16.01.2015 Views

Axion

Axion

Axion

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Georg G. Raffelt, Max-Planck<br />

Planck-Institut <strong>Axion</strong>s<br />

für f<br />

Physik, München<br />

PONT d’Avignon, 21-25 25 April 2008, Avignon, France<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Motivation, Limits and Searches


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

<strong>Axion</strong> Physics in a Nut Shell<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Particle-Physics Physics Motivation<br />

CP conservation in QCD by<br />

Peccei-Quinn mechanism<br />

→ <strong>Axion</strong>s a ~ π 0<br />

m π f π ≈ m a f a<br />

For f a ≫ f π axions are “invisible”<br />

and very light<br />

a<br />

γ<br />

γ<br />

Solar and Stellar <strong>Axion</strong>s<br />

<strong>Axion</strong>s thermally produced in stars,<br />

e.g. by Primakoff production<br />

γ<br />

a<br />

• Limits from avoiding excessive<br />

energy drain<br />

• Search for solar axions (CAST, Sumico)<br />

Cosmology<br />

Search for <strong>Axion</strong> Dark Matter<br />

In spite of small mass, axions<br />

are born non-relativistically<br />

(“non-thermal relics”)<br />

N<br />

Microwave resonator<br />

(1 GHz = 4 μeV)<br />

→ “Cold dark matter”<br />

candidate<br />

m a ~ 1-10001<br />

1000 μeV<br />

Cosmic<br />

String<br />

S<br />

a<br />

Primakoff<br />

conversion<br />

B ext<br />

γ


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

The CP Problem of Strong Interactions<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Characterizes degenerate<br />

QCD ground state (Θ(<br />

vacuum)<br />

Phase of Quark<br />

Mass Matrix<br />

Standard<br />

QCD Lagrangian<br />

contains<br />

a CP violating term<br />

L<br />

CP<br />

α<br />

= −<br />

s<br />

(<br />

Θ −<br />

arg det M<br />

) Tr G ~<br />

q μν<br />

G<br />

8<br />

π<br />

14 4<br />

2<br />

4 4<br />

3<br />

0<br />

≤Θ≤<br />

2<br />

π<br />

μν<br />

Induces a neutron<br />

electric dipole moment<br />

(EDM) much in excess<br />

of experimental limits<br />

d<br />

n<br />

≈<br />

Θ<br />

10<br />

−<br />

16<br />

e cm<br />

≈<br />

Θ<br />

10<br />

2<br />

μ<br />

n<br />

<<br />

3<br />

×<br />

10<br />

−<br />

26<br />

e<br />

cm<br />

Θ<br />

≲<br />

10 −10<br />

Why so small


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Dynamical Solution<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Peccei & Quinn 1977 - Wilczek 1978 - Weinberg 1978<br />

Θ<br />

Re-interpret as<br />

a dynamical variable<br />

(scalar field)<br />

L<br />

CP<br />

Θ →<br />

a(x)<br />

f a<br />

Pseudo-scalar<br />

scalar axion field<br />

Peccei-Quinn scale,<br />

<strong>Axion</strong> decay constant<br />

α<br />

s<br />

Tr(GG ~<br />

α<br />

= − Θ )<br />

a(x)<br />

L<br />

s<br />

Tr(GG ~<br />

CP = −<br />

)<br />

8<br />

π<br />

8<br />

π<br />

f<br />

a<br />

V(a)<br />

Θ =<br />

0<br />

a<br />

Potential (mass term)<br />

induced by L CP drives<br />

a(x) to CP-conserving<br />

minimum<br />

CP-symmetry<br />

dynamically restored<br />

a<br />

gluon<br />

gluon<br />

<strong>Axion</strong>s generically couple<br />

to gluons and mix with π 0<br />

⎛<br />

<strong>Axion</strong><br />

mass<br />

⎞<br />

⎛<br />

Pion<br />

mass<br />

⎞<br />

f<br />

⎜<br />

⎟<br />

~<br />

⎜<br />

⎟ ×<br />

π<br />

⎝<br />

& couplings<br />

⎠<br />

⎝<br />

& couplings<br />

⎠<br />

f a<br />

f<br />

π<br />

≈<br />

93<br />

MeV<br />

Pion decay constant


Peccei-Quinn Mechanism Proposed in 1977<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

