27.10.2014 Views

title of the thesis - Department of Geology - Queen's University

title of the thesis - Department of Geology - Queen's University

title of the thesis - Department of Geology - Queen's University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE INFLUENCES OF STRESS AND STRUCTURE ON MINING-<br />

INDUCED SEISMICITY IN CREIGHTON MINE, SUDBURY, CANADA<br />

by<br />

Paige Erin Snelling<br />

A <strong>the</strong>sis submitted to <strong>the</strong> <strong>Department</strong> <strong>of</strong> Geological Sciences and Geological Engineering<br />

In conformity with <strong>the</strong> requirements for<br />

<strong>the</strong> degree <strong>of</strong> Master <strong>of</strong> Science (Engineering)<br />

Queen’s <strong>University</strong><br />

Kingston, Ontario, Canada<br />

(September, 2009)<br />

Copyright © Paige Erin Snelling, 2009


Abstract<br />

The Creighton Mine is a structurally complex and seismically active mining environment.<br />

Microseismic activity occurs daily and increases with depth, complicating downward mine<br />

expansion. Larger magnitude events occur less frequently but can damage mine infrastructure,<br />

interrupt operations and threaten worker safety. This <strong>the</strong>sis explores <strong>the</strong> relationships between<br />

geological structure and mining-induced seismicity through geological, seismological and<br />

numerical modelling investigations in an area known as <strong>the</strong> Creighton Deep, with concentration<br />

on <strong>the</strong> 7400 Level (2255 m).<br />

Geological features within <strong>the</strong> Creighton Deep have a reported association with seismic activity.<br />

Four families <strong>of</strong> shear zones were identified during field investigations, <strong>the</strong> most prominent<br />

striking SW and steeply dipping NW.<br />

Seismicity from 2006-2007 is analyzed. Spatial and temporal trends and seismic event<br />

parameters show little correlation to shear zone geometry. Instead, seismic event parameters<br />

correlate to spatial clusters <strong>of</strong> events. A remote cluster <strong>of</strong> events to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong><br />

excavation exhibits anomalously high seismic parameter values. This area <strong>of</strong> <strong>the</strong> mine continues<br />

to be a source <strong>of</strong> elevated seismicity.<br />

Fault plane solutions are utilized to compare shear zone geometry with active slip surfaces.<br />

Solutions for macroseismic events are inconsistent, while microseismic event focal mechanisms<br />

have similar pressure, tension and null axes. The resulting solutions do not align with shear-zone<br />

orientations. A stress inversion using microseismic focal mechanism information yields a stress<br />

tensor that is comparable to <strong>the</strong> regional stress tensor.<br />

Universal Distinct Element Code numerical models demonstrate that a yield zone exists<br />

immediately surrounding <strong>the</strong> excavation. SW-striking shear zones modify <strong>the</strong> stress field,<br />

ii


esulting in increased stress to <strong>the</strong> sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation. These high-stress zones are areas<br />

<strong>of</strong> preferred seismic activity. Slip is induced on select SW-striking shear zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong><br />

excavation as well as localized yielding.<br />

The characteristics <strong>of</strong> mining-induced seismicity do not correlate to shear zones. Seismicity does<br />

compare to modelled stress: <strong>the</strong> yielded rock mass adjacent to <strong>the</strong> excavation has little<br />

seismicity; areas <strong>of</strong> high stress are areas <strong>of</strong> rock mass damage and dense seismic activity. It is<br />

thus proposed that seismicity in <strong>the</strong> Creighton Deep results from stress-induced rock mass<br />

degradation ra<strong>the</strong>r than fault-slip.<br />

iii


Acknowledgements<br />

First and foremost I would like to thank Laurent Godin and Steve McKinnon for <strong>the</strong>ir guidance,<br />

discussions and revisions throughout <strong>the</strong> duration <strong>of</strong> this project. I am grateful for having been<br />

given <strong>the</strong> opportunity to explore my varied interests.<br />

I would like to acknowledge Vale Inco and Creighton Mine for financially supporting this<br />

project. I am very appreciative <strong>of</strong> <strong>the</strong> hospitality provided by <strong>the</strong> staff at Creighton Mine. I would<br />

like to thank Dave Andrews and John Townend for coordinating this project, Keith Seidler for his<br />

direction (and sense <strong>of</strong> direction) underground, Chris Meandro and <strong>the</strong> o<strong>the</strong>rs in <strong>the</strong> <strong>Geology</strong><br />

<strong>Department</strong> as well as those in Ground Control.<br />

I would also like to acknowledge <strong>the</strong> Engineering Seismology Group (ESG Solutions) for kindly<br />

donating <strong>the</strong> s<strong>of</strong>tware necessary to complete my studies.<br />

I am thankful to friends, staff and colleagues in <strong>the</strong> <strong>Department</strong> <strong>of</strong> Geological Engineering and<br />

Geological Sciences.<br />

In particular I would like to thank Alan Baird who provided help with<br />

UDEC and FISH and many valuable discussions on stress and seismicity; Savka Dineva who<br />

<strong>of</strong>fered seismological discussions, revisions and help with stress inversion; and Mark Diederichs<br />

for modelling discussions and advice.<br />

I <strong>of</strong>fer a special thanks to my mom, Barb Halyk, and to my family who worried about me while I<br />

was kilometers underground. I’m ok.<br />

iv


Table <strong>of</strong> Contents<br />

Abstract..........................................................................................................................................ii<br />

Acknowledgements ......................................................................................................................iv<br />

Table <strong>of</strong> Contents .......................................................................................................................... v<br />

List <strong>of</strong> Figures...............................................................................................................................ix<br />

List <strong>of</strong> Tables ............................................................................................................................... xv<br />

Table <strong>of</strong> Symbols and Abbreviations .......................................................................................xvi<br />

Chapter 1: Introduction .............................................................................................................. 1<br />

1.1 Background ........................................................................................................................ 1<br />

1.2 Organization <strong>of</strong> Thesis ....................................................................................................... 4<br />

Chapter 2: Geological Assessment <strong>of</strong> Creighton Mine ............................................................. 5<br />

2.1 Regional <strong>Geology</strong> <strong>of</strong> <strong>the</strong> Sudbury Basin ............................................................................ 5<br />

2.1.1 Evolution <strong>of</strong> <strong>the</strong> Sudbury Basin................................................................................ 6<br />

2.1.2 Dykes ........................................................................................................................ 8<br />

2.1.3 Regional Faults ......................................................................................................... 8<br />

2.2 Local <strong>Geology</strong> <strong>of</strong> Creighton Mine ................................................................................... 11<br />

2.3 Mine-Scale Faults............................................................................................................. 14<br />

2.3.1 Footwall Shear Zone............................................................................................... 18<br />

2.3.2 1290 Shear Zone ..................................................................................................... 20<br />

2.3.3 400-East Shear Zone............................................................................................... 22<br />

2.3.4 Northwest Shear Zone............................................................................................. 23<br />

2.3.5 Return Air Raise Shear Zone .................................................................................. 24<br />

2.3.6 402 Shear Zone ....................................................................................................... 26<br />

2.3.7 Plum Shear Zone .................................................................................................... 26<br />

2.3.8 Fresh Air Raise Shear Zone .................................................................................... 28<br />

2.3.9 Fresh Air Raise-type Shear Zone............................................................................ 29<br />

2.3.10 Splays and minor shear zones ............................................................................... 31<br />

2.3.11 Late-Stage Fractures ............................................................................................. 33<br />

2.4 Discussion: Fault Reactivation........................................................................................ 34<br />

2.4.1 Geometric and kinematic summary ........................................................................ 34<br />

2.4.2 Evolving Stress Systems in <strong>the</strong> Sudbury Basin ...................................................... 36<br />

v


Chapter 3: Mining-induced Seismicity .................................................................................... 40<br />

3.1 Creighton Mine Seismic Monitoring System ................................................................... 40<br />

3.2 Event Characterization and Classification........................................................................ 41<br />

3.2.1 Seismic Event Parameters....................................................................................... 42<br />

3.2.1.1 Moment Magnitude (M)............................................................................. 43<br />

3.2.1.2 Seismic Energy (E o ) and Seismic Moment (M o )........................................ 45<br />

3.2.1.3 Energy Ratio, E s /E p .................................................................................... 46<br />

3.2.1.4 Stress Parameters ....................................................................................... 47<br />

3.2.1.5 Source Dimensions .................................................................................... 47<br />

3.2.1.6 Peak Acceleration Parameter, Velocity Parameter and<br />

Maximum Displacement ........................................................................................ 48<br />

3.2.2 Spatial and Temporal Event Clustering .................................................................. 48<br />

3.2.3 Cluster Analysis for <strong>the</strong> 7400 Level ....................................................................... 52<br />

3.2.4 Seismicity and Rockmass Degradation................................................................... 55<br />

3.3 Focal Mechanisms............................................................................................................ 58<br />

3.3.1 Fault Plane Solutions .............................................................................................. 58<br />

3.3.1.1 Fault plane solutions for macroseismic events........................................... 60<br />

3.3.1.2 Fault plane solutions for microseismic events ........................................... 62<br />

3.3.1.3 Fault Plane Solution Discussion................................................................. 66<br />

3.4 Stress Tensor Inversion .................................................................................................... 70<br />

3.4.1 Stress Tensor Discussion ........................................................................................ 74<br />

Chapter 4: Modelling Stress in <strong>the</strong> Creighton Deep............................................................... 78<br />

4.1 Introduction ...................................................................................................................... 78<br />

4.2 Numerical Methods .......................................................................................................... 79<br />

4.3 Model Input Parameters ................................................................................................... 80<br />

4.3.1 Elastic and Plastic Models ...................................................................................... 80<br />

4.3.2 Model Constituents and Input Parameters .............................................................. 81<br />

4.4 Modelling with a Homogeneous Stress Field................................................................... 85<br />

4.4.1 Case 1: Variable Fault Parameters......................................................................... 85<br />

4.4.2 Case 2: Variable Fault Strength by Shear Zone Family......................................... 89<br />

4.4.3 Case 3: Increase Principal Stress Ratio.................................................................. 92<br />

4.5 Tectonic Loading Model .................................................................................................. 94<br />

4.6 Modelling Rock Mass Degradation.................................................................................. 96<br />

vi


4.6.1 Fracture Reactivation.............................................................................................. 97<br />

4.6.2 Crack Initiation ....................................................................................................... 99<br />

4.7 Modelling Summary and Discussion.............................................................................. 101<br />

4.7.1 Syn<strong>the</strong>sis: Stress, Seismicity and Structure ......................................................... 102<br />

4.7.2 Model Limitations................................................................................................. 104<br />

Chapter 5: Conclusions and Recommendations ................................................................... 106<br />

5.1 Summary ........................................................................................................................ 106<br />

5.2 Conclusions .................................................................................................................... 107<br />

5.3 Recommendations .......................................................................................................... 109<br />

References.................................................................................................................................. 111<br />

Appendix A: Geological Maps and Sample Locations........................................................... 117<br />

A.1: Site Locations.............................................................................................................. 117<br />

A.2: Level Plans with Sample Locations ............................................................................ 119<br />

Appendix B: Seismic Event Parameters ................................................................................ 126<br />

B.1: Event Population Statistics for <strong>the</strong> Creighton Deep .................................................... 126<br />

B.2: Spatial Distribution <strong>of</strong> Seismic Event Parameters for <strong>the</strong> 7400 Level ........................ 131<br />

B.3: Cluster Statistics .......................................................................................................... 138<br />

B.4: Temporal Distribution <strong>of</strong> Seismic Event Parameters .................................................. 140<br />

Appendix C: Fault Plane Solutions ........................................................................................ 154<br />

C.1: Fault Plane Solution Data for 7400 and 7530 Levels,<br />

January 1, 2006 – December 31............................................................................................ 154<br />

Appendix D: Phase 2 Models..................................................................................................... 162<br />

D.1: UDEC Modelling Results............................................................................................ 162<br />

D.1.1: Case 1 Models...................................................................................................... 163<br />

D.1.2: Case 2 Models...................................................................................................... 171<br />

D.1.3: Case 3 Models...................................................................................................... 173<br />

D.1.4: Tectonic Loading Models .................................................................................... 175<br />

D.1: Discussion <strong>of</strong> Phase 2 Models....................................................................................... 177<br />

D.1.1: Model Constituents ............................................................................................. 177<br />

D.1.2: Boundary Conditions .......................................................................................... 178<br />

D.2: Phase 2 Modelling Results............................................................................................ 179<br />

vii


D.3 Comparison <strong>of</strong> Phase 2 and UDEC Modelling Results.................................................. 184<br />

D.3.1 Similarities ........................................................................................................... 184<br />

D.3.2 Differences........................................................................................................... 185<br />

Appendix E: UDEC Code........................................................................................................ 186<br />

E.1: Case 1: Variable fault strength parameters (Elastic model)........................................ 186<br />

E.2: Case 1: Variable fault strength parameters (Plastic model)........................................ 188<br />

E.3: Case 2: Variable Fault Strength by Shear Zone Family (Elastic Model).................... 190<br />

E.4: Case 2: Variable Fault Strength by Shear Zone Family (Plastic Model).................... 192<br />

E.5: Case 3: Increased Principal Stress Ratio (Elastic Model)........................................... 194<br />

E.6: Case 3: Increased Principal Stress Ratio (Plastic Model)........................................... 196<br />

E.7: Tectonic Loading Model (Elastic Model).................................................................... 198<br />

E.8: Tectonic Loading Model (Plastic Model) .................................................................... 200<br />

E.9: S3:S1 Model for fracture reactivation.......................................................................... 203<br />

E.9.1: FISH Routine: ratio s3s1.fis ............................................................................... 205<br />

Appendix F: Fracture Reactivation........................................................................................ 206<br />

F.1: Derivation <strong>of</strong> Minimum-to-Maximum Principal Stress Ratio ..................................... 206<br />

F.2: Definitions for Deviatoric and Differential Stress ....................................................... 208<br />

viii


List <strong>of</strong> Figures<br />

Figure 1.1: Location <strong>of</strong> Sudbury and Creighton Mine...................................................................3<br />

Figure 2.1: (A) Location map <strong>of</strong> Sudbury in Ontario, Canada (B); <strong>the</strong> location <strong>of</strong> <strong>the</strong><br />

Sudbury and surrounding tectonic provinces ............................................................5<br />

Figure 2.2: Local geology map. ...................................................................................................10<br />

Figure 2.3: Horizontal view <strong>of</strong> a fault jog in proximity to Creighton Fault.................................10<br />

Figure 2.4:Cross-section <strong>of</strong> Creighton Mine showing geometry <strong>of</strong> footwall and<br />

hangingwall rocks as well as orebodies....................................................................12<br />

Figure 2.5: Representative level plan for <strong>the</strong> Creighton Deep....................................................15<br />

Figure 2.6: Images <strong>of</strong> <strong>the</strong> Footwall Shear...................................................................................19<br />

Figure 2.7: (A) The 1290 Shear Zone fabric; (B) 1290 Shear Zone on <strong>the</strong> 6400 Level;<br />

and (C) biotite, quartz and calcite fabric <strong>of</strong> <strong>the</strong> 1290 shear zone. ............................21<br />

Figure 2.8: Images <strong>of</strong> <strong>the</strong> 400-East Shear Zone..........................................................................23<br />

Figure 2.9: (A) Photograph <strong>of</strong> <strong>the</strong> cracked concrete pad floor along <strong>the</strong> Return Air Raise<br />

Shear Zone on 7530L; (B) cracked shotcrete on wall <strong>of</strong> 7530L; (C) thin<br />

section <strong>of</strong> shear zone fabric on 7680L; (D) thin section <strong>of</strong> shear zone fabric<br />

on 7400 <strong>the</strong> Level.....................................................................................................25<br />

Figure 2.10: Reactivated structures in proximity to <strong>the</strong> Plum Shear Zone ..................................27<br />

Figure 2.11: Thin sections <strong>of</strong> <strong>the</strong> Fresh Air Raise Shear .............................................................29<br />

Figure 2.12: Images <strong>of</strong> <strong>the</strong> Fresh Air Raise-Type Shear..............................................................30<br />

Figure 2.13: Images <strong>of</strong> <strong>the</strong> Grizzly Splay. ...................................................................................32<br />

Figure 2.14: Shallow shear fractures in Creighton Deep. ............................................................33<br />

Figure 2.15: Block model depicting paleokinematics <strong>of</strong> mine-scale faults in <strong>the</strong> Creighton<br />

Deep .........................................................................................................................34<br />

Figure 2.16: Riedel Model <strong>of</strong> 1290 and 118-System shear zones................................................38<br />

Figure 2.17: NW-SE Penokean compression...............................................................................38<br />

Figure 3.1: Plan view <strong>of</strong> events related to development blasts production blast-induced<br />

events........................................................................................................................42<br />

Figure 3.2: Distribution <strong>of</strong> Microseismic Event Magnitudes between January 1, 2006 and<br />

December 31, 2007 recorded between 7000 and 7600 feet depth............................44<br />

ix


Figure 3.3: Frequency Magnitude Relation for events recorded between 7000 and 7600<br />

feet during <strong>the</strong> January 2006-December 2007 period ..............................................44<br />

