</strong>e <strong>in</strong> figure 3). In our case, <strong>the</strong> oscillation frequency is comparable to Γ α<strong>and</strong> so <strong>the</strong> two estimations are not too far <strong>of</strong>f.Moreover, we have also neglected ΔL = 1 scatter<strong>in</strong>gs. They also contribute, like<strong>in</strong>verse decays, both to generate <strong>the</strong> asymmetry <strong>and</strong> to <strong>the</strong> wash out <strong>and</strong> <strong>the</strong>refore,toge<strong>the</strong>r with <strong>in</strong>verse decays, contribute to preserv<strong>in</strong>g <strong>the</strong> flavour direction <strong>of</strong> <strong>the</strong> leptons.At <strong>the</strong> relevant z ∼ z Bα ∼ 2, <strong>the</strong> ΔL = 1 scatter<strong>in</strong>g rate is actually larger than <strong>the</strong><strong>in</strong>verse decay rate <strong>and</strong> thus tends to reduce <strong>the</strong> region where <strong>the</strong> fully flavoured behaviourJournal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 12


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>obta<strong>in</strong>s (<strong>the</strong> lower <strong>in</strong>cl<strong>in</strong>ed dotted–dashed l<strong>in</strong>e <strong>in</strong> figure 3). Therefore, <strong>the</strong> <strong>effect</strong>s <strong>of</strong>oscillations <strong>and</strong> <strong>of</strong> ΔL = 1 scatter<strong>in</strong>gs may partially cancel each o<strong>the</strong>r. In figure 3 <strong>the</strong>region between <strong>the</strong> two <strong>in</strong>cl<strong>in</strong>ed dotted–dashed l<strong>in</strong>es gives <strong>the</strong>refore an <strong>in</strong>dication <strong>of</strong> <strong>the</strong><strong>the</strong>oretical uncerta<strong>in</strong>ty on <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> region where <strong>the</strong> fully flavoured regimeholds. It can be seen that current calculations cannot establish whe<strong>the</strong>r <strong>the</strong> upper boundhold<strong>in</strong>g <strong>in</strong> <strong>the</strong> unflavoured regime is nullified, just simply relaxed or still hold<strong>in</strong>g, whenflavour <strong>effect</strong>s are <strong>in</strong>cluded.Only a full quantum-k<strong>in</strong>etic treatment can give a f<strong>in</strong>al verdict on <strong>the</strong> <strong>effect</strong>iveness <strong>of</strong>flavour <strong>effect</strong>s <strong>in</strong> <strong>leptogenesis</strong> <strong>and</strong> its <strong>impact</strong> on <strong>the</strong> neutr<strong>in</strong>o mass limit. While we haveverified that our rate criteria are borne out by <strong>the</strong> quantum k<strong>in</strong>etic equations stated <strong>in</strong> [13],<strong>the</strong>se equations are not necessarily complete <strong>in</strong> that <strong>the</strong> term describ<strong>in</strong>g <strong>the</strong> generation<strong>of</strong> <strong>the</strong> asymmetry has been added by h<strong>and</strong>. Moreover, <strong>the</strong> ‘damp<strong>in</strong>g rate’ caused by<strong>the</strong> flavour-sensitive Yukawa <strong>in</strong>teractions ultimately derives from a collision term <strong>in</strong> <strong>the</strong>k<strong>in</strong>etic equation [20]. Extend<strong>in</strong>g <strong>the</strong> pioneer<strong>in</strong>g treatment <strong>of</strong> [13] toallowforacompleteunderst<strong>and</strong><strong>in</strong>g <strong>of</strong> flavour <strong>effect</strong>s rema<strong>in</strong>s a challeng<strong>in</strong>g task.6. ConclusionsFlavour <strong>effect</strong>s can play a very important role <strong>in</strong> <strong>leptogenesis</strong>. However, we have shownthat <strong>the</strong> condition for <strong>the</strong> fully flavoured behaviour is more restrictive because one needs tocompare <strong>the</strong> speed <strong>of</strong> <strong>the</strong> charged-lepton Yukawa <strong>in</strong>teractions with that <strong>of</strong> N ↔ l+Φ, notwith <strong>the</strong> cosmic expansion rate. This dist<strong>in</strong>ction makes a significant difference particularly<strong>in</strong> <strong>the</strong> strong wash-out regime where, for some <strong>of</strong> <strong>the</strong> <strong>leptogenesis</strong> epoch, <strong>the</strong> rate <strong>of</strong>N ↔ l + Φ is