The Pool Table Analogy<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

P.Sikivie<br />

Sikivie, , Physics Today, Dec. 1996, pg. 22<br />

Gravity<br />

Pool table<br />

Symmetric<br />

relative<br />

to gravity


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

The Pool Table Analogy<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

P.Sikivie<br />

Sikivie, , Physics Today, Dec. 1996, pg. 22<br />

Gravity<br />

Pool table<br />

Symmetric<br />

relative<br />

to gravity<br />

Floor<br />

inclined<br />

Symmetry<br />

broken


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

The Pool Table Analogy<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

P.Sikivie<br />

Sikivie, , Physics Today, Dec. 1996, pg. 22<br />

Gravity<br />

Pool table<br />

Axis<br />

Symmetric<br />

relative<br />

to gravity<br />

Floor<br />

inclined<br />

Symmetry<br />

broken<br />

f a<br />

Symmetry<br />

dynamically<br />

restored<br />

(Peccei & Quinn 1977)


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

The Pool Table Analogy<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

P.Sikivie<br />

Sikivie, , Physics Today, Dec. 1996, pg. 22<br />

Gravity<br />

Pool table<br />

Axis<br />

Symmetric<br />

relative<br />

to gravity<br />

Floor<br />

inclined<br />

Symmetry<br />

broken<br />

New degree<br />

of freedom<br />

<strong>Axion</strong><br />

Θ _<br />

(Weinberg 1978, Wilczek 1978)<br />

f a<br />

Symmetry<br />

dynamically<br />

restored<br />

(Peccei & Quinn 1977)


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

30 Years of <strong>Axion</strong>s<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

The Cleansing <strong>Axion</strong><br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Frank Wilczek<br />

“I named them after a laundry<br />

detergent, since they clean up<br />

a problem with an axial current.”<br />

(Nobel lecture 2004, written version)


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Windows of Opportunity<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

<strong>Axion</strong>s<br />

Solve strong CP problem<br />

by Peccei-Quinn<br />

dynamical symmetry restoration<br />

Alternatives<br />

• Massless up-quark<br />

• Spontaneous CP violation<br />

• Θ =<br />

0<br />

set at some high energy scale<br />

(no radiative corrections)<br />

• Supersymmetric particles<br />

• Superheavy particles<br />

• Cosmic cold dark matter candidate<br />

• Sterile Neutrinos<br />

• Direct detection possible<br />

• Many others …<br />

(but usually not experimentally<br />

accessible)<br />

Search for new physics at E ≫ TeV<br />

in low-energy experiments<br />

(<strong>Axion</strong>s Nambu-Goldstone boson of<br />

spontaneously broken symmetry)<br />

• Neutrino masses (see-saw)<br />

saw)<br />

• Proton decay<br />

• Neutron electric dipole moment<br />

• Deviation from Newton’s Law<br />

(e.g. large extra dimensions)


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

<strong>Axion</strong>s as a Research Topic<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007<br />

Papers in SPIRES that cite one of the two original Peccei and Quinn papers or<br />

Weinberg’s or Wilczek’s paper or with “axion” or “axino” in their title<br />

(total of 3186 papers up to 2007)


<strong>Axion</strong>s as Pseudo Nambu-Goldstone Bosons<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

• The realization of the Peccei-Quinn mechanism involves a new chiral<br />

U(1) symmetry, spontaneously broken at a scale f a<br />

• <strong>Axion</strong>s are the corresponding Nambu-Goldstone mode<br />

E ≈ f a<br />

V(a)<br />

• U PQ (1) spontaneously broken<br />

• Higgs field settles in<br />

“Mexican hat”<br />

a<br />

E ≈ Λ QCD ≪ f a<br />

V(a)<br />

• U PQ (1) explicitly broken<br />

by instanton effects<br />

• Mexican hat tilts<br />

• <strong>Axion</strong>s acquire a mass<br />

_<br />

Θ=0<br />

a


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

From Standard to Invisible <strong>Axion</strong>s<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Standard Model<br />