Figure 3.4: Map <strong>of</strong> <strong>the</strong> 7400 Level showing <strong>the</strong> distribution microseismic event energy...........45<br />

Figure 3.5: Es/Ep ratios measured for events and blasts. The cut-<strong>of</strong>f <strong>of</strong> 5 is shown by <strong>the</strong><br />

dashed line................................................................................................................46<br />

Figure 3.6: (A) Distribution <strong>of</strong> macroseismic events surrounding 7400 Level. (B)<br />

Distribution <strong>of</strong> microseismic events surrounding 7400 Level. ...............................50<br />

Figure 3.7: Seismicity corresponding to levels 7200, 7400 and 7530 respectively.....................51<br />

Figure 3.8: Three clusters are isolated for events between January 1, 2006 and December<br />

31, 2007 located about <strong>the</strong> 7400 Level.....................................................................54<br />

Figure 3.9: Schematic depicting location <strong>of</strong> (A) Yield Zone, (B) Damage Zone and (C)<br />

Intact Zone................................................................................................................56<br />

Figure 3.10: Block model <strong>of</strong> a shear-slip event and corresponding focal mechanism and<br />

waveforms. ...............................................................................................................59<br />

Figure 3.11: Coupled forces along fault and auxiliary planes; paired force couples<br />

(double-couple); and resultant fault plane solution. .................................................59<br />

Figure 3.12: Lower hemisphere equal area stereonet diagram depicting <strong>the</strong> orientation <strong>of</strong><br />

(A) P-axes for macroseismic fault plane solutions; (B) T-axes for <strong>the</strong> same<br />

events........................................................................................................................61<br />

Figure 3.13: Lower hemisphere equal area stereonet diagram depicting (A) Possible fault<br />

planes and (B) poles to planes for 93 mechanisms (186 planes and poles) for<br />

<strong>the</strong> 7400 Level..........................................................................................................61<br />

Figure 3.14: Sample fault plane solutions for macroseismic events corresponding to <strong>the</strong><br />

7400 Level, January – December 2007... .................................................................62<br />

Figure 3.15: Contoured focal mechanism axes for <strong>the</strong> 7400 and 7530 Level..............................64<br />

Figure 3.16: Classification <strong>of</strong> principal event mechanism type, levels 7400 and 7530...............65<br />

Figure 3.17: Approximate representative focal plane solution and corresponding fault<br />

plane solution kinematics based on average P- and T-axis orientations. .................65<br />

Figure 3.18: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 1. ......67<br />

Figure 3.19: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 2. ......68<br />

Figure 3.20: Distribution <strong>of</strong> event mechanism types ...................................................................69<br />

Figure 3.21: Results <strong>of</strong> focal mechanism stress inversion. ..........................................................72<br />

Figure 3.22: Stress inversion for Cluster 2 focal mechanisms.....................................................72<br />

x


Figure 3.23: Preliminary stress inversion for Cluster 1 focal mechanisms..................................73<br />

Figure 3.24: Secondary stress inversion for Cluster 1 focal mechanisms....................................73<br />

Figure 3.25: Equal area stereonet showing proximity <strong>of</strong> principal stress orientations<br />

calculated from fault plane solutions to stress orientations derived from<br />

measured and calculated stresses .............................................................................75<br />

Figure 3.26: Equal area stereonet showing stress measurements. ...............................................75<br />

Figure 3.27: Principal stress orientations derived from stress inversion superimposed on<br />

contoured axis measurements...................................................................................77<br />

Figure 4.1: Schematic diagram <strong>of</strong> elements and nodes. ..............................................................79<br />

Figure 4.2: The stress-strain model for an elastic, perfectly plastic material...............................81<br />

Figure 4.3: Complete model geometry.. ......................................................................................82<br />

Figure 4.4: Mohr circle and Mohr-Coulomb failure envelope defined by cohesion and<br />

angle <strong>of</strong> internal friction...........................................................................................83<br />

Figure 4.5: Model for tectonic loading. .......................................................................................85<br />

Figure 4.6: Model <strong>of</strong> maximum stress for Case 1........................................................................88<br />

Figure 4.7: Model <strong>of</strong> differential stress for Case 1 ......................................................................88<br />

Figure 4.8: Model <strong>of</strong> fault slip for Case 1....................................................................................88<br />

Figure 4.9: Model <strong>of</strong> yielding for Case 1.....................................................................................89<br />

Figure 4.10: Model <strong>of</strong> maximum stress for Case 2......................................................................90<br />

Figure 4.11: Model <strong>of</strong> differential stress for Case 2. ...................................................................91<br />

Figure 4.12: Model <strong>of</strong> fault slip for Case 2..................................................................................91<br />

Figure 4.13: Model <strong>of</strong> yielding for Case 2...................................................................................91<br />

Figure 4.14: Model <strong>of</strong> maximum stress for Case 3......................................................................93<br />

Figure 4.15: Model <strong>of</strong> differential stress for Case 3. ...................................................................93<br />

Figure 4.16: Model <strong>of</strong> fault slip for Case 3..................................................................................93<br />

Figure 4.17: Model <strong>of</strong> yielding for Case 3...................................................................................94<br />

Figure 4.18: Maximum stress for tectonic model. .......................................................................95<br />

Figure 4.19: Differential stress for tectonic model .....................................................................95<br />

xi


Figure 4.20: Modelled slip for tectonic model.............................................................................95<br />

Figure 4.21: Tectonic model <strong>of</strong> yielding......................................................................................96<br />

Figure 4.22: Ratio <strong>of</strong> minimum-to-maximum principal stress.....................................................98<br />

Figure 4.23: Contoured domains <strong>of</strong> slip on cohesionless fractures at different angles <strong>of</strong><br />

internal friction.........................................................................................................99<br />

Figure 4.24: Fracture initiation thresholds mapped using maximum and differential stress<br />

conditions. ..............................................................................................................101<br />

Figure 4.25: Comparison <strong>of</strong> stress and seismicity. ....................................................................104<br />

Figure A1: Plan view <strong>of</strong> 7000 Level..........................................................................................119<br />

Figure A2: Plan view <strong>of</strong> 7200 Level..........................................................................................120<br />

Figure A3: Plan view <strong>of</strong> 7400 Level..........................................................................................121<br />

Figure A4: Plan view <strong>of</strong> 7530 Level..........................................................................................122<br />

Figure A5: Plan view <strong>of</strong> 7680 Level..........................................................................................123<br />

Figure A6: Plan view <strong>of</strong> 7810 Level..........................................................................................124<br />

Figure A7: Plan view <strong>of</strong> 7940 Ramp .........................................................................................125<br />

Figure B1: Energy-Moment relation..........................................................................................128<br />

Figure B2: Magnitude-frequency relation..................................................................................128<br />

Figure B3: Events within Creighton Mine increase with Depth................................................129<br />

Figure B4: Events within <strong>the</strong> Creighton Deep study area consists <strong>of</strong> mostly microseismic<br />

events (89.4%), blasts (9.4%) and few macroseismic events (1.2%).....................129<br />

Figure B5: Event frequency by month.......................................................................................130<br />

Figure B6: Event Frequency is plotted by hour.. .......................................................................130<br />

Figure B7: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by magnitude ...........................................................................................131<br />

Figure B8: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by <strong>the</strong> number <strong>of</strong> phones used in recording.............................................131<br />

Figure B9: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by Seismic Energy (Log scale used). ......................................................132<br />

Figure B10: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by Seismic Moment (Log scale used). ....................................................132<br />

xii


Figure B11: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by dynamic stress drop (Log scale used).................................................133<br />

Figure B12: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by static stress drop (Log scale used)......................................................133<br />

Figure B13: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by static stress drop (Log scale used)......................................................134<br />

Figure B14: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by peak particle velocity (Log scale used). .............................................134<br />

Figure B15: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by peak particle acceleration (Log scale used)........................................135<br />

Figure B16: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by maximum particle displacement (Log scale used). ............................135<br />

Figure B17: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by source radius ......................................................................................136<br />

Figure B18: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by asperity radius ....................................................................................136<br />

Figure B19: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by location error. Events that locate outside <strong>the</strong> network to <strong>the</strong><br />

north have a greater location error. ........................................................................137<br />

Figure B20: Magnitude-Frequency relations for (A) Cluster 1; (B) Cluster 2; and (C)<br />

Cluster 3. ................................................................................................................153<br />

Figure D1: Case 1, elastic models showing maximum stress. ..................................................163<br />

Figure D2: Case 1, elastic models showing differential stress...................................................164<br />

Figure D3: Case 1, elastic models shear displacement along discontinuities ............................165<br />

Figure D4: Case 1, plastic models showing major principal stress............................................166<br />

Figure D5: Case 1, plastic models showing differential stress ..................................................167<br />

Figure D6: Case 1, plastic model showing yielding ..................................................................168<br />

Figure D7: Case 1, plastic models showing shear displacement along discontinuities .............169<br />

Figure D8: Stress distribution <strong>of</strong> elastic model..........................................................................170<br />

Figure D9: Stress distribution <strong>of</strong> plastic model .........................................................................170<br />

Figure D10: Case 2, elastic models for C=0, Φ =35º.................................................................171<br />

Figure D11: Case 2, plastic models for C=0, Φ =35º ................................................................172<br />

xiii


Figure D12: Case 3 (k=2), elastic models for C=0, Φ =35º.......................................................173<br />

Figure D13: Case 3 (k=2), plastic models for C=0, Φ =35º.......................................................174<br />

Figure D14: Tectonic model, elastic models for C=0, Φ =35º...................................................175<br />

Figure D15: Tectonic model, plastic model for C=0, Φ =35º....................................................176<br />

Figure D16: Phase2 model depicting model and boundary conditions......................................178<br />

Figure D17: Elastic models for <strong>the</strong> 7200 Level. ........................................................................181<br />

Figure D18: Elastic models for <strong>the</strong> 7400 Level. .......................................................................182<br />

Figure D19: Elastic models for <strong>the</strong> 7530 Level. .......................................................................183<br />

Figure D20: Rock mass states <strong>of</strong> degradation, as modelled for <strong>the</strong> 7400 Level in Phase2. ......184<br />

Figure F1: Mohr-Coulomb failure envelope with Mohr circle depicting angles and<br />

quantities used in derivation...................................................................................206<br />

xiv


List <strong>of</strong> Tables<br />

Table 2.1: Geological Events in <strong>the</strong> Sudbury Area.......................................................................7<br />

Table 2.2: Fault systems within <strong>the</strong> Creighton Deep ..................................................................15<br />

Table 2.3: Summary <strong>of</strong> Fault Characteristics..............................................................................17<br />

Table 2.4: Summary <strong>of</strong> Proterozoic tectonic events ...................................................................37<br />

Table 3.1: Event characteristics in an intact and fractured rock mass ........................................53<br />

Table 3.2: Spatial cluster positions .............................................................................................54<br />

Table 3.3: Summary <strong>of</strong> relevant parameter mean values and standard.......................................55<br />

Table 3.4: Comparison <strong>of</strong> maximum principal stress orientations from various sources ...........74<br />

Table 4.1: Rock mass and discontinuity model properties .........................................................84<br />

Table 4.2: Fault parameters tested for Case 1.............................................................................86<br />

Table 4.3: Strength parameters assigned to shear families for Case 2........................................90<br />

Table A1: Summary <strong>of</strong> site visit locations, oriented samples and thin sections .......................117<br />

Table B1: Summary Statistics for microseismic, macroseismic and blast events ....................126<br />

Table B2: Summary Statistics for microseismic event clusters. .............................................138<br />

Table C1: Fault Plane Solution Data for 7400 and 7530 Levels...............................................154<br />

xv


Table <strong>of</strong> Symbols and Abbreviations<br />

Symbol Explanation<br />

∆σ Static stress drop (Pa)<br />

μ Shear modulus (microseismic analysis)<br />

υ Poisson’s ratio<br />

Ø Angle <strong>of</strong> internal friction (°)<br />

ρ Density (kg/m 3 )<br />

σ 1 Maximum principal stress<br />

σ 2 Intermediate principal stress<br />

σ 3 Minimum principal stress<br />

σ a Apparent stress (Pa)<br />

σ d Dynamic stress drop (Pa)<br />

σ n Normal stress (MPa)<br />

σ UCS Uniaxial compressive strength<br />

τ Shear stress (MPa)<br />

Bt Biotite<br />

C Cohesion<br />

Cal Calcite<br />

Chl Chlorite<br />

Cpx Clinopyroxene<br />

E Young’s Modulus (GPa)<br />

E o Seismic Energy (J)<br />

E s /E p S-wave to P-wave energy ratio<br />

FAR Fresh Air Raise<br />

G Shear modulus (geomechanics)<br />

Ga Billion years<br />

K Bulk modulus<br />

Kfs K-Feldspar<br />

M Moment magnitude<br />

M o Seismic moment (Nm)<br />

m N Nuttli Magnitude<br />

NW Northwest<br />

OB Orebody<br />

Opx Orthopyroxene<br />

Pl Plagioclase<br />

Qtz Quartz<br />

RAR Return Air Raise<br />

R o Source radius (m)<br />

R a Asperity radius (m)<br />

SIC Sudbury Igneous Complex<br />

SRSZ South Range Shear Zone<br />

SZ Shear zone<br />

xvi


Chapter 1<br />

Introduction<br />

1.1 Background<br />

The stress system in <strong>the</strong> mining environment is a result <strong>of</strong> <strong>the</strong> superposition <strong>of</strong> pre-mining and<br />

mining-induced stresses. When this stress exceeds <strong>the</strong> strength <strong>of</strong> <strong>the</strong> rock mass, failure occurs.<br />

In <strong>the</strong> dynamic mine environment, impulsive changes in <strong>the</strong> stress field caused by blasting or<br />

more gradual stress perturbations, from excavation for example, can result in failure. The<br />

excavation process in hard rock mines results in stress concentrations in which strain energy is<br />

accumulated (Beck et al., 1997). Strain energy in a rock mass can be dissipated by local rock<br />

fracture or plastic yield, transferred to support, retained as elastic strain, or less favourably,<br />

radiated as seismic waves emanating from unstable failures such a fault slip, crushing and<br />

cracking (Beck et al., 1997).<br />

Seismic monitoring is used to observe this last category <strong>of</strong> strain release and has become an<br />

integral part <strong>of</strong> <strong>the</strong> mining process. It is <strong>of</strong> primary importance for <strong>the</strong> safety <strong>of</strong> underground<br />

workers and for uninterrupted mine operation. Monitoring seismicity can also help track <strong>the</strong><br />

physical state <strong>of</strong> <strong>the</strong> rock mass over <strong>the</strong> long term (Alcott et al, 1998; Szwedzicki, 2003; Coulson<br />

and Bawden, 2008). The onset <strong>of</strong> seismicity can signal <strong>the</strong> commencement <strong>of</strong> rock mass damage<br />

and yield (Falmagne, 2001) and high event rates and dense event spacing suggest progressive<br />

damage <strong>of</strong> <strong>the</strong> rock mass (Vasak et al., n.d.; Falmagne, 2001).<br />

Seismicity that is located remote to mining is <strong>of</strong>ten attributed to geological structure. Structures<br />

with high elastic parameters as compared to <strong>the</strong> host rock are capable <strong>of</strong> storing more strain<br />

1


energy (McGarr et al., 1975). Stiff and strong materials such as dykes have been linked to higher<br />

rates <strong>of</strong> seismicity (Gay et al, 1984).<br />

The pre-mining stress tensor can be altered significantly in disturbed ground (Jager and Ryder,<br />

1999). Rates <strong>of</strong> seismicity in South African gold mines are noted to be higher when <strong>the</strong> rock mass<br />

contains significant structure such as faults, dykes and bedding (Durrheim et al, 2006). Faults can<br />

provide <strong>the</strong> large slip surfaces necessary to produce large magnitude events when affected by<br />

mining activity (Durrheim et al, 2006). Many large events occur in proximity to both faults and<br />

<strong>the</strong> advancing excavation face (Gay, 1984).<br />

There exists a need for a better understanding <strong>of</strong> <strong>the</strong> relationship between structure, stress and<br />

seismicity (Kaiser et al., 2005). This relationship is crucial for seismic hazard assessment and<br />

mitigation, re-entry protocols, improved mine design, planning <strong>of</strong> mine geometry, and adequate<br />

support design. Creighton Mine is used as a study site to explore possible relationships between<br />

structure and seismicity.<br />

Creighton Mine, located west <strong>of</strong> Sudbury, Ontario (Fig. 1.1), is a nickel and copper mine operated<br />

by Vale Inco. Mining-induced seismicity is a normal part <strong>of</strong> <strong>the</strong> mining process at Creighton and<br />

occurs regularly as <strong>the</strong> rock mass adjusts to stresses imposed by blasts, development and rock<br />

extraction. The mine hosts numerous shear zones, making it <strong>the</strong> ideal candidate for studying <strong>the</strong><br />

relationship between shear zones or local rock anisotropies and seismicity. Large magnitude<br />

events in <strong>the</strong> mine are commonly attributed to fault slip without verification. Seismicity related to<br />

shear zones in Creighton Mine as well as interactions between structures are not well understood.<br />