faster than <strong>the</strong> cosmic expansion.We are especially <strong>in</strong>terested <strong>in</strong> <strong>the</strong> question if <strong>the</strong> traditional neutr<strong>in</strong>o mass bound<strong>of</strong> <strong>the</strong> unflavoured treatment [8] can be circumvented by flavour <strong>effect</strong>s. We have foundthat <strong>the</strong> see-saw parameters that correspond to m 1 0.1 eV do not fall <strong>in</strong>to <strong>the</strong> strictlyunflavoured or <strong>the</strong> fully flavoured regimes. The <strong>in</strong>termediate regime requires a detailedquantum k<strong>in</strong>etic treatment, so at present it is not possible to decide if <strong>the</strong> upper boundneutr<strong>in</strong>o mass bound can be circumvented (relaxed or nullified) by flavour <strong>effect</strong>s.JCAP03(2007)012AcknowledgmentsIt is a pleasure to thank W Buchmüller, S Davidson, M Losada, M Plümacher <strong>and</strong> E Rouletfor comments <strong>and</strong> discussions. We also wish to thank A Riotto for send<strong>in</strong>g us <strong>the</strong> draft <strong>of</strong> aforthcom<strong>in</strong>g manuscript with A De Simone on <strong>the</strong> same subject. This work was supported,<strong>in</strong> part, by <strong>the</strong> Deutsche Forschungsgeme<strong>in</strong>schaft (DFG) under grant no. SFB-375 <strong>and</strong>by <strong>the</strong> European Union under <strong>the</strong> ILIAS project, contract no. RII3-CT-2004-506222, <strong>and</strong>under <strong>the</strong> Marie Curie project ‘Leptogenesis, Seesaw <strong>and</strong> GUTs,’ contract no. MEIF-CT-2006-022950.References[1] M<strong>in</strong>kowski P, μ → eγ at a rate <strong>of</strong> one out <strong>of</strong> 10 9 muon decays?, 1977 Phys. Lett. B 67 421 [SPIRES][2] Yanagida T, Horizontal gauge symmetry <strong>and</strong> masses <strong>of</strong> neutr<strong>in</strong>os, 1979 Proc. Workshop on <strong>the</strong> BaryonNumber <strong>of</strong> <strong>the</strong> Universe <strong>and</strong> Unified Theories (Tsukuba, Japan, Feb. 1979) p95[3] Gell-Mann M, Ramond P <strong>and</strong> Slansky R, Complex sp<strong>in</strong>ors <strong>and</strong> unified <strong>the</strong>ories, 1979 Supergravity edP van Nieuwenhuizen <strong>and</strong> D Freedman (Amsterdam: North-Holl<strong>and</strong>) p 315Journal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 13


<strong>Quantum</strong> <strong>Zeno</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> <strong>impact</strong> <strong>of</strong> flavour <strong>in</strong> <strong>leptogenesis</strong>[4] Glashow S L, The future <strong>of</strong> elementary particle physics, 1979 1979 Cargese Summer Institute on Quarks<strong>and</strong> Leptons (NATO Adv. Study Inst. Ser. B vol 59) ed M Levy, J-L Basdevant, D Speiser, J Weyers,R Gastmans <strong>and</strong> M Jacobs (New York: Plenum) p 687[5] Barbieri R, Nanopoulos D V, Morchio G <strong>and</strong> Strocchi F, Neutr<strong>in</strong>o masses <strong>in</strong> gr<strong>and</strong> unified <strong>the</strong>ories, 1980Phys. Lett. B 90 91 [SPIRES][6] Mohapatra R N <strong>and</strong> Senjanović G,Neutr<strong>in</strong>o mass <strong>and</strong> spontaneous parity nonconservation, 1980 Phys.Rev. Lett. 44 912 [SPIRES][7] Fukugita M <strong>and</strong> Yanagida T, Baryogenesis without gr<strong>and</strong> unification, 1986 Phys. Lett. B 174 45 [SPIRES][8] Buchmüller W, Di Bari P <strong>and</strong> Plümacher M, The neutr<strong>in</strong>o mass w<strong>in</strong>dow for baryogenesis, 2003 Nucl. Phys.B 665 445 [SPIRES] [hep-ph/0302092][9] Barbieri R, Crem<strong>in</strong>elli P, Strumia A <strong>and</strong> Tetradis N, 2000 Nucl. Phys. B 575 61 [SPIRES][hep-ph/9911315][10] Pilaftsis A <strong>and</strong> Underwood T E J, Electroweak-scale resonant <strong>leptogenesis</strong>, 2005 Phys. Rev. D 72 113001[SPIRES] [hep-ph/0506107][11] Endoh T, Morozumi T <strong>and</strong> Xiong Z h, Primordial lepton family asymmetries <strong>in</strong> seesaw model, 2004 Prog.Theor. Phys. 111 123 [SPIRES] [hep-ph/0308276][12] NardiE,NirY,RouletE<strong>and</strong>RackerJ,The importance <strong>of</strong> <strong>flavor</strong> <strong>in</strong> <strong>leptogenesis</strong>, 2006 J. High EnergyPhys. JHEP01(2006)164 [SPIRES] [hep-ph/0601084][13] Abada