All Higgs degrees of<br />

freedom are used up<br />

Standard <strong>Axion</strong><br />

Weinberg 1978, Wilczek 1978<br />

• Peccei-Quinn scale f a =<br />

electroweak scale f ew<br />

• Two Higgs fields,<br />

separately giving mass<br />

to up-type quarks and<br />

down-type quarks<br />

Invisible <strong>Axion</strong><br />

Kim 1979, Shifman,<br />

Vainshtein, Zakharov 1980,<br />

Dine, Fischler, Srednicki 1981<br />

Zhitnitsky 1980<br />

• Additional Higgs with<br />

f a ≫ f ew<br />

• <strong>Axion</strong>s very light and<br />

and very weakly<br />

interacting<br />

No room for axions<br />

<strong>Axion</strong>s quickly ruled out<br />

experimentally and<br />

astrophysically<br />

• New scale required<br />

• <strong>Axion</strong>s can be<br />

cold dark matter<br />

• Can be detected


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

<strong>Axion</strong> Properties<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Gluon coupling<br />

(Generic property)<br />

Mass<br />

Photon coupling<br />

Pion coupling<br />

Nucleon coupling<br />

(axial vector)<br />

Electron coupling<br />

(optional)<br />

L<br />

m<br />

L<br />

g<br />

L<br />

L<br />

L<br />

aG<br />

a<br />

a<br />

a<br />

α<br />

= s<br />

GG ~<br />

a<br />

a<br />

8<br />

π<br />

f<br />

=<br />

f<br />

a<br />

a<br />

0.6 eV<br />

/10<br />

7<br />

GeV<br />

C<br />

= N<br />

Ψ<br />

N<br />

γμ<br />

γ<br />

2f<br />

m<br />

f<br />

≈<br />

π<br />

f<br />

Ψ<br />

∂<br />

aN 5 N<br />

μ<br />

a<br />

C<br />

= e<br />

Ψ<br />

e<br />

γ<br />

μ<br />

γ<br />

2f<br />

Ψ<br />

∂<br />

a<br />

a<br />

ae 5 e<br />

μ<br />

a<br />

π<br />

g<br />

a<br />

γ<br />

FF ~ r r<br />

γ = − a<br />

=<br />

g<br />

a<br />

γ<br />

E<br />

⋅<br />

Baa<br />

4<br />

α<br />

⎛<br />

E<br />

⎞<br />

γ =<br />

⎜<br />

−<br />

1.<br />

92<br />

⎟ 2<br />

π<br />

f<br />

⎝<br />

N<br />

⎠ a<br />

π<br />

a<br />

C<br />

=<br />

a<br />

π<br />

(<br />

π<br />

0<br />

π<br />

+<br />

∂<br />

−<br />

...)<br />

μ<br />

μπ<br />

+ ∂<br />

a<br />

f<br />

f<br />

a<br />

π<br />

a<br />

a<br />

a<br />

a<br />

π<br />

π<br />

G<br />

G<br />

γ<br />

γ<br />

π<br />

a<br />

N<br />

N<br />

e<br />

e


Supernova 1987A Energy-Loss Argument<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Neutrino<br />

sphere<br />

SN 1987A neutrino signal<br />

Neutrino<br />

diffusion<br />

Volume emission<br />

of novel particles<br />

Emission of very weakly interacting<br />

particles would “steal” energy from the<br />

neutrino burst and shorten it.<br />

(Early neutrino burst powered by accretion,<br />

not sensitive to volume energy loss.)<br />

Late-time time signal most sensitive observable


<strong>Axion</strong>s as Pseudo Nambu-Goldstone Bosons<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