Seismicity is frequently linked to geological structure only after large events occur (Kaiser et al.,<br />

2005).<br />

2


Figure 1.1: Location <strong>of</strong> Sudbury and Creighton Mine in Ontario and within <strong>the</strong> Sudbury Basin.<br />

Creighton Mine experiences increasing seismicity with depth as <strong>the</strong> mine is being deepened to<br />

10,000 feet (3048 m; Vale Inco). Events in Creighton Mine are closely monitored by an array <strong>of</strong><br />

uniaxial and triaxial accelerometers to observe trends and prevent injury. Dense clusters <strong>of</strong><br />

microseismic events occur to <strong>the</strong> south <strong>of</strong> <strong>the</strong> 400 Orebody, <strong>the</strong> main orebody in <strong>the</strong> lowermost<br />

levels Creighton Mine, where important infrastructure (ventilation and refuge stations, for<br />

example) exists.<br />

To investigate <strong>the</strong> relationship between structure and seismicity, geological investigations,<br />

seismological studies and numerical modelling focusing on shear zones were carried out for <strong>the</strong><br />

lower portion <strong>of</strong> <strong>the</strong> Creighton Deep, which extends from <strong>the</strong> 6600 foot level (2012 m, 6600L) to<br />

<strong>the</strong> bottom <strong>of</strong> <strong>the</strong> mine. Joint characteristics are not considered in this study. For fur<strong>the</strong>r<br />

information <strong>the</strong> reader is referred to Coulson (1996). Studies were conducted for levels on and<br />

below 7400 feet (2255 m), with emphasis on <strong>the</strong> 7400 Level (7400L). The results <strong>of</strong> <strong>the</strong>se studies<br />

are presented in this <strong>the</strong>sis.<br />

3


1.2 Organization <strong>of</strong> Thesis<br />

Chapter 2 presents <strong>the</strong> regional and local geology <strong>of</strong> Creighton Mine, a brief history <strong>of</strong> tectonic<br />

events that affected <strong>the</strong> Sudbury region, and a summary <strong>of</strong> regional-scale structural features. The<br />

geology <strong>of</strong> <strong>the</strong> Creighton Deep is described in terms <strong>of</strong> its rock units and shear zones. Mine-scale<br />

shear zones are discussed in terms <strong>of</strong> macroscopic and microscopic features, and kinematics.<br />

Chapter 3 presents an analysis <strong>of</strong> mining-induced seismic events at Creighton Mine. Events are<br />

assessed in terms <strong>of</strong> spatial and temporal trends and in terms <strong>of</strong> seismic event parameters. Fault<br />

plane solutions are generated to explore event mechanisms and assess <strong>the</strong> relationship between<br />

faults and seismicity. Lastly, a stress inversion using focal plane solution data is presented and<br />

compared to regional stresses.<br />

In Chapter 4 <strong>the</strong> results <strong>of</strong> finite and distinct element stress modelling are discussed. Models<br />

simulate <strong>the</strong> response <strong>of</strong> <strong>the</strong> rock mass to stresses imposed by mining and <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

Creighton Deep structural system. Results from distinct element models are presented with<br />

various boundary conditions and geomechanical conditions applied to faults. The general<br />

response <strong>of</strong> <strong>the</strong> rock mass and <strong>the</strong> influence <strong>of</strong> faults on stress distribution are discussed. This<br />

chapter presents a proposed explanation <strong>of</strong> rock degradation induced by <strong>the</strong> geometry <strong>of</strong> <strong>the</strong><br />

excavation.<br />

Chapter 5 presents a summary <strong>of</strong> geological work, seismic investigations and stress modelling.<br />

Seismicity is discussed in terms <strong>of</strong> a damage process and recommendations for future work are<br />

<strong>of</strong>fered.<br />

4


Chapter 2<br />

Geological Assessment <strong>of</strong> Creighton Mine<br />

2.1 Regional <strong>Geology</strong> <strong>of</strong> <strong>the</strong> Sudbury Basin<br />

The Sudbury Basin (Fig. 2.1), formed at 1.85 Ga by a meteorite impact (Dietz, 1964), is a 27 km x<br />

60 km elliptical structure located between <strong>the</strong> sou<strong>the</strong>rn margin <strong>of</strong> <strong>the</strong> Superior Province and <strong>the</strong><br />

nor<strong>the</strong>rn margin <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Province, approximately eight kilometers northwest <strong>of</strong> <strong>the</strong><br />

Grenville Deformation Front (Brocoum and Dalziel, 1974). The Superior Province consists <strong>of</strong><br />

Archean granite and gneiss, while <strong>the</strong> Sou<strong>the</strong>rn Province comprises metavolcanic and rift margin<br />

sedimentary rocks including greywacke, greenstone and quartzite.<br />

Figure 2.1 (A) Location map <strong>of</strong> Sudbury in Ontario, Canada (B); <strong>the</strong> location <strong>of</strong> <strong>the</strong> Sudbury and<br />

surrounding tectonic provinces. Modified from Ames et al., 2005. SRSZ = South Range Shear<br />

Zone.<br />

5


2.1.1 Evolution <strong>of</strong> <strong>the</strong> Sudbury Basin<br />

The Sudbury Basin has been shaped by numerous tectonic events since <strong>the</strong> early Paleoproterozoic.<br />

Events that have affected <strong>the</strong> Sudbury region are listed in Table 2.1. The Archean hinterland <strong>of</strong><br />

<strong>the</strong> Superior Province rifted at ca. 2.46 Ga, leading to <strong>the</strong> establishment <strong>of</strong> a passive margin at <strong>the</strong><br />

sou<strong>the</strong>rn edge <strong>of</strong> <strong>the</strong> Superior Craton (Mungall and Hanley, 2004). Passive margin rocks<br />

comprise <strong>the</strong> Sou<strong>the</strong>rn Province. In <strong>the</strong> Sudbury area, Sou<strong>the</strong>rn Province rocks include<br />

metasedimentary and metavolcanic rocks <strong>of</strong> <strong>the</strong> Huronian Supergroup.<br />

The proposed 2.40-2.20 Ga Blezardian Orogeny (Stockwell, 1982) may represent <strong>the</strong> first<br />

Proterozoic compressional deformation event affecting <strong>the</strong> Sudbury area. Blezardian deformation<br />

is thought to be responsible for <strong>the</strong> development <strong>of</strong> an early tectonic foliation in Huronian rocks<br />

and large-wavelength, non-cylindrical thick-skinned folds (Riller et al., 1999).<br />

The Penokean Orogeny (Van Schmus, 1976) initiated at ca. 1.88 Ga with <strong>the</strong> oblique collision <strong>of</strong><br />

an island arc system with <strong>the</strong> Superior Craton (Schulz and Cannon, 2007). Before <strong>the</strong> bulk <strong>of</strong> <strong>the</strong><br />

Penokean deformation terminated, <strong>the</strong> Sudbury region was impacted by a meteorite (Dietz, 1964)<br />

at 1.85 Ga (Krogh et al, 1984). Impact melting and impact induced-melting formed <strong>the</strong> Sudbury<br />

Igneous Complex (SIC), characterized by a differentiated pool <strong>of</strong> norite, gabbro and granophyre,<br />

lined by a Sublayer Norite, which hosts <strong>the</strong> bulk <strong>of</strong> <strong>the</strong> basin’s rich ore deposits (Dressler and<br />

Reimold, 2001; Jones, 2005).<br />

Post-impact deformation features during <strong>the</strong> Penokean Orogeny are restricted to <strong>the</strong> sou<strong>the</strong>rn<br />

margin <strong>of</strong> <strong>the</strong> Sudbury Basin and include folds, faults and shear zones (Cochrane, 1991), which<br />

are responsible for <strong>of</strong>fsetting and folding <strong>the</strong> Sudbury Igneous Complex into a doubly plunging<br />

synform (Brocoum and Dalziel, 1974; Mungall and Hanley, 2004). The Sudbury Igneous<br />

Complex is filled by <strong>the</strong> Whitewater Group, which consists <strong>of</strong> impact-related rocks such as fall-<br />

6


ack breccia and sediments later deposited in <strong>the</strong> Penokean foreland basin (Dressler and Reimold,<br />

2001; Long, 2004). The impact culminated in <strong>the</strong> emplacement <strong>of</strong> rich nickel and copper sulfides<br />

and platinum group metals.<br />

Table 2.1: Geological Events in <strong>the</strong> Sudbury Area<br />

Event Age Reference<br />

Grenville Orogeny 1.30-.1.00 Ga Van Breemen and Davidson,<br />

1988<br />

Intrusion <strong>of</strong> olivine-diabase Sudbury<br />

Dykes<br />

1.238 Ga Krogh et al, 1987<br />

Intrusion <strong>of</strong> hornblende-diabase<br />

Trap Dykes<br />

1.4 Ga<br />

Dressler, 1984<br />

Cochrane, 1991<br />

Deposition <strong>of</strong> Whitewater Group 1.85- 1.7 Ga Hemming et al., 1996<br />

Intrusion <strong>of</strong> quartz-diorite aplitic<br />

dykes (Offset dykes)<br />

Sudbury Event meteorite impact and<br />

SIC emplacement<br />

1.850 Ga Krogh et al, 1984<br />

1.850 Ga Dietz, 1964<br />

Krogh et al, 1984<br />

Penokean Orogeny 1.88-1.83 Ga Van Schmus, 1976<br />

Schulz and Cannon, 2007<br />

Intrusion <strong>of</strong> Nipissing Gabbro dykes<br />

and sills<br />

2.22 Ga Corfu and Andrews, 1986<br />

Blezardian Orogeny 2.40-2.20 Ga Stockwell, 1982<br />

Riller et. al, 1999<br />

Deposition <strong>of</strong> Huronian Supergroup 2.45-2.42 Ga Mungall and Hanley, 2004<br />

Rifting <strong>of</strong> Superior Province 2.46 Ga Mungall and Hanley, 2004<br />

Matachewan Dyke Swarm 2.476 Ga Heaman, 1997<br />

7


2.1.2 Dykes<br />

The Sudbury Region has been intruded by many generations <strong>of</strong> dyke swarms. The earliest <strong>of</strong><br />

<strong>the</strong>se is <strong>the</strong> Matachewan swarm (2.45 Ga; Heaman, 1997; Rousell et al, 1997), which predates<br />

rifting <strong>of</strong> <strong>the</strong> Archean basement. Quartz-diorite dykes (1.85-1.74 Ga), also known as Offset<br />

Dykes, are composed <strong>of</strong> impact-related melt rock and sulphides that fill impact-induced fractures<br />

oriented radially to <strong>the</strong> Sudbury Igneous Complex (Grant and Bite, 1984). Such dykes constitute<br />

important metal resources within <strong>the</strong> Sudbury Basin. Post-basin dyke intrusions include <strong>the</strong> ca.<br />

1.4 Ga (Cochrane, 1991) east-west striking hornblende-diabase swarm, known as Trap Dykes<br />

(Dressler, 1984), and <strong>the</strong> northwest striking olivine-diabase Sudbury Dykes (ca. 1.24 Ga; Krogh et<br />

al, 1987).<br />

All dykes occur in proximity to or in <strong>the</strong> Creighton Mine. A quartz-diorite Offset Dyke extends<br />

from <strong>the</strong> 800 Level to <strong>the</strong> 6200 Level where it pinches out (Coulson, 1996). Coulson (1996) also<br />

notes that below <strong>the</strong> 6600 Level hornblende-diabase and olivine-diabase dykes do not constitute<br />

important structural elements. At shallower levels and at surface shearing occurs along dykes, as<br />

shown in geological mapping (Vale Inco). All dykes are also intersected and <strong>of</strong>fset by late-stage<br />

faults and fractures (Cochrane, 1991).<br />

2.1.3 Regional faults<br />

The Murray Fault system strikes east-nor<strong>the</strong>ast and extends 300 km from Sault Ste. Marie to<br />

Sudbury (Fig. 2.1). Zolnai et al. (1984) propose that <strong>the</strong> Murray Fault System initiated as<br />

extensional ductile faults, overprinted by steepening <strong>of</strong> <strong>the</strong> faults and brittle thrusting during <strong>the</strong><br />

Penokean Orogeny, and fur<strong>the</strong>r reactivated as strike-slip during <strong>the</strong> Grenville Orogeny. The<br />

8


Murray Fault, <strong>the</strong> principal fault <strong>of</strong> <strong>the</strong> system, shows evidence <strong>of</strong> right-lateral displacement with<br />

a total estimated lateral displacement <strong>of</strong> 1 kilometer (Cochrane, 1991).<br />

The Creighton Fault, part <strong>of</strong> <strong>the</strong> Murray Fault System, extends 48 km from Drury Township, west<br />

<strong>of</strong> <strong>the</strong> Sudbury Basin, east to Coniston where it intersects <strong>the</strong> Grenville Front (Fig. 2.1; Cochrane,<br />

1991). It trends east to east-nor<strong>the</strong>ast and dips steeply north between 75 and 90 degrees<br />

(Cochrane, 1991). Previous work by Cochrane (1991) found that <strong>the</strong> Creighton fault has a net<br />

slip <strong>of</strong> 560 metres. The north side is displaced 540 metres eastward and 150 metres downward<br />

relative to <strong>the</strong> south side. The Creighton fault truncates <strong>of</strong>fset dykes, olivine-diabase dykes, as<br />

well as <strong>the</strong> sou<strong>the</strong>rn tip <strong>of</strong> <strong>the</strong> Creighton embayment, leading Cochrane (1991) to suggest that <strong>the</strong><br />

Creighton Fault is younger than 1.24 Ga. Akin to Zolnai et al. (1984), Rousell et al. (1997)<br />

propose that <strong>the</strong> cumulative slip <strong>of</strong> <strong>the</strong> Creighton fault reflects an early normal movement during<br />

<strong>the</strong> deposition <strong>of</strong> <strong>the</strong> Huronian Supergroup, followed by repeated reverse-sense reactivation<br />

during <strong>the</strong> Penokean Orogeny, and dextral-oblique faulting in <strong>the</strong> Neoproterozoic.<br />

The Creighton Fault diverges from <strong>the</strong> Creighton embayment at depth. Because <strong>the</strong> fault dips<br />

more steeply than <strong>the</strong> embayment, which dips at 60 degrees, <strong>the</strong> Creighton Fault does not intersect<br />

mine excavations. A splay between Murray and Creighton Faults, termed <strong>the</strong> Murray-Creighton<br />

Splay bounds <strong>the</strong> eastern margin <strong>of</strong> <strong>the</strong> Creighton Embayment and is intersected on levels above<br />

<strong>the</strong> Creighton Deep as <strong>the</strong> 118 Shear Zone (Hodder, 2002). Parallel features to both <strong>the</strong> Creighton<br />

Fault and Murray Creighton Splay fault are reflected in structures within <strong>the</strong> Creighton Deep<br />

(Tulk, 2001; Hodder, 2002).<br />

The Creighton Fault was observed at surface along HWY 144, west <strong>of</strong> Creighton Mine (Fig. 2.2).<br />

Rock in proximity to <strong>the</strong> Creighton fault is jointed and veined. Brittle jogs in rock in proximity to<br />

<strong>the</strong> fault and <strong>of</strong>fset veins and dykes confirm a dextral sense <strong>of</strong> motion (Fig. 2.3).<br />

9


Figure 2.2: Local geology map modified from Ames et al. (2005). Corresponding sections are represented<br />

by Figure 2.4A and B.<br />

Figure 2.3: Horizontal view <strong>of</strong> a fault jog in proximity to Creighton Fault. The fault was observed at<br />

surface, west <strong>of</strong> Creighton Mine along highway 144, as shown by <strong>the</strong> black dot in Figure 2.2. Card used for<br />

scale is 9 cm in length.<br />

10


2.2 Local <strong>Geology</strong> <strong>of</strong> Creighton Mine<br />

Creighton Mine is located approximately 18 km SW <strong>of</strong> downtown Sudbury. It is situated on <strong>the</strong><br />

sou<strong>the</strong>rn rim <strong>of</strong> <strong>the</strong> Sudbury Igneous Complex in an embayment <strong>of</strong> sublayer norite, called <strong>the</strong><br />

Creighton Embayment (Fig. 2.2).<br />

Fieldwork conducted in summer 2008 at Creighton Mine targeted shears zones exposed<br />

underground as well as faults exposed at <strong>the</strong> surface surrounding <strong>the</strong> mine. The underground<br />

study was concentrated between 6600 feet (2012 m) and 7940 feet (2420 m) deep, coinciding with<br />

<strong>the</strong> 6600 Level (6600L) and <strong>the</strong> 7940 ramp at <strong>the</strong> base <strong>of</strong> <strong>the</strong> mine. This portion <strong>of</strong> <strong>the</strong> mine is<br />

known as <strong>the</strong> Creighton Deep. Emphasis was placed on levels below 7400 feet (2256 m).<br />

Development is ongoing as <strong>the</strong> mine strives to reach a depth <strong>of</strong> 10,000 feet (3048 m; Vale Inco),<br />

as shown in Figure 2.4. In <strong>the</strong> study area <strong>the</strong> 400-Orebody is <strong>the</strong> main mining target (Fig. 2.4A,<br />