A, Davidson S, Josse-Michaux F X, Losada M <strong>and</strong> Riotto A, Flavour issues <strong>in</strong> <strong>leptogenesis</strong>, 2006 J.Cosmol. Astropart. Phys. JCAP04(2006)004 [SPIRES] [hep-ph/0601083][14] Abada A, Davidson S, Ibarra A, Josse-Michaux F X, Losada M <strong>and</strong> Riotto A, Flavour matters <strong>in</strong><strong>leptogenesis</strong>, 2006 J. High Energy Phys. JHEP09(2006)010 [SPIRES] [hep-ph/0605281][15] Blanchet S <strong>and</strong> Di Bari P, Flavor <strong>effect</strong>s on <strong>leptogenesis</strong> predictions, 2006 Prepr<strong>in</strong>t hep-ph/0607330[16] Pascoli S, Petcov S T <strong>and</strong> Riotto A, Connect<strong>in</strong>g low energy leptonic CP-violation to <strong>leptogenesis</strong>, 2006Prepr<strong>in</strong>t hep-ph/0609125[17] Branco G C, González Felipe R <strong>and</strong> Joaquim F R, A new bridge between leptonic CP violation <strong>and</strong><strong>leptogenesis</strong>, 2006 Prepr<strong>in</strong>t hep-ph/0609297[18] Antusch S <strong>and</strong> Teixeira A M, Towards constra<strong>in</strong>ts on <strong>the</strong> SUSY seesaw from flavour-dependent <strong>leptogenesis</strong>,2006 Prepr<strong>in</strong>t hep-ph/0611232[19] Stodolsky L, On <strong>the</strong> treatment <strong>of</strong> neutr<strong>in</strong>o oscillations <strong>in</strong> a <strong>the</strong>rmal environment, 1987 Phys. Rev. D36 2273 [SPIRES][20] Raffelt G, Sigl G <strong>and</strong> Stodolsky L, Non-Abelian Boltzmann equation for mix<strong>in</strong>g <strong>and</strong> decoherence, 1993Phys. Rev. Lett. 70 2363 [SPIRES] [hep-ph/9209276][21] Di Bari P, Seesaw geometry <strong>and</strong> <strong>leptogenesis</strong>, 2005 Nucl. Phys. B 727 318 [SPIRES] [hep-ph/0502082][22] Vives O, Flavoured <strong>leptogenesis</strong>: A successful <strong>the</strong>rmal <strong>leptogenesis</strong> with N(1) mass below 10 8 GeV , 2006Phys. Rev. D 73 073006 [SPIRES] [hep-ph/0512160][23] Giudice G F, Notari A, Raidal M, Riotto A <strong>and</strong> Strumia A, Towards a complete <strong>the</strong>ory <strong>of</strong> <strong>the</strong>rmal<strong>leptogenesis</strong> <strong>in</strong> <strong>the</strong> SM <strong>and</strong> MSSM , 2004 Nucl. Phys. B 685 89 [SPIRES] [hep-ph/0310123][24] Buchmüller W <strong>and</strong> Plümacher M, Spectator processes <strong>and</strong> baryogenesis, 2001 Phys. Lett. B 511 74[SPIRES] [hep-ph/0104189][25] NardiE,NirY,RackerJ<strong>and</strong>RouletE,On Higgs <strong>and</strong> sphaleron <strong>effect</strong>s dur<strong>in</strong>g <strong>the</strong> <strong>leptogenesis</strong> era, 2006 J.High Energy Phys. JHEP01(2006)068 [SPIRES] [hep-ph/0512052][26] BuchmüllerW,DiBariP<strong>and</strong>Plümacher M, Leptogenesis for pedestrians, 2005 Ann. Phys., NY 315 305[SPIRES] [hep-ph/0401240][27] Blanchet S <strong>and</strong> Di Bari P, Leptogenesis beyond <strong>the</strong> limit <strong>of</strong> hierarchical heavy neutr<strong>in</strong>o masses, 2006 J.Cosmol. Astropart. Phys. JCAP06(2006)023 [SPIRES] [hep-ph/0603107][28] Spergel D N et al, Wilk<strong>in</strong>son Microwave Anisotropy Probe (WMAP) three year results: implications forcosmology, 2006 Prepr<strong>in</strong>t astro-ph/0603449[29] Campbell B A, Davidson S, Ellis J R <strong>and</strong> Olive K A, On <strong>the</strong> baryon, lepton <strong>flavor</strong> <strong>and</strong> right-h<strong>and</strong>ed electronasymmetries <strong>of</strong> <strong>the</strong> universe, 1992 Phys. Lett. B 297 118 [SPIRES] [hep-ph/9302221][30] Di Bari P, Leptogenesis, neutr<strong>in</strong>o mix<strong>in</strong>g data <strong>and</strong> <strong>the</strong> absolute neutr<strong>in</strong>o mass scale, 2004 Prepr<strong>in</strong><strong>the</strong>p-ph/0406115[31] Fujii M, Hamaguchi K <strong>and</strong> Yanagida T, Leptogenesis with almost degenerate Majorana neutr<strong>in</strong>os, 2002Phys. Rev. D 65 115012 [SPIRES] [hep-ph/0202210][32] Casas J A <strong>and</strong> Ibarra A, Oscillat<strong>in</strong>g neutr<strong>in</strong>os <strong>and</strong> μ → e, γ, 2001 Nucl. Phys. B 618 171 [SPIRES][hep-ph/0103065]JCAP03(2007)012Journal <strong>of</strong> Cosmology <strong>and</strong> Astroparticle Physics 03 (2007) 012 (stacks.iop.org/JCAP/2007/i=03/a=012) 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!