• The realization of the Peccei-Quinn mechanism involves a new chiral<br />

U(1) symmetry, spontaneously broken at a scale f a<br />

• <strong>Axion</strong>s are the corresponding Nambu-Goldstone mode<br />

E ≈ f a<br />

V(a)<br />

• U PQ (1) spontaneously broken<br />

• Higgs field settles in<br />

“Mexican hat”<br />

a<br />

E ≈ Λ QCD ≪ f a<br />

V(a)<br />

• U PQ (1) explicitly broken<br />

by instanton effects<br />

• Mexican hat tilts<br />

• <strong>Axion</strong>s acquire a mass<br />

_<br />

Θ=0<br />

a


Series of Papers on <strong>Axion</strong> Cosmology in PLB 120 (1983)<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Page 127


Series of Papers on <strong>Axion</strong> Cosmology in PLB 120 (1983)<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Page 133


Series of Papers on <strong>Axion</strong> Cosmology in PLB 120 (1983)<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Page 137


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Killing Two Birds with One Stone<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Peccei-Quinn mechanism<br />

• Solves strong CP problem<br />

• May provide dark matter<br />

in the form of axions


Production of Cold <strong>Axion</strong> Population in the Early Universe<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Approximate axion<br />

cold dark matter density<br />

Ω<br />

a<br />

≈<br />

7/6<br />

⎛<br />

f<br />

12 a ⎞ ⎛1μeV<br />

⎞<br />

0.5<br />

⎜ ⎟ ≈ 4 ⎜ ⎟<br />

⎝<br />

10<br />

GeV<br />

⎠<br />

⎝<br />

m<br />

a<br />

⎠<br />

7/6<br />

Inflation after PQ symmetry breaking<br />

Reheating restores PQ symmetry<br />

Homogeneous mode oscillates after<br />

T ≲ Λ QCD<br />

Dependence on initial misalignment<br />

angle<br />

Ω<br />

∝<br />

Θ<br />

a<br />

Θi<br />

• Cosmic strings of broken U PQ (1)<br />

form by Kibble mechanism<br />

• Radiate long-wavelength axions<br />

• Ω a independent of initial conditions<br />

• Isocurvature fluctuations from large<br />

quantum fluctuations of massless<br />

axion field created during inflation<br />

• Strong CMBR bounds on isocurvature<br />

fluctuations<br />

• Scale of inflation required to be<br />

very small Λ I ≲ 10 13 GeV<br />

[Beltrán, García-Bellido & Lesgourgues<br />

hep-ph/0606107]<br />

ph/0606107]<br />

Inhomogeneities of axion field large,<br />

self-couplings lead to formation of<br />

mini-clusters<br />

Typical properties<br />

• Mass ~ 10 −12<br />

M sun<br />

• Radius ~ 10 10 cm<br />

• Mass fraction up to several 10%


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

<strong>Axion</strong>s from Cosmic Strings<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Strings form by Kibble mechanism<br />

after break-down of U PQ (1)<br />

Small loops form by self-intersection<br />

Paul Shellard


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

<strong>Axion</strong> Mini Clusters<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

The inhomogeneities of the axion field are large, leading to bound objects,<br />

“axion mini clusters”. . [Hogan & Rees, PLB 205 (1988) 228.]<br />

Self-coupling of axion field crucial for dynamics.<br />

Typical mini cluster properties:<br />

Mass ~ 10 −12<br />

M sun<br />

Radius ~ 10 10 cm<br />

Mass fraction up to several 10%<br />

Potentially detectable with<br />

gravitational femtolensing<br />

Distribution of axion energy density.<br />

2-dim slice of comoving length 0.25 pc<br />

[Kolb & Tkachev, ApJ 460 (1996) L25]


Inflation, <strong>Axion</strong>s, and the Anthropic Principle<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Late inflation scenario of axion cosmology<br />

• Initial misalignment angle constant in our patch of the universe<br />

• Dark matter density determined by the initial random number Θ i<br />

• Is different in different patches of the universe<br />

• Dark matter fraction not calculable from first principles<br />

• Random number chosen by process of spontaneous symmetry breaking<br />

Natural case for applying anthropic reasoning for the observed darkd<br />

matter density relative to baryons<br />

• Linde, “Inflation and <strong>Axion</strong> Cosmology,” PLB 201:437, 1988<br />