2.4B). Above 6600L <strong>the</strong> orebody follows <strong>the</strong> footwall-hangingwall contact, which is defined by<br />

<strong>the</strong> limits <strong>of</strong> <strong>the</strong> embayment. In <strong>the</strong> lowermost levels, <strong>the</strong> main orebody diverges from <strong>the</strong><br />

footwall-hangingwall contact such that it is nearly encased in <strong>the</strong> footwall (Fig. 2.4A).<br />

Footwall rocks surrounding <strong>the</strong> embayment (Fig. 2.2; 2.4A) consist <strong>of</strong> <strong>the</strong> Creighton Pluton<br />

granite and metavolcanics <strong>of</strong> <strong>the</strong> Elsie Mountain Formation (Ames et al., 2005). Granitic footwall<br />

units are medium-grained to coarse-grained, having variable alkali feldspar content and are<br />

massive to weakly foliated. Main mineral constituents include alkali feldspar (50%), <strong>of</strong>ten with<br />

alteration to sericite, quartz (40%) and biotite (10%).<br />

Metagabbro is massive and fine to medium-grained (1 mm). It consists primarily <strong>of</strong> chlorite and<br />

biotite (80%) with quartz (5-10%), plagioclase feldspar (5-10%) and minor amounts (5%) <strong>of</strong><br />

11


opaque minerals and o<strong>the</strong>r mineral constituents. Specimens from high-strain areas exhibit a fabric<br />

expressed as preferential alignment <strong>of</strong> biotite and/or chlorite.<br />

O<strong>the</strong>r rock units found interspersed in footwall rocks include alkali feldspar granite porphyry<br />

(locally termed black porphyry) and Sudbury breccia. The black porphyry has a matrix composed<br />

<strong>of</strong> biotite and chlorite and has quartzo-feldspathic porphyroclasts. This unit is locally strained;<br />

metre-wide strain localizations are expressed as elongated porphyroclasts in <strong>the</strong> vertical plane.<br />

Figure 2.4A: Vertical cross-section <strong>of</strong> Creighton Mine showing geometry <strong>of</strong> footwall and hangingwall<br />

rocks as well as orebodies. Approximate section line is shown in Figure 2.2. Level numbers correspond to<br />

depth in feet; depth in metres is shown at <strong>the</strong> far right. Study area is shown between two dashed lines.<br />

Plum Orebody is referred to 6100 in this diagram. No vertical exaggeration. Figure modified from Vale<br />

Inco composite section, Creighton Mine.<br />

12


B West East B’<br />

Figure 2.4B: Longitudinal section <strong>of</strong> Creighton Mine showing idealized geometry orebodies.<br />

Approximate section line is shown in Figure 2.2. Level numbers correspond to depth in feet. Plum<br />

Orebody is referred to 6100 in this diagram. No vertical exaggeration. Figure modified from Vale Inco<br />

idealized longitudinal section for Creighton Mine.<br />

13


Sudbury breccia occurs as sub-rounded clasts <strong>of</strong> footwall units <strong>of</strong> variable size, contained in a<br />

dark matrix.<br />

Norite is found in <strong>the</strong> hanging wall within <strong>the</strong> embayment and is <strong>the</strong> basal unit <strong>of</strong> <strong>the</strong> Sudbury<br />

Igneous Complex. The norite unit is massive and medium-grained (up to 4 mm) and contains<br />

euhedral to subhedral grains <strong>of</strong> biotite and orthopyroxene with chlorite alteration, hosted in a<br />

matrix <strong>of</strong> plagioclase.<br />

2.3 Mine-Scale Faults<br />

The Creighton Deep contains four families <strong>of</strong> faults: south-west striking shear zones <strong>of</strong> <strong>the</strong> 118<br />

Shear System, Footwall family shear zones, east-west-striking shear zones and splays between<br />

faults <strong>of</strong> <strong>the</strong> 118 Shear System (Table 2.2, Fig. 2.5). All orientations, except where stated, are<br />

expressed in ‘8-Shaft’ coordinates in which grid north is subject to a 25-degree clockwise rotation<br />

from geographic north.<br />

Shear zones are typically schistose with biotite mineral lineations. Composite foliation planes and<br />

mylonite textures are also common but difficult to discern in underground conditions. Quartz<br />

veins with minor calcite are frequently associated with shear zones in <strong>the</strong> Creighton Deep. Shear<br />

zones dissect all rock types and can be found within rock units, at <strong>the</strong> contact between two<br />

lithological units, at ore-rock contacts or along dykes. Within granitic units, shear zones are<br />

biotite-rich, strongly foliated and <strong>of</strong>ten display near-vertical biotite mineral lineation in <strong>the</strong><br />

foliation plane, whereas <strong>the</strong>y are more chlorite-rich within metagabbro. Shear zones <strong>of</strong> <strong>the</strong> 118<br />

Shear System have a consistent inter-shear spacing <strong>of</strong> approximately 200 feet, as shown in Figure<br />

2.5.<br />

14


Table 2.2: Fault systems within <strong>the</strong> Creighton Deep<br />

System Orientation Shear Zones<br />

118 Strikes SW between 230°-260°<br />

Dips NW between 75°-85°<br />

Footwall Strikes NW ~313°,<br />

Dips NE 55°<br />

Northwest<br />

Return Air Raise<br />

402 Shear<br />

Plum Shear<br />

Fresh Air Raise Shear<br />

Fresh Air Raise-Type Shear<br />

Footwall Shear<br />

Footwall-Type Shear<br />

EW<br />

Splays<br />

East-west striking with opposite<br />

dips between 70° and 80°<br />

Steeply-dipping<br />

Link SW-striking shears<br />

1290 Shear<br />

400-East Shear<br />

Grizzly Splay<br />

461 Splay<br />

Figure 2.5: Level plan for <strong>the</strong> 7400 Level in <strong>the</strong> Creighton Deep showing excavated drifts and sills, shear<br />

zones and approximate shape <strong>of</strong> <strong>the</strong> 400 Orebody. Map modified from Vale Inco 7400 Level Plan. NW =<br />

Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise. The 400-East Shear Zone is found on <strong>the</strong><br />

7810 Level.<br />

15


Thin sections were made from collected oriented specimens. These were cut parallel to lineation<br />

and perpendicular to foliation as well as perpendicular to both lineation and foliation. Thin<br />

sections were examined for fabrics and microstructures.<br />

Shear zone kinematics are <strong>of</strong> economic interest as many <strong>of</strong> <strong>the</strong> shear zones in Creighton Mine<br />

control <strong>the</strong> shape and distribution <strong>of</strong> orebodies. Shear-sense indicators in this <strong>the</strong>sis are <strong>of</strong> interest<br />

for establishing <strong>the</strong> tectonic heredity <strong>of</strong> <strong>the</strong> shear zones in <strong>the</strong> Creighton Deep. Microstructural<br />

analysis is used to characterize faults and deformation mechanisms. A summary <strong>of</strong> faults and<br />

fault characteristics is presented in Table 2.3.<br />

For consistency with current mapping and because its strike, dip and shear zone spacing are<br />

conformable to o<strong>the</strong>r shear zones observed within <strong>the</strong> 118 System within <strong>the</strong> study area, <strong>the</strong> Plum<br />

Shear Zone is assigned to <strong>the</strong> 118 Shear System. The Plum Shear Zone is described as its own<br />

shear system by Seidler (2008) because <strong>of</strong> its association with <strong>the</strong> Plum Orebody (referred to as<br />

6100 Orebody in Fig. 2.4A and 2.4B). In previous structural work by Tulk, (2001) <strong>the</strong> Plum<br />

Shear Zone is described as a prominent NNE-striking splay fault.<br />

Shear zones have been mapped by Vale Inco staff as planar and continuous features, though shear<br />

zones can vary in attitude and thickness and are not always continuous in <strong>the</strong>ir extent. The 1290<br />

and Footwall Shear Zones seem to be continuous features while 118 System shear zones and<br />

splays cannot always be traced level-to-level.<br />

16


Table 2.3: Summary <strong>of</strong> Fault Characteristics<br />

Shear Name<br />

Approximate<br />

Strike/Dip<br />

Rock Type<br />

Features<br />

Footwall Shear<br />

Zone<br />

N 313/55° NE Biotite/chlorite schist • 0.3-0.6 m width<br />

• Strongly developed schistosity<br />

• Sub-vertical mineral lineations,<br />

• Near horizontal crenulation<br />

• C-S-C’ fabrics<br />

• Associated damage to shotcrete<br />

• Predominant reverse sense-<strong>of</strong>-shear<br />

1290 Shear Zone N 270/80° N Biotite schist with<br />

concordant quartz veins<br />

• Greater than 6 m<br />

• Strongly developed schistosity<br />

• Biotite mineral lineation<br />

• Abundant concordant veins<br />

• Unknown sense-<strong>of</strong>-shear, reported strike-slip <strong>of</strong>fset<br />

400-East Shear<br />

Zone<br />

Grizzly Shear<br />

Zone (splay)<br />

Northwest Shear<br />

Zone<br />

Return Air Raise<br />

Shear Zone<br />

N 090/70° S Biotite-rich phyllonite • Weak schistosity<br />

• Sub-vertical biotite mineral lineation<br />

• Quartz-carbonate veins<br />

• Sub-horizontal slickenlines<br />

• Strike-slip overprinting<br />

N 053/75° WNW Biotite schist • 0.5 m width<br />

• Sharp contact with host rock<br />

• Strongly developed schistosity<br />

• Biotite mineral lineation<br />

• Near-horizontal crenulation<br />

• Apparent reverse sense-<strong>of</strong>-shear<br />

N 247/75° NW Biotite schist (VI)* • 3 m in width<br />

• Strongly developed schistosity (VI)<br />

• Limited exposure and exposure restricted by<br />

shotcrete<br />

• Unknown Sense <strong>of</strong> Shear<br />

N 244/85° NW Ultramylonite • Strongly developed foliation,<br />

• Sharp contacts with ore/host rock<br />

• Associated damage to shotcrete<br />

• Unknown Sense <strong>of</strong> Shear<br />

402 Shear Zone N 241/85° NW Biotite schist (VI) • 1.2 m in width<br />

• Strongly developed schistosity (VI)<br />

• Exposure restricted by shotcrete<br />

• Reverse sense-<strong>of</strong>-shear (Siddorn, 2006)<br />

Plum Shear Zone N 235/80° NW Biotite schist (VI) • 3 m in width (variable)<br />

• Strongly developed schistosity<br />

• Concordant quartz-carbonate veins (VI)<br />

• Unknown sense-<strong>of</strong>-shear<br />

Fresh Air Raise<br />

Shear Zone<br />

N 258/80° NW<br />

Mylonite/<br />

ultramylonite<br />

• 1.5 m in width (7400L)<br />

• Strong/weak schistosity (location dependent)<br />

• Apparent reverse sense-<strong>of</strong>-shear<br />

Fresh Air Raisetype<br />

Shear Zone<br />

N 249/80° NW Quartz-metagabbro • Well-foliated, defined by quartz and biotite.<br />

• Weak mineral alignment; No mineral lineation<br />

• Foliation-parallel quartz veins<br />

• Unknown sense-<strong>of</strong>-shear<br />

*(VI) indicates information ga<strong>the</strong>red from Vale Inco digital geological maps<br />

17


2.3.1 Footwall Shear Zone<br />

The Footwall Shear Zone strikes northwest (N313°) and dips to <strong>the</strong> nor<strong>the</strong>ast, with an average dip<br />

<strong>of</strong> 55° (Fig. 2.5). It is recognized on all levels in <strong>the</strong> study area as a strongly developed, biotite<br />

and/or chlorite-rich schistose zone <strong>of</strong> localized deformation (Fig. 2.6A, B). The shear measures<br />

0.3 m - 0.6 m wide, <strong>of</strong>ten with ~1 m damage zones to ei<strong>the</strong>r side that are defined by shear-parallel,<br />

closely spaced joints and localized damage to mine-support, including breaking <strong>of</strong> wire mesh and<br />

cracking and failure <strong>of</strong> shotcrete (Fig. 2.6A). Near-vertical biotite mineral lineations are <strong>of</strong>ten<br />

visible on foliation planes. The Footwall Shear Zone is not an ore-controlling shear, but dissects<br />

footwall and hangingwall rocks.<br />

In thin section <strong>the</strong> Footwall Shear has a variable composition. It is <strong>of</strong>ten composed <strong>of</strong><br />

predominantly quartz and biotite with plagioclase, microcline, chlorite and minor sericite, calcite,<br />

opaque minerals and minor amounts <strong>of</strong> o<strong>the</strong>r mineral constituents; however in some locations, it is<br />

almost wholly composed <strong>of</strong> chlorite. The variable composition <strong>of</strong> <strong>the</strong> Footwall Shear is thought to<br />

reflect <strong>the</strong> lithological differences <strong>of</strong> <strong>the</strong> host rock.<br />

In samples with abundant quartz, quartz grains have a bimodal grain size distribution (Fig. 2.6C):<br />

larger grains are found in quartz ribbons with sub-grain boundaries and smaller grains are found in<br />

shear bands. The quartz ribbons and preferential alignment <strong>of</strong> biotite creates a discontinuous<br />

fabric. In some samples, biotite forms an anastomosing fabric with C, S and C’ planes,<br />

compatible with top-to-<strong>the</strong>-SW shear sense (Fig. 2.6D).<br />

18


Figure 2.6: (A) Damage to shotcrete and mesh along <strong>the</strong> Footwall Shear Zone; (B) localized shearing along<br />

<strong>the</strong> Footwall Shear Zone; (C) Quartz ribbons; (D) S-C’ fabrics in thin section; (E) Shear-sense indicator in<br />

thin section. Minerals shown in white are quartz. Bt, Biotite; Chl, Chlorite’ Kfs, K feldspar; Qtz, Quartz.<br />

Where observed underground, an apparent reverse-sense, top-to <strong>the</strong>-southwest component <strong>of</strong><br />

motion is inferred from <strong>the</strong> development <strong>of</strong> C’ shear bands. In thin section, C-S fabrics formed by<br />

19


iotite grains, fish structures and rotated clasts (Fig. 2.6D, E) indicate a dominant reverse<br />

component <strong>of</strong> shear with a possible dextral component. Fewer shear-sense indicators and fabric<br />

alignment in thin sections cut perpendicular to lineation suggest that <strong>the</strong> major shear component<br />

occurred in <strong>the</strong> direction <strong>of</strong> lineation. This supports Tulk’s (2001) suggestion <strong>of</strong> reverse-sense<br />

motion on <strong>the</strong> Footwall Shear Zone. Apparent <strong>of</strong>fset <strong>of</strong> <strong>the</strong> 1290 Shear Zone by <strong>the</strong> Footwall<br />

Shear Zone supports a dextral component <strong>of</strong> motion and suggests that <strong>the</strong> Footwall Shear Zone is<br />

younger than <strong>the</strong> 1290 Shear Zone.<br />

Shears with similar orientations to <strong>the</strong> Footwall Shear Zone have been inferred from ore shapes<br />

below 8000 feet depth (Seidler, 2008), suggesting that <strong>the</strong> Footwall Shear Zone may be part <strong>of</strong> a<br />

system <strong>of</strong> parallel shear zones.<br />

2.3.2 1290 Shear Zone<br />

The 1290 Shear Zone strikes east-west and dips steeply 80° to <strong>the</strong> north (Fig. 2.5). It is observed<br />

on <strong>the</strong> 6400 Level (Fig. 2.7A, B) and in <strong>the</strong> back (ceiling <strong>of</strong> <strong>the</strong> drift) on <strong>the</strong> 7810 Level but has<br />

been mapped as shallow as <strong>the</strong> 5600 Level. Its width is reported to be greater than 6 m wide<br />

(Seidler, 2008) and is characterized by a strongly developed biotite-rich schistosity, near-vertical<br />

biotite mineral lineation and abundant quartz-carbonate (quartz with minor calcite) veins, oriented<br />

parallel to <strong>the</strong> foliated schist. The 1290 Shear Zone is ore-controlling and is associated with <strong>the</strong><br />

1290 Orebody.<br />

In thin section, <strong>the</strong> 1290 Shear Zone is composed <strong>of</strong> biotite, quartz, K-feldspar and calcite (Fig.<br />

2.7C). The preferential alignment <strong>of</strong> biotite defines a strong fabric. Grain-size reduction is<br />

observed in quartz shear bands and larger elongate calcite grains align with <strong>the</strong> shear fabric (Fig.<br />

2.7C). Larger grains are formed by multi-granular K-feldspar.<br />

20


Figure 2.7: (A) The 1290 Shear Zone fabric; (B) 1290 Shear Zone on <strong>the</strong> 6400 Level; and (C) biotite,<br />

quartz and calcite fabric <strong>of</strong> <strong>the</strong> 1290 shear zone in thin section, from <strong>the</strong> 6400 Level. Bt, biotite; Cal,<br />

Calcite; Qtz, Quartz.<br />

No clear shear-sense indicators are observed. Galkin and Mungall (1995) report that <strong>the</strong> 1290<br />

Shear Zone has a dextral sense and as such could be related to late dextral-sense movement along<br />