• Tegmark, Aguirre, Rees & Wilczek,<br />

“Dimensionless constants, cosmology and other dark matters,”<br />

PRD 73, 023505 (2006) [arXiv:astro-ph/0511774]


<strong>Axion</strong> Hot Dark Matter from Thermalization after Λ QCD<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Cosmic thermal degrees of<br />

freedom<br />

Freeze-out temperature<br />

L<br />

a<br />

π<br />

C<br />

=<br />

a<br />

f<br />

f<br />

a<br />

π<br />

π<br />

(<br />

π<br />

π π<br />

0<br />

π<br />

+<br />

∂<br />

μ<br />

π<br />

−<br />

−<br />

2<br />

π<br />

+ π<br />

+<br />

0<br />

π<br />

π<br />

−<br />

−<br />

∂<br />

∂<br />

μ<br />

μ<br />

π<br />

π<br />

0<br />

+<br />

)<br />

∂<br />

μ<br />

a<br />

10 4 10 5 10 6 10 7<br />

f a (GeV)<br />

Cosmic thermal degrees of<br />

freedom at axion freeze-out<br />

π<br />

a<br />

C a<br />

1<br />

−<br />

z<br />

π<br />

=<br />

≈<br />

0.094094<br />

3(1<br />

+<br />

z)<br />

Chang & Choi, PLB 316 (1993) 51<br />

10 4 10 5 10 6 10 7<br />

f a (GeV)


Lee-Weinberg Curve for Neutrinos and <strong>Axion</strong>s<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

<strong>Axion</strong>s<br />

log(Ω a )<br />

Ω M<br />

Non-Thermal<br />

Relics<br />

CDM<br />

Thermal Relics<br />

HDM<br />

10 μeV<br />

10 eV<br />

log(m a )<br />

Neutrinos<br />

& WIMPs<br />

log(Ω ν )<br />

Ω M<br />

HDM<br />

Thermal Relics<br />

CDM<br />

10 eV<br />

10 GeV<br />

log(m ν )


<strong>Axion</strong> Hot Dark Matter Limits from Precision Data<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Credible regions for neutrino plus axion hot<br />

dark matter (WMAP-5, LSS, BAO, SNIa)<br />

Hannestad, Mirizzi, Raffelt & Wong<br />

[arXiv:0803.1585]<br />

Marginalizing over unknown neutrino hot dark matter component<br />

m a<br />

m a<br />

< 1.0 eV (95% CL)<br />

WMAP-5, LSS, BAO, SNIa<br />

< 0.4 eV (95% CL) WMAP-3, small-scale scale CMB,<br />

HST, BBN, LSS, Ly-α<br />

Hannestad, Mirizzi, Raffelt<br />

& Wong [arXiv:0803.1585[<br />

arXiv:0803.1585]<br />

Melchiorri, Mena & Slosar<br />

[arXiv:0705.2695]


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

<strong>Axion</strong> Bounds<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

10 3 10 6 10 9 10 12 [GeV] f a<br />

m a<br />

keV<br />

eV<br />

meV<br />

μeV<br />

Experiments<br />

Tele<br />

scope<br />

CAST<br />

Direct<br />

search<br />

ADMX<br />

Too much hot dark matter<br />

Too much<br />

cold dark matter<br />

Globular clusters<br />

(a-γ-coupling)<br />

Too many<br />

events<br />

Too much<br />

energy loss<br />

SN 1987A (a-N-coupling)


Experimental Tests of the Invisible <strong>Axion</strong><br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Primakoff effect:<br />

<strong>Axion</strong>s-photon transitions in external<br />

static E or B field<br />

(Originally discussed for π 0<br />

by Henri Primakoff 1951)<br />

Pierre Sikivie:<br />

Macroscopic B-field B<br />

can provide a<br />

large coherent transition rate over<br />

a big volume (low-mass axions)<br />

• <strong>Axion</strong> helioscope:<br />

Look at the Sun through a dipole<br />

magnet<br />

• <strong>Axion</strong> haloscope:<br />

Look for dark-matter axions with<br />

A microwave resonant cavity


Search for Galactic <strong>Axion</strong>s (Cold Dark Matter)<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

DM axions<br />

m a = 1-10001<br />

1000 μeV<br />

Velocities in galaxy<br />

v a ≈ 10 −3 c<br />

Energies therefore<br />

E a ≈ (1 ± 10 −6 ) m a<br />

Microwave Energies<br />

(1 GHz ≈ 4 μeV)<br />

<strong>Axion</strong> Haloscope (Sikivie 1983)<br />

B ext ≈ 8 Tesla<br />

Microwave<br />

Resonator<br />

Q ≈ 10 5<br />

Power<br />

Frequency<br />

m a<br />

<strong>Axion</strong> Signal<br />

Thermal noise of<br />

cavity & detector<br />

Primakoff Conversion<br />

a<br />

γ<br />

B ext<br />

Cavity<br />

overcomes<br />

momentum<br />

mismatch<br />

Power of galactic axion signal<br />

2<br />

×<br />

−21<br />

V ⎛ B ⎞ Q<br />

4 10<br />

W<br />

3<br />

⎜ ⎟<br />

⎝ 8.5T ⎠ 5<br />

0.22m 10<br />

⎛<br />

m<br />

⎞⎛<br />

× ⎜ a ⎟<br />

⎜<br />

⎝<br />

2<br />

π<br />

GHz<br />

⎠<br />

⎝<br />

5<br />

×<br />

10<br />

ρ<br />

a<br />

−<br />

25<br />

g/cm<br />

3<br />

⎞<br />

⎟<br />


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

<strong>Axion</strong> Dark Matter Searches<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Limits/sensitivities, assuming axions are the galactic dark matter<br />

3<br />

2<br />

1<br />

1. Rochester-Brookhaven<br />

Brookhaven-<br />

Fermilab<br />

PRD 40 (1989) 3153<br />

5<br />

4<br />

2. University of Florida<br />

PRD 42 (1990) 1297<br />

3. US <strong>Axion</strong> Search<br />

(Livermore)<br />

ApJL 571 (2002) L27<br />

4. CARRACK I (Kyoto)<br />

preliminary<br />

hep-ph/0101200<br />

ph/0101200<br />

5. ADMX (Livermore)<br />

foreseen<br />

e.g. Rev. Mod. Phys.<br />

75 (2003) 777


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

ADMX (G.Carosi, Fermilab, May 2007)<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

ADMX (G.Carosi, Fermilab, May 2007)<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

ADMX (G.Carosi, Fermilab, May 2007)<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

ADMX (G.Carosi, Fermilab, May 2007)<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

ADMX (G.Carosi, Fermilab, May 2007)<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Renewed ADMX<br />

data taking has begun<br />

on 28 March 2008<br />

(Same day as CAST He-3 3 began)


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

ADMX (G.Carosi, Fermilab, May 2007)<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Fine Structure in <strong>Axion</strong> Spectrum<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

• <strong>Axion</strong> distribution on a 3-dim 3<br />

sheet in 6-dim 6<br />

phase space<br />

• Is “folded up” by galaxy formation<br />

• Velocity distribution shows narrow peaks that can be resolved<br />

• More detectable information than local dark matter density<br />

P.Sikivie<br />

& collaborators


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Search for Solar <strong>Axion</strong>s<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

γ<br />

Primakoff<br />

production<br />

Sun<br />

a<br />

<strong>Axion</strong> flux<br />

<strong>Axion</strong> Helioscope (Sikivie 1983)<br />

a<br />

<strong>Axion</strong>-Photon<br />

Photon-Oscillation<br />

Magnet<br />

N<br />

S<br />

γ<br />

Tokyo <strong>Axion</strong> Helioscope (“Sumico”)<br />

(Results since 1998, up again 2008)<br />

CERN <strong>Axion</strong> Solar Telescope (CAST)<br />

(Data since 2003)<br />

Alternative technique:<br />

Bragg conversion in crystal<br />

Experimental limits on solar axion flux<br />

from dark-matter experiments<br />

(SOLAX, COSME, DAMA, ...)