Creighton Fault System (Rousell et al., 1997; Cochrane, 1991).<br />

21


The orientation <strong>of</strong> <strong>the</strong> 1290 Shear is parallel to that <strong>of</strong> <strong>the</strong> Creighton Fault but is <strong>of</strong>fset by <strong>the</strong><br />

Footwall Shear Zone (Seidler, 2008). This implies that <strong>the</strong> 1290 Shear Zone predates <strong>the</strong> last<br />

episode <strong>of</strong> movement along <strong>the</strong> Footwall Shear Zone.<br />

2.3.3 400-East Shear Zone<br />

The 400-East Shear Zone (Fig. 2.8A, B) is observed on <strong>the</strong> 7810 Level only. The 7810 Level plan<br />

can be found in Appendix A (Fig. A6). This shear zone strikes east-west and dips to <strong>the</strong> south at<br />

approximately 70°. The width <strong>of</strong> this shear zone and its associated damage zone is not defined<br />

due to <strong>the</strong> proximity <strong>of</strong> <strong>the</strong> 1290 Shear Zone and <strong>the</strong> drift boundaries. The shear zone is composed<br />

<strong>of</strong> biotite-rich phyllonite with sub-vertical biotite mineral lineations and minor quartz veining.<br />

Lineations along a number <strong>of</strong> shear-parallel, persistent fractures are overprinted by near-horizontal<br />

slickenlines. The 400-East Shear is ore-controlling and is associated with <strong>the</strong> 400-East Orebody<br />

(Fig. 2.4).<br />

In thin section, <strong>the</strong> 400-East Shear Zone consists mainly <strong>of</strong> quartz with lesser amounts <strong>of</strong> biotite,<br />

microcline, plagioclase and calcite (Fig. 2.8C). Light coloured minerals have variable grain size<br />

distributions with biotite composing a discontinuous fabric. Biotite anastomoses around larger<br />

grains <strong>of</strong> quartz and feldspar and sometimes outlines multi-granular fish-type structures.<br />

Extensional cracks are filled with calcite and fibrous quartz (Fig. 2.8C, D). Calcite twins are bent<br />

(Fig. 2.8B).<br />

A drag fold (Fig. 2.8A) along a shear-parallel fracture in <strong>the</strong> face <strong>of</strong> <strong>the</strong> 6646 Sill suggests a<br />

normal top-to-<strong>the</strong>-south component <strong>of</strong> motion. Slickenlines along fractures indicate a more recent<br />

lateral component <strong>of</strong> movement, which postdates ductile shearing.<br />

22


Figure 2.8: Images <strong>of</strong> (A) <strong>the</strong> 400-East Shear showing a normal-sense drag fold; (B) schematic diagram <strong>of</strong><br />

fold in A on <strong>the</strong> curving transition from <strong>the</strong> face to <strong>the</strong> back (top) <strong>of</strong> <strong>the</strong> drift, (C) shear zone fabric<br />

including a calcite vein; and (D) horizontal view <strong>of</strong> deformed calcite crystals in thin section. Bt, biotite;<br />

Cal, calcite; Qtz, quartz.<br />

2.3.4 Northwest Shear Zone<br />

The Northwest Shear Zone strikes N247° and dips 75° to <strong>the</strong> NW (Fig. 2.5). Access to this shear<br />

zone is restricted due to extensive shotcrete. The shear zone is not visible in its projected location<br />

23


on <strong>the</strong> 7680 Level but parallel features are mapped, including a tectonic foliation and veining.<br />

The shear zone is described in Vale Inco mapping as strongly biotitic and up to 3 m wide. This<br />

shear is not ore controlling and is parallel o<strong>the</strong>r shears in <strong>the</strong> 118 Shear System and to <strong>the</strong> Murray-<br />

Creighton Splay fault.<br />

2.3.5 Return Air Raise Shear Zone<br />

The Return Air Raise Shear Zone is observed on Levels 7400, 7530 and 7680. The shear zone<br />

strikes N244° and dips 85° to <strong>the</strong> NW (Fig. 2.5). On <strong>the</strong> 7400 Level, The Return Air Raise Shear<br />

Zone occurs as a series <strong>of</strong> closely set, parallel, brittle joints in a zone 40 cm wide. The shear zone<br />

is divided at <strong>the</strong> base <strong>of</strong> <strong>the</strong> drift and straddles massive sulphides. One strand <strong>of</strong> <strong>the</strong> shear zone is<br />

expressed as a 5 cm wide ultramylonite zone that forms a more cohesive and sharp boundary with<br />

both ore and footwall rocks. Wall rock within a few metres <strong>of</strong> <strong>the</strong> shear zone is brecciated and<br />

hosts a stockwork <strong>of</strong> carbonate veins. Although rock exposure is covered on <strong>the</strong> 7530 Level, <strong>the</strong><br />

shotcrete (Fig. 2.9A) and concrete pad (Fig. 2.9B) is damaged by cracks that align with <strong>the</strong> strike<br />

<strong>of</strong> <strong>the</strong> Return Air Raise Shear Zone.<br />

In thin section, <strong>the</strong> Return Air Raise Shear Zone contains variably-sized biotite, chlorite, lesser<br />

amounts <strong>of</strong> quartz and minor amounts <strong>of</strong> plagioclase, some with sericite alteration. In some<br />

locations minor amphibole and calcite occur. The strong foliation is defined by preferentially<br />

oriented quartz and chlorite (Fig. 2.9C, D). Calcite pressure shadows occur on larger amphibole<br />

grains. Quartz ribbons with sub-grain boundaries are also oriented along foliation, which is<br />

defined by elongate biotite and chlorite. Quartz grains contain many sub-grain boundaries.<br />

No sense-<strong>of</strong>-shear was ascertained from hand sample or thin section, nor is a sense-<strong>of</strong>-shear for<br />

this shear zone reported in previous studies.<br />

24


Figure 2.9: (A) Photograph <strong>of</strong> <strong>the</strong> cracked concrete pad floor along <strong>the</strong> Return Air Raise Shear Zone on<br />

7530L; tip <strong>of</strong> boots for scale; (B) cracked shotcrete on wall <strong>of</strong> 7530L, same location as A; (C) thin section<br />

<strong>of</strong> shear zone fabric on 7680L; (D) thin section <strong>of</strong> shear zone fabric on <strong>the</strong> 7400 Level. Bt, biotite; Cal,<br />

calcite; Chl, chlorite; Qtz, Quartz.<br />

25


2.3.6 402 Shear Zone<br />

The 402 Shear Zone strikes N241° and dips 85° to <strong>the</strong> NW (Fig. 2.5). Access to this shear zone is<br />

restricted due to extensive shotcrete with no visible damage and <strong>the</strong> shear zone is not well mapped<br />

below <strong>the</strong> 7400 Level. The shear zone reportedly has a strong biotite-rich schistosity and<br />

measures approximately 1.2 m in width (Vale Inco). This shear zone is parallel to <strong>the</strong> regional<br />

Murray-Creighton Splay Fault and thus belongs to <strong>the</strong> 118 System.<br />

2.3.7 Plum Shear Zone<br />

The Plum Shear Zone strikes N235° and dips 80° NW (Fig. 2.5). Access to this shear zone is<br />

restricted due to extensive shotcrete and enhanced support. No damage to shotcrete was observed.<br />

This shear zone is reported to be 3 m in width, widening in <strong>the</strong> Creighton Deep, and has a strong<br />

biotite schistosity and concordant quartz-carbonate veining (Vale Inco). Previous mapping<br />

suggests that <strong>the</strong> shape <strong>of</strong> <strong>the</strong> 461 orebody reflects <strong>the</strong> presence <strong>of</strong> <strong>the</strong> Plum Shear (Vale Inco).<br />

Nearby faults were observed to have clear reverse-sense kinematics as shown by quartz sigmaporphyroclasts<br />

within minor biotitic shear zones (Fig. 2.10 A, B) as well as <strong>the</strong> development <strong>of</strong> a<br />

foliation in <strong>the</strong> granite that rotates into <strong>the</strong> plane <strong>of</strong> shear (Fig. 2.10 C, D). Normal-sense brittle<br />

overprinting along shear planes is shown by <strong>the</strong> displacement <strong>of</strong> granitic dykes (Fig. 2.10E-H).<br />

26


Figure 2.10 (A) Shear foliation, indicating reverse ductile movement; (B) Sketch <strong>of</strong> fabric in A. Dashed<br />

lines show foliation; (C) quartz sigma porphyroclasts showing ductile reverse-sense movement; and (D)<br />

Sketch <strong>of</strong> sigma porphyroclasts; (E) Rock face with brittle fractures and <strong>of</strong>fset granitic dykes; (F) sketch <strong>of</strong><br />

displaced dyke (G) foliation showing a reverse, ductile sense-<strong>of</strong>-shear overprinted by brittle normal-sense<br />

movement marked by an <strong>of</strong>fset granite dyke; (H) sketch <strong>of</strong> overprinting relationships in G. Offset is marked<br />

by displaced dyke. Dashed lines indicate foliation.<br />

27


2.3.8 Fresh Air Raise Shear Zone<br />

The Fresh Air Raise Shear Zone strikes N258° and dips 80° to <strong>the</strong> NW (Fig. 2.5) and is parallel to<br />

<strong>the</strong> orientation <strong>of</strong> <strong>the</strong> Murray-Creighton Splay fault. It is observed on 7400 and 7200 Levels with<br />

variable grain size and texture. The shear zone on 7200 Level is hosted in cohesive, highly<br />

strained granite and exhibits a well-defined quartz and biotite foliation. Some quartz-rich veins<br />

oriented parallel to <strong>the</strong> shear zone are present in this location.<br />

On <strong>the</strong> 7400 Level, <strong>the</strong> Fresh Air Raise Shear Zone is expressed as a 1.5 m wide zone <strong>of</strong><br />

ultramylonite with a fine-grained biotite-rich fabric. The shear zone contains deformed inclusions<br />

<strong>of</strong> granitic material and is hosted in strained porphyritic alkali feldspar granite. The Fresh Air<br />

Raise Shear Zone in this location is associated with localized damage to wire mesh.<br />

In thin section <strong>the</strong> Fresh Air Raise Shear Zone is composed <strong>of</strong> bimodal-sized microcline, quartz<br />

and biotite and contains minor calcite and sericite (Fig. 2.11A-D). Chlorite is present in <strong>the</strong><br />

ultramylonite specimen in addition to <strong>the</strong>se minerals. Biotite forms discrete bands that<br />

anastomose around coarse K-feldspar grains. K-feldspar shows reduction in grain size in finegrained<br />

bands. Ribbons <strong>of</strong> anhedral quartz also anastomose around <strong>the</strong> coarser grains. Calcite is<br />

found in strain shadows adjacent to multi-granular K-feldspar clasts (Fig. 2.11A) and as subhedral<br />

grains that are elongated along foliation.<br />

In <strong>the</strong> ultramylonitic sample (Fig. 2.11B-D) <strong>the</strong>re is a distinct reduction in grain size, a welldeveloped<br />

foliation, quartz ribbons and rotation <strong>of</strong> angular clasts (Fig 2.11C, D). Shear-sense<br />

indicators (eg. Fig. A) suggest a possible reverse component <strong>of</strong> motion.<br />

28


Figure 2.11: Thin sections <strong>of</strong> <strong>the</strong> Fresh Air Raise Shear Zone showing (A) Shear and C’ planes; (B)<br />

ultramylonite textures; (C) Detail <strong>of</strong> thin section in (B); and (D) detail <strong>of</strong> thin section in (B). Bt, biotite;<br />

Cal, calcite; Chl, chlorite; Cpx, clinopyroxene; Opx, orthopyroxene; Qtz, quartz.<br />

2.3.9 Fresh Air Raise-type Shear Zone<br />

The Fresh Air Raise-Type Shear Zone is observed at <strong>the</strong> lowermost point <strong>of</strong> <strong>the</strong> mine on <strong>the</strong> 7940<br />

ramp. The shear zone strikes N249° and dips 80° to <strong>the</strong> NW and persists beyond <strong>the</strong> width <strong>of</strong> <strong>the</strong><br />

drift and may extend to <strong>the</strong> Fresh Air Raise Shear Zone (Fig. 2.5). This shear zone displays a<br />

29


strong foliation defined by biotite and quartz. Quartz-rich veins are oriented parallel to <strong>the</strong><br />

foliation plane.<br />

Shear fractures overprint <strong>the</strong> shear zone at a high angle to <strong>the</strong> foliation as evidenced by quartz-rich<br />

veins. Such veins mark several cm-scale reverse shear-sense displacements along fractures,<br />

though no slickenlines were observed (Fig. 2.12A).<br />

Figure 2.12: Images <strong>of</strong> <strong>the</strong> Fresh Air Raise-Type Shear (A) in situ on <strong>the</strong> 7940 ft. ramp and (B) in thin<br />

section. Bt, biotite; Chl, chlorite, Kfs, K feldspar.<br />

In thin section, <strong>the</strong> Fresh Air Raise-type Shear Zone contains a high proportion <strong>of</strong> quartz, biotite<br />

and microcline and a lesser amount <strong>of</strong> plagioclase, chlorite, amphibole and opaque minerals.<br />

Biotite grains show a preferential alignment and create an intermittent fabric within <strong>the</strong> specimen<br />

30


(Fig. 2.12B). Reduction <strong>of</strong> quartz grain size occurs in shear bands. Within <strong>the</strong> Fresh Air Raisetype<br />

Shear Zone <strong>the</strong>re is evidence <strong>of</strong> high strain but little evidence <strong>of</strong> shearing, though this has<br />

been named a shear zone by mine staff. As a result, sense-<strong>of</strong>-shear was not determined for <strong>the</strong><br />

Fresh Air Raise-Type Shear Zone.<br />

2.3.10 Splays and Minor Shear Zones<br />

The best-exposed splay fault between shears <strong>of</strong> <strong>the</strong> 118-System is <strong>the</strong> Grizzly Shear Zone,<br />

exposed on <strong>the</strong> 7400 Level (Fig. 2.5). It is a minor shear zone, adjacent to mapped splays and<br />

links <strong>the</strong> Plum Shear Zone and Fresh Air Raise Shear Zone. The Grizzly Shear Zone strikes<br />

nor<strong>the</strong>ast, dips steeply 75° to <strong>the</strong> sou<strong>the</strong>ast and measures approximately 50 cm in width. It has a<br />

well-developed biotite schistosity with biotite mineral lineations that trend to <strong>the</strong> southwest and<br />

plunge approximately 55°. Near-horizontal crenulations deform <strong>the</strong> shear zone foliation. The<br />

Grizzly Shear Zone forms a sharp contact with its hosting granite and contains boudinaged wall<br />

rock.<br />

The shear zone is cohesive but a 2-3 mm aperture occurs at <strong>the</strong> easternmost schist-granite<br />

boundary. This extension may not necessarily represent tectonic extension but ra<strong>the</strong>r unclamping<br />

<strong>of</strong> <strong>the</strong> confining rock due to <strong>the</strong> close proximity <strong>of</strong> <strong>the</strong> shear zone to an excavation (a drift).<br />

In thin section <strong>the</strong> Grizzly Shear Zone contains biotite, chlorite and plagioclase with minor<br />

amounts <strong>of</strong> quartz, calcite and K-feldspar. The shear zone fabric is defined by biotite that weaves<br />

around larger plagioclase grains (Fig. 2.13A). Chlorite found within <strong>the</strong> Grizzly Shear Zone does<br />

not contribute to <strong>the</strong> specimen fabric.<br />

Reverse-sense top-to-<strong>the</strong>-northwest displacement is interpreted from sheared granite boudins (Fig.<br />

2.13B, C), as well as <strong>of</strong>fset granite veins.<br />

31


Figure 2.13 (A) The Grizzly Splay shown in thin section. Bt, biotite; Chl, chlorite; Pl, plagioclase; (B) The<br />

Grizzly Splay as observed on <strong>the</strong> 7400 Level. Shearing <strong>of</strong> granitic boudins indicates reverse-sense<br />

displacement; (C) sketch <strong>of</strong> boudins within <strong>the</strong> Grizzly Splay.<br />

The 461 Shear Zone is ano<strong>the</strong>r splay fault and links <strong>the</strong> 402 Shear Zone and <strong>the</strong> Return Air Raise<br />

Shear Zone (Fig. 2.5). This splay is no longer visible due to limited access and shotcrete, but has<br />

been previously mapped as a 0.6 – 1.2 m wide zone <strong>of</strong> well-developed biotite-rich schistosity<br />

(Vale Inco). The shear zone is ore-controlling and hosts <strong>the</strong> 461 Orebody. Minor shear zones in<br />

<strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> 461 Shear are described as having reverse sense-<strong>of</strong>-shear (Siddorn, 2006).<br />

Minor centimetre-scale shear zones occur parallel to <strong>the</strong> 118-Shear System and at locations <strong>of</strong><br />

competency contrasts such as lithological contacts or along dyke margins.<br />

32


2.3.11 Late-Stage Fractures<br />

The youngest features in Creighton Mine are late-stage fractures (Cochrane, 1991). These<br />

fractures crosscut steeper-dipping foliation and fault fabrics, postdating shear zone formation.<br />

Subhorizontal shear fractures (apparent orientation in face) and fractures filled with quartzcarbonate<br />

material show evidence <strong>of</strong> small centimetre-scale displacement. Slickenlines are<br />

observed along fractures found between <strong>the</strong> 402 and Return Air Raise Shear Zones on <strong>the</strong> 7810<br />

Level, though direction <strong>of</strong> motion cannot be discerned. Reverse <strong>of</strong>fset was noted along filled<br />

fractures in this location (Fig. 2.14A, B). Displacement along shallow fractures, such as those<br />

shown in Figures 2.14C and D, are observed in many locations throughout <strong>the</strong> mine. Sense <strong>of</strong><br />

displacement can not always be discerned (Fig. 2.14D).<br />

Figure 2.14: Shallow shear fractures in Creighton Deep. (A) Secondary fractures and displacement occur<br />

oblique to shear zone foliation; (B) oblique relationships are shown in sketch <strong>of</strong> photograph in A; (C)<br />

shallow-dipping fractures truncate veins; (D) feature orientations are depicted in a sketch <strong>of</strong> photograph in<br />

C. Direction <strong>of</strong> displacement is unknown.<br />

33


2.4 Discussion: Fault Reactivation<br />

Identifying shear zone paleokinematics is <strong>of</strong> great importance to understanding ore distribution for<br />

mine planning and establishing tectonic heredity and fault character; neokinematic relationships,<br />

however, are <strong>of</strong> importance for studying mining-induced fault reactivation and seismicity.<br />

Significant differences in <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> shear zones in <strong>the</strong> Creighton Deep at <strong>the</strong> time <strong>of</strong><br />

<strong>the</strong>ir formation and in <strong>the</strong>ir present state are discussed in this section.<br />

2.4.1 Geometric and kinematic summary<br />

Faults in Creighton Mine were formed as ductile shear zones. This is demonstrated by <strong>the</strong><br />

development <strong>of</strong> a strong foliation, mylonite and ultramylonite textures, mineral elongation<br />

lineations and rotation <strong>of</strong> inclusions. The Footwall Shear Zone, shear zones <strong>of</strong> <strong>the</strong> 118 System<br />

and splays between <strong>the</strong> 118 System shear zones have ductile, reverse-sense component <strong>of</strong> shear<br />

(Fig 2.15).<br />

Figure 2.15: Block model depicting geometry and paleokinematics <strong>of</strong> mine-scale faults in <strong>the</strong> Creighton<br />

Deep, with respect to grid-north and possible paleo-reactivation sense <strong>of</strong> faults.<br />

Seismogenic mining-induced reactivation <strong>of</strong> shear zones occurs as brittle failures, releasing<br />

energy through <strong>the</strong> breaking <strong>of</strong> asperities and frictional sliding (Scholz, 2002: p. 43-52).<br />

Examination <strong>of</strong> microstructures shows that shear zones are healed with little evidence <strong>of</strong> brittle<br />

34


overprinting (Cochrane, 1991; Coulson 1996). Observed examples <strong>of</strong> brittle reactivation within<br />

<strong>the</strong> shear zones include:<br />

<br />

Horizontal slickensides along <strong>the</strong> 400-East Shear Zone. These indicate lateral movement,<br />

overprinting previous vertical displacement.<br />

<br />

Brittle fracturing <strong>of</strong> shotcrete along <strong>the</strong> strike <strong>of</strong> <strong>the</strong> Return Air Raise (2.9A, B) and<br />

Footwall Shear Zones.<br />

<br />

Extension in proximity to <strong>the</strong> Grizzly Shear Zone. This is likely <strong>the</strong> result <strong>of</strong> unloading<br />

induced by excavation <strong>of</strong> a nearby drift.<br />

<br />

Normal-sense movement along fractures in proximity to <strong>the</strong> Plum Shear Zone, as<br />

indicated by displaced dykes and slickensides along <strong>the</strong> fracture surface (2.10A-H). This<br />

overprints previous ductile, reverse-sense motion along <strong>the</strong> fracture as indicated by rock<br />

shear-sense indicators.<br />

<br />

Late-stage brittle fractures that intersect and displace shear zones (Fig 2.14). Offset<br />

fractures are observed in <strong>the</strong> Fresh Air Raise-type Shear Zone (Fig. 2.12B).<br />

The geometry <strong>of</strong> brittle features is incompatible within a single stress regime, requiring a change<br />

in far-field stresses to have occurred. Previous work by Cochrane (1991) on levels above <strong>the</strong><br />

Creighton Deep indicates that late-stage faults in Creighton Mine have strike-slip displacement,<br />

overprinting earlier reverse-sense displacement that is recorded by ductile features within <strong>the</strong><br />

shear zones. This is supported by near-horizontal slickenlines along late-stage features, similar to<br />

those are observed along <strong>the</strong> 400-East Shear Zone. Sense-<strong>of</strong>-shear along late-stage faults was not<br />

determined by Cochrane (1991).<br />

35


2.4.2 Evolving Stress System in <strong>the</strong> Sudbury Basin<br />

The geometry and kinematics <strong>of</strong> <strong>the</strong> shear zones in <strong>the</strong> Creighton Deep are not compatible with<br />

ei<strong>the</strong>r <strong>the</strong> Andersonian (Anderson, 1951) or Riedel faulting model (Freund, 1974), particularly <strong>the</strong><br />

reverse sense along <strong>the</strong> NW-trending Footwall Shear Zone.<br />

Fault geometry and kinematics<br />

within Creighton Mine are best explained by an evolving stress system. Table 2.4 summarizes<br />

tectonic events that have affected <strong>the</strong> Sudbury Basin.<br />

Changes in <strong>the</strong> stress tensor are recorded in <strong>the</strong> tectonic history <strong>of</strong> regional-scale faults. The<br />

Creighton Fault was formed as a normal fault and was reactivated as a reverse fault during <strong>the</strong><br />

Penokean Orogeny and subsequently reactivated as a strike-slip fault in <strong>the</strong> Neoproterozoic<br />

(Zolnai et al., 1984; Rousell et al., 1997; Table 2.4). Such changes along regional-scale faults<br />

may provide insight into <strong>the</strong> faulting history <strong>of</strong> mine-scale shear zones in <strong>the</strong> Creighton Deep, as<br />

shown in Table 2.4, though ages for mine-scale shear zones in Creighton Mine are unknown. An<br />

age <strong>of</strong> 1.7-1.6 Ga was determined by Bailey et al. (2004) for steeply-dipping reverse-sense shear<br />

zones in <strong>the</strong> Thayer Lindsley mine, also located on <strong>the</strong> sou<strong>the</strong>rn rim <strong>of</strong> <strong>the</strong> Sudbury Igneous<br />

Complex. Similar to shear zones in <strong>the</strong> Creighton Deep, <strong>the</strong> Thayer Lindsley shear zones are<br />

steeply-dipping, strongly-foliated, and biotite-rich and have mineral lineations with steep rakes.<br />

The Thayer Lindsley shear zones are associated with <strong>the</strong> South Range Shear Zone (Fig. 2.1),<br />

whose formation has been linked to <strong>the</strong> Mazatzal and Labradorian Orogenies (Bailey et al., 2004)<br />

and Penokean Orogeny (Shanks and Schwerdtner 1991).<br />

36


Table 2.4: Summary <strong>of</strong> Proterozoic tectonic events, modified from Rousell et al., 1997<br />

37


The 1290 Shear Zone and <strong>the</strong> 118 System shear zones were fit to a Riedel model in previous work<br />

based on ductile shear-sense indicators observed in <strong>the</strong> Creighton Deep (Siddorn, 2006; Fig. 2.16).<br />

Figure 2.16: Riedel Model <strong>of</strong> 1290 and 118-System shear zones, modified from Siddorn (2006).<br />

In this model, shortening along shear zones <strong>of</strong> <strong>the</strong> 118 Shear System and lateral motion along <strong>the</strong><br />

1290 Shear Zone are accounted for by NW-SE directed compression. This is compatible with <strong>the</strong><br />

maximum principal stress direction and regional fault style during <strong>the</strong> Penokean Orogeny and<br />

during <strong>the</strong> formation <strong>of</strong> <strong>the</strong> South Range Shear Zone (Fig. 2.17).<br />

Figure 2.17: NW-SE Penokean compression, possibly responsible for forming 1290 and 118 System<br />

shear zones, as shown in <strong>the</strong> top left Riedel model.<br />

Oblique-reverse motion along <strong>the</strong> Footwall Shear does not fit <strong>the</strong> Riedel configuration, suggesting<br />

multiple periods <strong>of</strong> fault activity. The apparent <strong>of</strong>fset 1290 Shear Zone by <strong>the</strong> Footwall Shear<br />

Zone fur<strong>the</strong>r supports this. Late-stage lateral-sense motion along steeply-dipping faults is<br />

compatible with a maximum principal stress direction oriented NNW-SSE (Cochrane, 1991).<br />

38


Both <strong>of</strong> <strong>the</strong>se inferred stress directions differ from <strong>the</strong> current stress tensor in which <strong>the</strong> maximum<br />

principal stress is oriented E-W and <strong>the</strong> minimal principal stress is near-vertical (Cochrane, 1991;<br />

Coulson, 1996; Malek et al., 2008). According to Anderson (1951), this configuration <strong>of</strong><br />

maximum principal stresses should produce reverse faults. In <strong>the</strong> absence <strong>of</strong> high pore fluid<br />

pressure, it is unlikely that <strong>the</strong> steeply-dipping SW-striking shear zones in Creighton Mine could<br />

be reactivated in a reverse sense (Sibson, 1988).<br />

The medium and intermediate stresses at Creighton Mine are similar in magnitude (Coulson,<br />

1996). Inversion <strong>of</strong> <strong>the</strong> intermediate and minimum stresses would favor strike slip failure, which<br />

is possible if faults are in a state <strong>of</strong> critical stability, as proposed by McKinnon (2006). Mininginduced<br />

perturbations to <strong>the</strong> regional stress tensor are likely to produce ei<strong>the</strong>r extensional failures<br />

via reduction <strong>of</strong> normal force on shear zones (unclamping) incurred by rock extraction or stressinduced<br />

strike-slip faulting. Failure mechanisms are explored through microseismic analysis<br />

presented in <strong>the</strong> Chapter 3.<br />

39


Chapter 3<br />

Mining-induced Seismicity<br />

3.1 Creighton Mine Seismic Monitoring Systems<br />

Seismic monitoring <strong>of</strong>fers <strong>the</strong> best insight into current rock mass damage processes and failure<br />

related to mining-induced fault reactivation. Brittle failures can be recorded in real-time as<br />

seismic events. These can be located within an array <strong>of</strong> sensors, and source parameters can be<br />

calculated for each event.<br />

The Creighton Mine currently experiences high rates <strong>of</strong> seismicity, averaging over 70 events per<br />

day. Two seismic systems are in operation at Creighton Mine to detect <strong>the</strong>se events: The<br />

Engineering Seismology Group (ESG) Hyperion Microseismic System (HMS), and a strong<br />

motion Hyperion Digital Drum Recorder (HDDR) system.<br />

The microseismic system consists <strong>of</strong> 88 channels occupied by 10 triaxial accelerometers<br />

(consuming 3 channels each) and 49 uniaxial accelerometers, leaving 9 channels free for<br />

expansion. The HMS sensors are distributed mine-wide. The system records full waveforms,<br />

allowing for <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> hypocenter location, magnitude and o<strong>the</strong>r source parameters.<br />

The HDDR system is a strong motion system and consists <strong>of</strong> one geophone on <strong>the</strong> earth surface.<br />

This system is reserved for <strong>the</strong> detection <strong>of</strong> larger magnitude events, above 0 m N on <strong>the</strong> Nuttli<br />

Scale used by <strong>the</strong> Geological Survey <strong>of</strong> Canada, which saturate <strong>the</strong> microseismic system. The<br />

HDDR system is used to obtain a magnitude for such events. Three triaxial geophones on surface<br />

40


are, at this time, in <strong>the</strong> process <strong>of</strong> being calibrated with <strong>the</strong> HDDR, which will allow for source<br />

parameters to be calculated for each macroseismic event in <strong>the</strong> future.<br />

3.2 Event Characterization and Classification<br />

Seismic events can be simply described in terms <strong>of</strong> location, time <strong>of</strong> occurrence and magnitude.<br />

The events can be classified as microseismic events, macroseismic events or blasts. Microseismic<br />

events have magnitudes less than 0 m N . Macroseismic events have magnitudes greater than 0 m N .<br />

Such events are ei<strong>the</strong>r large seismic events or rockbursts that are detected by <strong>the</strong> HDDR system.<br />

Mining-induced events (microseismic and macroseismic) can be fur<strong>the</strong>r classified by <strong>the</strong>ir<br />

triggering mechanisms. Within <strong>the</strong> study area, two types <strong>of</strong> microseismic events are observed. 1)<br />

Blast-induced events can be categorized as development or production-related events. Events<br />

related to development cluster around drifts and progress in time and space with <strong>the</strong> development<br />

<strong>of</strong> mine infrastructure (Fig. 3.1A). Events related to production are more energetic and cluster<br />

spatially and temporally around blast sites (Fig. 3.1B). Blast-induced events occur immediately<br />

following a blast and dissipate quickly. 2) Stress-induced events are more randomly distributed.<br />

They occur at larger time delays following blasts, <strong>of</strong>ten hours or days. Such events are generally<br />

located remote from excavations and are <strong>of</strong>ten associated with geological structure though <strong>the</strong>y<br />

need not be related. It is this second category that is <strong>of</strong> interest since <strong>the</strong> time and location <strong>of</strong> such<br />

events are not predictable. Within Creighton Mine such events occur in a distinct zone<br />

surrounding <strong>the</strong> main excavation.<br />

41


Figure 3.1 (A) Plan view <strong>of</strong> events related to development blasts (blasts not shown) along <strong>the</strong> 7810<br />

exploration drift; and (B) production blast-induced events related to blasting in <strong>the</strong> 4247 Sill.<br />

Full waveform recording allows for <strong>the</strong> calculation <strong>of</strong> additional seismic event parameters from<br />

waveforms recorded in <strong>the</strong> time domain or from spectra in <strong>the</strong> frequency domain (Gibowicz and<br />

Kijko, 1994; Mendecki, 1997). At Creighton Mine, parameter calculation is <strong>of</strong>ten automated but<br />

occasionally done manually (by selecting first arrivals). Calculated parameters include source<br />

radius, asperity radius, energy released, apparent stress and stress drop. The maximum particle<br />

displacement, velocity and acceleration can also be calculated from each waveform.<br />

3.2.1 Seismic Event Parameters<br />

A subset <strong>of</strong> 11,541 microseismic events that occurred between January 1, 2006 and December 31,<br />

2007 and between 7000 and 7600 feet depth was used to establish background seismic parameter<br />

values. This depth range eliminates dense activity related to development on deeper levels.<br />

Events having location errors greater than 30 feet were filtered from <strong>the</strong> dataset to avoid intrinsic<br />

error in calculated source parameters. Within this block, seismicity pertaining to <strong>the</strong> 7200 Level,<br />

7400 Level and 7530 Level was examined for spatial and temporal trends. Trends in seismic<br />

event parameters were also assessed.<br />

42


Microseismic events <strong>of</strong> this subset have an average location error <strong>of</strong> 18 feet. Events were<br />

recorded on average by 22 sensors (15 uniaxial and 6 triaxial sensors triggered on average) with<br />

<strong>the</strong> minimum condition <strong>of</strong> 8 sensors needed for an event to be recorded. Complete population<br />

statistics, including those for magnitude events and events identified as blasts can be found in<br />

Appendix B. These parameters are automatically calculated by <strong>the</strong> mine using ESG s<strong>of</strong>tware, and<br />

first arrivals for microseismic events are usually automated. Statistics for macroseismic events<br />

that are derived from <strong>the</strong> underground array may not reflect <strong>the</strong> true magnitude <strong>of</strong> <strong>the</strong> parameters<br />

because <strong>of</strong> waveform clipping for stronger events.<br />

3.2.1.1 Moment Magnitude (M)<br />

Three magnitude estimates are made for microseismic events: uniaxial magnitude, as determined<br />

from uniaxial sensors, triaxial magnitude and moment magnitude. Magnitudes in this <strong>the</strong>sis for<br />

microseismic events make reference to <strong>the</strong> moment magnitudes.<br />

Detected microseismic events within <strong>the</strong> study area range in magnitude from M = -2.3 to M = 0.8<br />

with a mean <strong>of</strong> M = - 1.09. The distribution <strong>of</strong> magnitudes peaks at M = -1.3 (Fig. 3.2). Below<br />

this magnitude a higher proportion <strong>of</strong> events is expected but events are not recorded due to <strong>the</strong><br />

detection threshold <strong>of</strong> <strong>the</strong> sensors and <strong>the</strong> minimum sensor requirement for recording events. The<br />

magnitude range can also be examined with <strong>the</strong> frequency-magnitude relation (Fig. 3.3). The<br />

shallow slope at low magnitudes demonstrates that events below M = -1.3 are infrequently<br />

recorded, though <strong>the</strong>se are expected to occur. Beyond M = 0.4 <strong>the</strong> relation breaks down due to <strong>the</strong><br />

relative infrequency <strong>of</strong> larger events as well as <strong>the</strong> recording limitations <strong>of</strong> <strong>the</strong> sensors. At high<br />

magnitudes, sensors become saturated and recorded waveforms clipped. The effective range <strong>of</strong><br />

microseismic coverage is <strong>the</strong>refore between M = -1.3 and M = 0.4. Spatially, high-magnitude<br />

microseismic events do not show preferential clustering except near blast sites.<br />