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Tokyo <strong>Axion</strong> Helioscope (“Sumico”)<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

~ 3 m<br />

S.Moriyama, M.Minowa<br />

Minowa, , T.Namba<br />

Namba, , Y.Inoue, Y.Takasu<br />

& A.Yamamoto, PLB 434 (1998) 147


Results and Plans of Tokyo <strong>Axion</strong> Helioscope (“Sumico”)<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

S. Inoue at TAUP 07


Extending to higher mass values with gas filling<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

<strong>Axion</strong>-photon transition probability<br />

⎛ g<br />

γB<br />

2<br />

a ⎞<br />

⎛<br />

⎞<br />

= ⎜ ⎟<br />

2 qL<br />

Pa<br />

→γ<br />

sin<br />

⎜<br />

⎟ ⎝<br />

q<br />

⎠<br />

⎝<br />

2<br />

⎠ <strong>Axion</strong>-photon momentum transfer<br />

m<br />

2<br />

m<br />

2<br />

a − γ<br />

q<br />

=<br />

2E<br />

Transition suppressed for qL ≳ 1<br />

Gas filling: Give photons a refractive<br />

mass to restore full transition strength<br />

(~ MSW effect)<br />

2<br />

4<br />

πα<br />

m<br />

γ =<br />

n<br />

e<br />

(n m<br />

e electron density)<br />

e<br />

Z<br />

m<br />

γ<br />

=<br />

28.9 eV<br />

ρ<br />

Gas<br />

A<br />

He 4 vapour pressure at 1.8 K<br />

ρ<br />

≈<br />

0 .2<br />

×<br />

10<br />

−<br />

3 g<br />

cm<br />

−<br />

3<br />

m γ<br />

=<br />

0.26<br />

eV


LHC Magnet Mounted as a Telescope to Follow the Sun<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

CAST at CERN<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

CAST Focussing X-Ray X<br />

Telescope<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

• From 43 mm ∅ (LHC magnet aperture) to ~3 mm ∅<br />

• Signal/background improvement > 100<br />

• Signal and background simultaneously measured<br />

One spare mirror system from the failed Abrixas x-rayx<br />

satellite


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Sun Spot on CCD with X-Ray X<br />

Telescope<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Limits from CAST-I I and CAST-II<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

CAST-I I results: PRL 94:121301 (2005) and JCAP 0704 (2007) 010<br />

CAST-II results (He-4 4 filling): preliminary


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Limits on <strong>Axion</strong>-Photon<br />

Photon-Coupling<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

<strong>Axion</strong>-photon photon-coupling g aγ [GeV<br />

-1 ]<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

10 -16<br />

Laser<br />

PVLAS expected<br />

Tokyo Helioscope<br />

CAST Sensitivity<br />

DM<br />

Search<br />

Future<br />

DFSZ model<br />

KSVZ model<br />

PVLAS<br />

Signature<br />

Helio<br />

seis<br />

mology<br />

+Gas<br />

Telescope<br />

<strong>Axion</strong> Line<br />

HB<br />

Stars<br />

10 -7<br />

10 -6<br />

10 -5<br />

10 -4<br />

10 -3<br />

10 -2<br />

10 -1<br />

1 10 100<br />

<strong>Axion</strong> mass m a [eV]


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Alps<br />

<strong>Axion</strong>-like particles (ALPs)<br />

(Pseudo)-scalar scalar particles with a two-photon vertex


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Particles with Two-Photon Coupling<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Particles with two-photon vertex:<br />

• Neutral pions (π(<br />

0 ), Gravitons<br />

• <strong>Axion</strong>s (a) and similar hypothetical particles<br />

L<br />

a<br />

γ<br />

r<br />

= g<br />

γr E<br />

⋅<br />

Baa<br />

a<br />

Two-photon<br />

decay<br />

Γ<br />

a<br />

γ<br />

=<br />

g<br />

2<br />

a<br />

γ<br />

m<br />

64<br />

π<br />

3<br />

a<br />

Photon<br />

Coalescence<br />

Primakoff<br />

Effect<br />

Conversion of photons into<br />

pions, gravitons or axions,<br />

or the reverse<br />

Magnetically<br />

induced vacuum<br />

birefringence<br />

In addition to QED<br />

Cotton-Mouton<br />

Mouton-effect<br />

PVLAS experiment recently measured an<br />

effect ~ 10 4 larger than QED expectation<br />

(Signal now disproved)


Dimming of Supernovae without Cosmic Acceleration<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

<strong>Axion</strong>-photon<br />

photon-oscillations oscillations in intergalactic B-field domains dim photon flux<br />

Effect grows linearly with distance<br />

Saturates at equipartition between photons and axions (unlike grey g<br />

dust)<br />

Mixing matrix<br />

Domain size ~ 1 Mpc<br />

Field strength ~ 1 nG<br />

a-γ-coupling ~ 10 −10<br />

GeV −1<br />

<strong>Axion</strong> mass < 10 −16<br />

eV<br />

2<br />

1<br />

2<br />

1<br />

⎛<br />

pl<br />

ga<br />

B ⎞<br />

−<br />

γ ⎛<br />

10.8ne<br />

0.15ga<br />

B ⎞<br />

⎜<br />

ω ω<br />

⎟<br />

⎜<br />

ω<br />

γ<br />

−1<br />

=<br />

⎟ Mpc<br />

2<br />

ω<br />

⎜<br />

2<br />

⎟<br />

2<br />

4 2<br />

1<br />

ga<br />

B<br />

m<br />

⎜<br />

a 0.15g<br />

a B 7.8 10<br />

−<br />

m<br />

− ⎟<br />

γ<br />

⎝ γ × aω<br />

⎝<br />

ω<br />

⎠<br />

⎠<br />

Photon energy ~ 1 eV<br />

Electron density<br />

~ 10 −7 cm −3<br />

(average baryon density)<br />

Chromaticity depends<br />

sensitively on assumed<br />

values and distribution<br />

of n e and B<br />

Csáki, Kaloper & Terning (hep-ph/0111311, ph/0111311, hep-ph/0112212, ph/0112212, astro-ph/0409596). Erlich & Grojean<br />

(hep-ph/0111335). ph/0111335). Deffayet, et al. (hep-ph/0112118). ph/0112118). Christensson & Fairbairn (astro-ph/0207525).<br />

Mörtsell et al. (astro-ph/0202153).<br />

Mörtsell & Goobar (astro-ph/0303081). Bassett (astro-ph/<br />

0311495). Ostman & Mörtsell<br />

(astro-ph/0410501). Mirizzi, Raffelt & Serpico (astro-ph/0506078).


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Cantatore 12<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

The PVLAS Dichroism Signal<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

PVLAS, PRL 96:110406 (2006), hep-ex/0507107<br />

ex/0507107


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Latest PVLAS Results<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Zavattini et al., PRD 77:032006, 2008 [arXiv:0706.3419]


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

Photon Regeneration Experiments<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

Single pass<br />

“Shining light through a wall”<br />

Resonant<br />

cavities on<br />

generation &<br />

regeneration<br />

side<br />

hep-ph/0701198<br />

ph/0701198


Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

No Light Shining Through a Wall<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

BMV Experiment, using a pulsed<br />

laser and pulsed magnetic field<br />

(Toulouse)<br />

Robilliard et al., arXiv:0707.1296<br />

GammeV Experiment<br />

with a variable baseline<br />

(Fermilab)<br />

Chou et al., arXiv:0710.3783


Technological Applications of PVLAS Particles<br />

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany<br />

PONT d‘Avignon, 21-25 April 2008, Avignon, France<br />

arXiv:0704.0490v1 [hep-ph]<br />

ph]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!