43


Distribution <strong>of</strong> Microseismic Event<br />

Magnitudes<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-2.5<br />

-2.1<br />

-1.7<br />

-1.3<br />

-0.9<br />

-0.5<br />

-0.1<br />

0.3<br />

0.7<br />

Frequency<br />

Moment Magnitude<br />

Figure 3.2: Distribution <strong>of</strong> Microseismic Event Magnitudes between January 1, 2006 and December 31,<br />

2007 recorded between 7000 and 7600 feet depth.<br />

Magnitude-Frequency Relation<br />

4.5<br />

4.0<br />

Log(Cumulative Frequency/yr.)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

N = -1.12M + 2.53<br />

N = -1.77M + 2.27<br />

0.5<br />

0.0<br />

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0<br />

Magnitude (M)<br />

Figure 3.3: Frequency Magnitude Relation for microseismic events recorded between 7000 and 7600 feet<br />

during <strong>the</strong> January 2006-December 2007 period. N = cumulative number <strong>of</strong> events (logarithm). Trend lines<br />

have been added to show relation slope.<br />

44


3.2.1.2 Seismic Energy (E o ) and Seismic Moment (M o )<br />

The seismic moment (M o ) is a measure <strong>of</strong> event size and strength. Seismic energy, E o , is a<br />

measure <strong>of</strong> <strong>the</strong> total elastic energy radiated during fracture and frictional sliding (Gibowicz and<br />

Kijko, 1994; Mendecki, 1997).<br />

Microseismic events have lower energies and seismic moments compared to blasts or<br />

macroseismic events. This is also a spatial trend: events immediately west <strong>of</strong> <strong>the</strong> excavation in<br />

proximity to production blasts have high event energies and seismic moments (Fig. 3.4). Events<br />

located to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation have lower energies compared to blast-related events<br />

but higher energies as compared to <strong>the</strong> remaining events south to sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation.<br />

Figure 3.4: Map <strong>of</strong> <strong>the</strong> 7400 Level showing <strong>the</strong> distribution microseismic event energy. The excavated<br />

area is outlined in black. The colour <strong>of</strong> <strong>the</strong> event epicenters corresponds to event energy. The colour scale<br />

is logarithmic and represents energy in Joules.<br />

45


3.2.1.3 Energy Ratio, E s /E p<br />

The ratio <strong>of</strong> S-wave to P-wave energy (E s /E p ) is commonly used to identify source mechanisms.<br />

Events with high E s /E p ratios are most likely caused by shear failure along a geological structure<br />

while lower ratios may have a complex or dilational component <strong>of</strong> failure (Gibowicz and Kijko,<br />

1994). While traditionally <strong>the</strong> cut<strong>of</strong>f for E s /E p is 10 (Gibowicz et. al, 1991) for discriminating<br />

between extensional blast events (E s /E p 10), this value is too<br />

large to discriminate between shear and extensional microseismic events. A cut-<strong>of</strong>f <strong>of</strong> E s /E p = 5 is<br />

deemed appropriate for Creighton Mine because <strong>the</strong> mean E s /E p <strong>of</strong> microseismic events is 8.6, for<br />

macroseismic events is 16.3, and for blasts is 6.2 (Fig. 3.5). Previous work in Creighton Mine by<br />

Vasak (n.d.) also deems an E s /E p ratio <strong>of</strong> 5 to be appropriate for Creighton Mine. Microseismic<br />

events having high E s /E p are randomly distributed, ra<strong>the</strong>r than being located along large<br />

discontinuities as would be expected from fault slip. No spatial trends were identified for events<br />

between <strong>the</strong> 7200 and 7530 Levels and thus no correlations between E s /E p and geological structure<br />

are made. Spatial distributions <strong>of</strong> detected E s/ E p events can be found in Appendix B.<br />

Frequency (% <strong>of</strong> total)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

2006 Blast and Event Distribution (% <strong>of</strong> Total)<br />

Blasts<br />

Events<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Es/Ep<br />

Figure 3.5: Es/Ep ratios measured for 2006 events and blasts. The cut-<strong>of</strong>f <strong>of</strong> 5 is shown by <strong>the</strong> dashed line.<br />

46


3.2.1.4 Stress Parameters<br />

Stress parameters quantified from event spectra (Mendecki, 1997) include static stress drop,<br />

dynamic stress drop and apparent stress. Static stress drop,<br />

, is defined as <strong>the</strong> average<br />

difference between <strong>the</strong> initial and final stress levels over a fault plane (Gibowicz and Kijko,<br />

1994). Dynamic stress drop, <br />

d<br />

, is <strong>the</strong> effective stress representing <strong>the</strong> difference between <strong>the</strong><br />

initial stress and <strong>the</strong> kinetic friction level on a fault (Gibowicz and Kijko, 1994). The apparent<br />

stress, is proportional to both <strong>the</strong> seismic energy and <strong>the</strong> seismic moment:<br />

a<br />

, (Equation 3.1)<br />

where μ is <strong>the</strong> shear modulus <strong>of</strong> <strong>the</strong> source medium, E is <strong>the</strong> seismic energy and M o is <strong>the</strong> seismic<br />

moment. The distribution <strong>of</strong> event stress parameters displays similar spatial trends as energy and<br />

seismic moment with low parameter magnitudes to <strong>the</strong> south and south east <strong>of</strong> <strong>the</strong> excavation,<br />

higher parameter magnitudes to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation, and elevated values where<br />

mining took place in <strong>the</strong> easternmost stopes during <strong>the</strong> time span under analysis (Appendix B).<br />

3.2.1.5 Source Dimensions<br />

Calculated source dimensions include source radius, r o , and asperity radius r a . These values are<br />

derived from spectral parameters and based on a dynamic circular fault model (Madariaga, 1976).<br />

Such calculations are thus highly dependent on modeled spectra (Gibowicz and Kijko, 1994).<br />

Large source radii occur to <strong>the</strong> west <strong>of</strong> <strong>the</strong> excavation. Clustered events to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong><br />

excavation have small source radii while low to intermediate values exist to <strong>the</strong> south and<br />

sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation. Asperity radii are largest to <strong>the</strong> east <strong>of</strong> <strong>the</strong> excavation and more<br />

variable south <strong>of</strong> <strong>the</strong> excavation away from blasting.<br />

47


3.2.1.6 Peak Acceleration Parameter, Velocity Parameter and Maximum Displacement<br />

Calculated motion parameters include peak acceleration, peak velocity and maximum<br />

displacement. The spatial distribution <strong>of</strong> stress parameters shows <strong>the</strong> same trends as <strong>the</strong> stress and<br />

source dimension parameters: low parameter values are observed to <strong>the</strong> south and sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong><br />

excavation; while higher parameter values are found to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation, and<br />

elevated values directly east <strong>of</strong> <strong>the</strong> excavation where blasting occurs.<br />

3.2.2 Spatial and Temporal Event Clustering<br />

Microseismic events tend to cluster spatially and temporally. Events that cluster in space and time<br />

can result from a localized increase in differential stress (Mendecki, 1997). Clusters <strong>of</strong><br />

microseismic events typically follow a large event, such as a rockburst or a blast.<br />

Spatial and temporal trends were studied in data surrounding <strong>the</strong> 7200, 7400 and 7530 levels.<br />

Levels below <strong>the</strong> 7530 Level were omitted from analysis since microseismic activity reflected<br />

development, making it difficult to distinguish between blast-induced and stress-induced events.<br />

Event frequency is observed to increase with depth, including <strong>the</strong> number <strong>of</strong> macroseismic events.<br />

Exceptionally high rates <strong>of</strong> seismicity on and below <strong>the</strong> 7680 Level reflect active level<br />

development in <strong>the</strong> Deep.<br />

Analysis is concentrated on events to <strong>the</strong> south <strong>of</strong> <strong>the</strong> 400 Orebody excavation (shown previously<br />

in Figure 2.5). This population has good sensor coverage, exhibits low location error and occurs<br />

away from blasts. Dense event clusters directly to <strong>the</strong> east and west <strong>of</strong> <strong>the</strong> excavation are<br />

attributed to production blasts from outward excavation (Fig. 3.6A). Events to <strong>the</strong> north <strong>of</strong> <strong>the</strong><br />

excavation are located outside <strong>the</strong> network, resulting in high location errors (Fig. 3.6A). Poorly<br />

48


located events were removed from clustering analyses by filtering events by error using a cut-<strong>of</strong>f<br />

<strong>of</strong> 30 feet. The distribution <strong>of</strong> macroseismic events is shown in Fig. 3.6B for comparison.<br />

Seismicity that is not directly related to blasting and extraction tends to occur south <strong>of</strong> and remote<br />

to <strong>the</strong> excavation. Microseismic events are mostly restricted to a distinct zone extending from <strong>the</strong><br />

sou<strong>the</strong>astern corner <strong>of</strong> <strong>the</strong> excavation to approximately 300 feet south <strong>of</strong> <strong>the</strong> excavation. Very<br />

little seismic activity occurs directly south, southwest and north <strong>of</strong> <strong>the</strong> excavation. These trends in<br />

seismicity pertaining to <strong>the</strong> 7200 Level, 7400 Level and 7530 Level are shown in Figure 3.7.<br />

Events do not tend to align with mapped geological structures but ra<strong>the</strong>r occur in proximity to<br />

both shears and openings. Events on <strong>the</strong> 7200 Level appear to align with <strong>the</strong> 402 Shear Zone but<br />

also occur in close proximity to excavations. Macroseismic events are <strong>of</strong>ten attributed to fault<br />

movement by mine staff. Macroseismic events within <strong>the</strong> study area appear randomly distributed<br />

and do not cluster or conform to geological structure (Fig. 3.6B). Areas <strong>of</strong> dense microseismic<br />

activity are generally related to <strong>the</strong>se events; spatial and temporal clustering <strong>of</strong> microseismic<br />

events tends to occur following a macroseismic event. Macroseismic events tend to have little to<br />

no precursory seismicity followed by high rates <strong>of</strong> seismicity that decay to background levels over<br />

a matter <strong>of</strong> hours or days, sometimes including additional macroseismic events. A review <strong>of</strong><br />

rockbursting in Creighton mine by Blake and Hedley (2003) agrees that macroseismic events in<br />

Creighton that are expressed as rockbursts are almost always unexpected; events do not occur at<br />

regular intervals and do not have seismic precursors.<br />

49


Figure 3.6: (A) Distribution <strong>of</strong> detected microseismic events during 2006-2007 surrounding 7400 Level.<br />

Colour scaling represents location error with warm colours indicating increased error. The 400 Orebody is<br />

located within <strong>the</strong> excavation and is outlined in Figure 2.5. The skew <strong>of</strong> production-related events reflects<br />

<strong>the</strong> position <strong>of</strong> events relative to microseismic network. Events having a high error are fur<strong>the</strong>r removed<br />

from <strong>the</strong> network; (B) Distribution <strong>of</strong> macroseismic events surrounding 7400 Level.<br />

50


Figure 3.7: Detected seismicity corresponding to levels 7200, 7400 and 7530 respectively. Events have<br />

been filtered by location error (< 30 ft.) and by depth and are restricted 50 feet above and below <strong>the</strong> level.<br />

Colour scaling represents moment magnitudes between M= -1.5 and M= 0.5.<br />

51


A dense event cluster occurs in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> 461 orebody (orebody shown in Fig. 2.4A, B),<br />

which is hosted in <strong>the</strong> 461 Splay that connects <strong>the</strong> 402 and Return Air Raise shear zones. This is<br />

represented by clustering about <strong>the</strong> 461 Orebody on <strong>the</strong> 7530 level and is also reflected on <strong>the</strong><br />

7400 Level (Fig. 3.7). 461-related seismicity does not cluster temporally but occurs sporadically<br />

throughout <strong>the</strong> 2006-2007 time interval, contemporaneously with events to <strong>the</strong> east in <strong>the</strong> active<br />

zone. Seismicity in this vicinity has also intensified from 2002-2007. This cluster is discussed in<br />

<strong>the</strong> following sections.<br />

3.2.3 Cluster Analysis for <strong>the</strong> 7400 Level<br />

The degree <strong>of</strong> damage in a rock mass can have a dramatic effect on <strong>the</strong> properties <strong>of</strong> <strong>the</strong> seismic<br />

waves emitted from microseismic sources, notably on wave velocity and attenuation (Feustel,<br />

1998). Such changes have been used to describe <strong>the</strong> rock mass character. Lower velocity and<br />

higher attenuation is recorded in a heavily fractured rock mass as compared to a homogeneous and<br />

unfractured rock mass (Feustel, 1998). Given this, it is expected that <strong>the</strong> state <strong>of</strong> damage in <strong>the</strong><br />

rock mass would also have a noticeable effect on source parameters, most <strong>of</strong> which are calculated<br />

directly or indirectly from <strong>the</strong> recorded waveforms. Temporal trends in seismic event parameters<br />

can approximate loading curves similar to those traced in acoustic emission tests (Coulson and<br />

Bawden, 2008). Such curves indicate that at <strong>the</strong> point <strong>of</strong> fracture initiation, <strong>the</strong> moment<br />

magnitude, seismic moment, seismic energy and apparent stress increase until <strong>the</strong> point <strong>of</strong> yield,<br />

at which point fractures coalesce and <strong>the</strong>re is a significant drop in parameter values (Coulson and<br />

Bawden, 2008). The source radius and source complexity (ratio <strong>of</strong> dynamic stress drop to static<br />

stress drop) show a decrease in parameter values during loading and a sudden increase as <strong>the</strong> rock<br />

mass yields. Following this, characteristics <strong>of</strong> events in an intact and fractured rockmass are<br />

summarized in Table 3.1.<br />

52


Table 3.1: Event characteristics in an intact and fractured rock mass<br />

Events in intact rock mass (loading)<br />

• High moment magnitude, M • Low M<br />

• High seismic energy, E o • Low E o<br />

• High seismic moment, M o • Low M o<br />

• High apparent stresses, σ a • Low σ a<br />

• Low source radius, R o • High R o<br />

• Comparable dynamic and static stress drop<br />

values (low complexity)<br />

Events in yielded rock mass (post-peak)<br />

• High dynamic stress drop as compared to static<br />

stress drop (high complexity)<br />

Spatial and temporal analysis <strong>of</strong> microseismic event parameters was conducted to identify trends<br />

and assess rockmass properties on levels 7200, 7400 and 7530. Temporal analysis <strong>of</strong> levels and<br />

clustered events on <strong>the</strong> 7400 Level did not reveal any significant trends (temporal parameter<br />

results can be found in Appendix B) but did reveal comparable spatial event distributions: dense<br />

seismicity extends from <strong>the</strong> sou<strong>the</strong>astern corner <strong>of</strong> <strong>the</strong> excavation to an area southwest <strong>of</strong> <strong>the</strong><br />

excavation (Fig. 3.7). Events in this area occur sporadically during <strong>the</strong> two-year time period. It is<br />

postulated that in <strong>the</strong> Creighton Deep <strong>the</strong> microseismic event distribution as well as <strong>the</strong> event<br />

parameters reflect both local stress conditions and <strong>the</strong> physical state <strong>of</strong> <strong>the</strong> rock mass; heavily<br />

damaged rock is expected to be aseismic, whereas a actively yielding rock mass will result in<br />

denser seismic activity.<br />

Seismicity on 7400 Level is separated into three distinct clusters (Table 3.2, Fig. 3.8). The first<br />

cluster (Cluster 1) is located to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation. Cluster 1 is <strong>the</strong> densest cluster and<br />

has a markedly different seismic character from <strong>the</strong> o<strong>the</strong>r clusters. Cluster 1 contains elevated<br />

source parameter values for seismic moment, energy, apparent stress, stress drop as well as<br />

particle motion parameters that are well above background levels (Table 3.3).<br />

53


Clusters 2 and 3 are located to <strong>the</strong> south and sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation and generally have lower<br />

source parameter values that are nearer to background levels. The implications <strong>of</strong> this are<br />

discussed in section 3.2.4.<br />

Table 3.2: Spatial cluster positions<br />

Range Cluster 1 Cluster 2 Cluster 3<br />

Northing (ft.) 6090-6273 6155-6270 6130-6225<br />

Easting (ft.) 4250-4440 4560-4670 4685-4810<br />

Depth (ft.) 7350-7450 7350-7450 7350-7450<br />

Figure 3.8: Three clusters are isolated for events between January 1, 2006 and December 31, 2007 located<br />

about <strong>the</strong> 7400 Level. Events cluster spatially but not temporally.<br />

54


Table 3.3: Summary <strong>of</strong> relevant parameter mean values and standard error for each cluster as compared to<br />

background parameter values. An asterisk (*) indicates <strong>the</strong> log <strong>of</strong> <strong>the</strong> values for scaling purposes.<br />

Parameter (Mean) Cluster 1 Cluster 2 Cluster 3 7400 Level Background<br />

Moment Magnitude (M) -1.11 ± 0.01 -1.28 ± 0.02 -1.37 ± 0.03 -1.11 ± 0.01 -1.09 ± 0.00<br />

Seismic Moment* (Nm) 7.70 ± 0.02 7.37 ± 0.03 7.23 ± 0.05 7.81 ± 0.02 7.79 ± 0.01<br />

Seismic Energy*, (J) 3.38 ± 0.04 1.73 ± 0.07 1.31 ± 0.08 2.63 ± 0.03 2.51 ± 0.01<br />

Source Radius (m) 2.10 ± 0.02 2.24 ± 0.04 2.55 ± 0.07 2.64 ± 0.02 2.71 ± 0.01<br />

Asperity Radius (m) 0.60 ± 0.01 0.59 ± 0.01 0.49 ± 0.01 0.66 ± 0.01 0.71 ± 0.00<br />

Es/Ep 8.89 ± 0.20 7.52 ± 0.28 9.42 ± 0.32 8.21 ± 0.18 8.62 ± 0.07<br />

Static Stress Drop* (Pa) 6.84 ± 0.02 6.11 ± 0.03 5.86 ± 0.04 6.05 ± 0.35 6.24 ± 0.09<br />

Dynamic Stress Drop* (Pa) 7.12 ± 0.02 6.50 ± 0.02 6.49 ± 0.03 6.88 ± 0.01 6.80 ± 0.01<br />

Apparent Stress* (Pa) 6.05 ± 0.02 4.92 ± 0.04 4.64 ± 0.05 5.37 ± 0.02 5.27 ± 0.01<br />

Maximum Displacement (m) -3.56 ± 0.02 -4.21 ± 0.03 -4.30 ± 0.04 -3.79 ± 0.01 -3.84 ± 0.01<br />

Peak Velocity Parameter (m/s) -1.36 ± 0.02 -2.01 ± 0.03 -2.09 ± 0.04 -1.59 ± 0.01 -1.62 ± 0.01<br />

Peak Acceleration Parameter<br />

(m/s 2 )<br />

6.02 ± 0.02 5.40 ± 0.02 5.39 ± 0.03 5.77 ± 0.01 5.70 ± 0.01<br />

3.2.4 Seismicity and Rockmass Degradation<br />

In <strong>the</strong> mine environment, high event rates and dense event spacing suggest progressive damage <strong>of</strong><br />

<strong>the</strong> rock mass and increased seismic hazard (Vasak et al., n.d.). The occurrence and<br />

characteristics <strong>of</strong> seismic events can be used as an indication <strong>of</strong> <strong>the</strong> physical state <strong>of</strong> <strong>the</strong> rock<br />

mass. Temporal trends in seismic event parameters indicate that <strong>the</strong> rockmass passes through five<br />

phases in <strong>the</strong> degradation process (Coulson and Bawden 2008):<br />

1. Crack closure and fracture initiation<br />

2. Fracture interaction<br />

3. Fracture coalescence (yield)<br />

4. Fracture localization (peak)<br />

5. Disassociation (post peak behaviour approaching <strong>the</strong> residual rockmass strength).<br />

Observations by Coulson and Bawden (2008) in several mines in Nor<strong>the</strong>rn Ontario demonstrate<br />

that <strong>the</strong> rock mass immediately surrounding an excavation is in a state <strong>of</strong> permanent strain<br />

(disassociation) and is aseismic. The rock mass fur<strong>the</strong>r from <strong>the</strong> excavation is continually<br />

55


fractured and behaves as a rock mass under pre-peak conditions. Similarly, <strong>the</strong> rock mass in <strong>the</strong><br />

Creighton Deep can be divided into three zones based on <strong>the</strong> characteristics <strong>of</strong> seismicity (Fig.<br />

3.9):<br />

Figure 3.9: Sketch depicting location<br />

<strong>of</strong> (A) Yield Zone, (B) Damage Zone<br />

and (C) Intact Zone. Major principal<br />

stress is oriented East-West<br />

a) Yield Zone<br />

The yield zone occurs adjacent to <strong>the</strong> excavation to <strong>the</strong> north and south. It is <strong>the</strong> result <strong>of</strong> damage<br />

directly incurred by mining. Here <strong>the</strong> rock mass has undergone seismic s<strong>of</strong>tening (sustained<br />

degradation through seismic activity) and is heavily fractured. Progressive damage has resulted in<br />

permanent strain, low stress and has rendered this zone aseismic. The shape <strong>of</strong> <strong>the</strong> damage zone<br />

reflects both <strong>the</strong> shape <strong>of</strong> <strong>the</strong> excavation and <strong>the</strong> stress tensor, in which <strong>the</strong> maximum principal<br />

stress is near-horizontal and oriented east-west.<br />

Little to no seismicity occurs immediately north or south <strong>of</strong> <strong>the</strong> excavation. The rock mass in this<br />

area is less confined and is expected to have been degraded by mining activity, classifying it as <strong>the</strong><br />

Yield Zone. Gravity-driven failure (fall <strong>of</strong> ground) occurs in this region and results from seismic<br />

shaking (Vale Inco, pers. comm., 2009).<br />

56


) Damage Zone<br />

The rock mass in <strong>the</strong> Damage Zone has been progressively weakened by continued seismicity.<br />

This area is subject to high stress and is a zone <strong>of</strong> fracture growth and localization. Rock<br />

undergoing strain s<strong>of</strong>tening has slow rupture velocities and results in small stress releases (small<br />

stress drops), low seismic moments as compared to failure, small energy releases (E o ) and small<br />

apparent stresses (Mendecki, 1997).<br />

Clusters 2 and 3 have seismic event parameters comparable to those expected in <strong>the</strong> Damage<br />

Zone. The rock mass in <strong>the</strong> vicinity <strong>of</strong> clusters 2 and 3 has been progressively degraded by<br />

seismic activity and is assigned to this zone. A series <strong>of</strong> rockbursts associated with unsupported<br />

ground surrounding old ventilation infrastructure contributes to seismicity in Cluster 3 (Vale Inco,<br />

pers. comm., 2009). This approximates post-peak conditions described by Coulson and Bawden<br />

(2008).<br />

c) Intact Zone<br />

The Intact Zone is remote from mining and <strong>the</strong> stress influence <strong>of</strong> <strong>the</strong> excavation. This zone is<br />

subject to background stresses and experiences low rates <strong>of</strong> seismic activity (<strong>the</strong> presence <strong>of</strong><br />

drifts, ramps etc. is not considered in this simplified model). Events occurring beyond <strong>the</strong><br />

nucleation zone have faster rupture velocities and are more energetic (Mendecki, 1997).<br />

Cluster 1 exhibits high seismic parameter values, as expected for <strong>the</strong> Intact Zone. Sustained<br />

seismicity (2000 through 2008) in this area corresponds to mining <strong>of</strong> <strong>the</strong> Plum Orebody (shown as<br />

<strong>the</strong> 6100 Orebody in Figure 2.4) on upper mine levels. An increase in event density in Cluster 1<br />

during <strong>the</strong> 2006-2007 time period corresponds to <strong>the</strong> onset <strong>of</strong> mining in <strong>the</strong> 461 Orebody (shown<br />

in Figure 2.4), which was mined in stopes from <strong>the</strong> 7680 Level to <strong>the</strong> 7755 Sublevel.<br />

57


The increase in event parameter values as compared to background values is associated with <strong>the</strong><br />

state <strong>of</strong> <strong>the</strong> rock mass. It is assumed that <strong>the</strong> rock mass in <strong>the</strong> vicinity <strong>of</strong> Cluster 1 prior to mining<br />

<strong>of</strong> <strong>the</strong> 461 Orebody was in an intact state and is now subject to stress loading. Induced stresses<br />

from <strong>the</strong> onset <strong>of</strong> mining in <strong>the</strong> 461 Orebody (Fig. 2.4A, B) stimulated fracture nucleation, growth<br />

and rupture. Seismicity in this zone represents an active transition from an intact rock mass to a<br />

damaged rock mass. Since this rock mass is remote to <strong>the</strong> main excavation, it has not been<br />

exposed to <strong>the</strong> prolonged induced stress <strong>of</strong> <strong>the</strong> excavation and thus has not yet degraded to <strong>the</strong><br />

state <strong>of</strong> <strong>the</strong> rock mass hosting clusters 2 and 3. This area continues to be a source <strong>of</strong> macroseismic<br />

events.<br />

3.3 Focal Mechanisms<br />

Recorded waveforms from mining-induced events can be utilized to characterize <strong>the</strong> failure mode<br />

at <strong>the</strong> source, known as <strong>the</strong> focal mechanism. Simple shear events can be characterized using<br />

fault plane solutions and more complex events can be described by <strong>the</strong> moment tensor.<br />

Information ga<strong>the</strong>red from <strong>the</strong>se methods can <strong>the</strong>n be used to estimate <strong>the</strong> stress tensor.<br />

3.3.1 Fault Plane Solutions<br />

Fault plane solutions are a graphical representation <strong>of</strong> a fault-slip event and integrate geological<br />

knowledge and seismic signals. Solutions are dependent on <strong>the</strong> polarity <strong>of</strong> P-wave first arrivals<br />

that are recorded at a number <strong>of</strong> stations. The focal mechanism can be represented on a stereonet<br />

(Fig. 3.10) by plotting first arrival polarities and fitting nodal planes to define compressional and<br />

dilatational quadrants. If <strong>the</strong> fault plane is unknown, <strong>the</strong> fault plane solution is ambiguous as two<br />

solution planes exist. Pressure axes (P-axes) are oriented in <strong>the</strong> direction <strong>of</strong> maximum<br />

compression, tension axes (T-axes) are orientated in <strong>the</strong> direction <strong>of</strong> maximum tension and null<br />

axes (B-axes) are oriented along <strong>the</strong> intersection <strong>of</strong> <strong>the</strong> nodal planes. P- and T-axes plot in <strong>the</strong><br />

58


quadrants <strong>of</strong> dilatation and compression, respectively) and are oriented orthogonal to each o<strong>the</strong>r<br />

and 45° to <strong>the</strong> nodal planes (Fig. 3.11; Stein and Wysession, 2003. P- and T-axes approximate<br />

maximum principal stresses, though <strong>the</strong>se can differ significantly if failure occurs along preexisting<br />

structure (Gephart and Forsyth, 1984).<br />

Figure 3.10: Block model <strong>of</strong> a shear-slip event and corresponding focal mechanism and waveforms,<br />

modified from Stein and Wysession, (2003).<br />

Solutions are limited to pure shear event mechanisms only, that is, mechanisms with doublecouple<br />

sources. Double couple (DC) sources have source radiation patterns that can be described<br />

by coupled forces with no net torque (Fig. 3.11; Stein and Wysession, 2003).<br />

Figure 3.11: (Left) coupled forces along fault and auxiliary planes; (middle) paired force couples (doublecouple);<br />

(right) resultant fault plane solution, where shaded quadrants are in compression. Modified from<br />

Stein and Wysession, (2003).<br />

Events involving interaction between more than one fracture, volume change and those having<br />

mixed mechanisms cannot be represented using <strong>the</strong> fault plane solution method (Miller et al.,<br />

1998; Stein and Wysession, 2003). Voids created by mining <strong>of</strong>ten cause extension and thus non-<br />

59


double couple events. As a result, a large number <strong>of</strong> events within <strong>the</strong> mine environment cannot<br />

be characterized with this method but are better represented as a moment tensor. A poor fit <strong>of</strong><br />

fault planes to plotted first arrivals may also arise as a result <strong>of</strong> <strong>the</strong> event being detected by a low<br />

number <strong>of</strong> sensors, poor first polarity picks, source location error or <strong>the</strong> homogeneous velocity<br />

model used by <strong>the</strong> mine. To relate microseismicity to structure, fault plane solutions for<br />

macroseismic and microseismic events corresponding to <strong>the</strong> 7400 Level were generated and<br />

analyzed for common faulting mechanisms.<br />

3.3.1.1 Fault plane solutions for macroseismic events<br />

Although macroseismic events saturate <strong>the</strong> underground network, first arrivals are well recorded<br />

and <strong>the</strong>ir polarities preserved, allowing for fault plane analysis. P-axes, T-axes and nodal planes<br />

were estimated for 93 events with adequate statistical and visual double-couple solutions. Fault<br />

plane solutions and calculated fits were generated using <strong>the</strong> grid search algorithm in <strong>the</strong> program<br />

VFps by <strong>the</strong> Engineering Seismology Group. This method returns <strong>the</strong> best fit (between 0 and<br />

100%) which has <strong>the</strong> least error. Events are located between <strong>the</strong> 7400 Level and 7810 Level but<br />

are mostly confined to <strong>the</strong> south <strong>of</strong> <strong>the</strong> main excavation on <strong>the</strong> 7400 and 7530 Levels. These<br />

occurred during <strong>the</strong> 2006-2007 time span. Plotted P- and T-axes and nodal planes for <strong>the</strong>se events<br />

do not show consistent axes or mechanism types (Fig. 3.12); poles to nodal planes do not form<br />

distinct clusters and no common axes are revealed (Fig. 3.13). A sample <strong>of</strong> fault plane solutions<br />

for macroseismic events corresponding to <strong>the</strong> 7400 Level is shown in Figure 3.14.<br />

60


Figure 3.12: Lower hemisphere equal area stereonet diagram depicting <strong>the</strong> orientation <strong>of</strong> (A) P-axes for<br />

macroseismic fault plane solutions; (B) T-axes for <strong>the</strong> same 96 events.<br />

Figure 3.13: Lower hemisphere equal area stereonet diagram depicting (A) Possible fault planes and (B)<br />

poles to planes for 93 mechanisms (186 planes and poles) for <strong>the</strong> 7400 Level.<br />

61


Figure 3.14: Sample fault plane solutions for macroseismic events corresponding to<br />

<strong>the</strong> 7400 Level, January – December 2007. Grey quadrants represent compression and<br />

white quadrants represent dilatation. Each triangle represents <strong>the</strong> polarity <strong>of</strong> <strong>the</strong> first<br />

arrival at a sensor.<br />

3.3.1.2 Fault plane solutions for microseismic events<br />

Fault plane solutions were generated for 196 microseismic events during <strong>the</strong> 2006 time period,<br />

belonging to <strong>the</strong> 7400 and 7530 Levels. Solution planes and axes for individual events can be<br />

found in Appendix C. The chosen events have low location errors (less than 30 feet), good<br />

statistical fits for fault planes as well as adequate visual fits. Fault plane solutions have an average<br />

fit <strong>of</strong> 77%. Fault plane solutions and calculated fits were generated using <strong>the</strong> program VFps by<br />

<strong>the</strong> Engineering Seismology Group. Discarded events include those that do not fit a doublecouple<br />

solution, events with poor focal sphere coverage and events with poor first polarity picks.<br />

P-axis, T-axis and B-axis attitudes (as shown on Fig. 3.11) plotted on a lower hemisphere<br />

stereonet form broad clusters (Fig. 3.15). Classification <strong>of</strong> failure modes using <strong>the</strong> focal<br />

62


mechanism shows that over 57% <strong>of</strong> <strong>the</strong> events have predominant strike-slip mechanisms (Fig.<br />

3.16) while <strong>the</strong> remaining mechanisms represent ei<strong>the</strong>r primarily reverse, dip-slip or strike-slip<br />

failures. Though fault mechanism types have little meaning in <strong>the</strong> underground environment, mechanism<br />

types show consistency. Strike-slip mechanisms share similar P- and T-axis orientations and have<br />

similar axis clusters as those plotted in Figure 3.15, suggesting slip along favourably oriented<br />

fractures. For such events, P-axes plunge shallowly to <strong>the</strong> west; T-axes trend plunge shallowly to<br />

<strong>the</strong> north; while B-axes are near vertical.<br />

The similarity in axis orientation suggests that while some slip occurs on randomly oriented<br />

fractures, lateral slip preferentially occurs on steeply dipping NNW or ENE striking<br />

discontinuities. No absolute discrimination between <strong>the</strong> fault plane and auxiliary plane can be<br />

made. The strike <strong>of</strong> <strong>the</strong> ENE-oriented fault plane solution is similar to <strong>the</strong> strike <strong>of</strong> <strong>the</strong> 118 Fault<br />

System, though <strong>the</strong> dip direction is opposite. If movement should occur along this ideal fault<br />

plane, <strong>the</strong> solution suggests that motion would be dextral. If strike-slip movement were to occur<br />

along <strong>the</strong> NNW-trending plane, motion would be sinistral. The representative mechanism, plotted<br />

using average P-, B- and T-axis orientations, is shown in Figure 3.17.<br />

63


Figure 3.15: Contoured focal mechanism axes for <strong>the</strong> 7400 and 7530 Level. Lower Hemisphere, Equal<br />

angle plots contain 196 points. (A) Contoured P-axes; (B) contoured B-axes; (C) and contoured T- axes.<br />

64


Figure 3.16: Classification <strong>of</strong> principal event mechanism type, levels 7400 and 7530.<br />

Figure 3.17: Approximate representative focal plane solution and corresponding fault plane solution<br />

kinematics based on average P-, B- and T-axis orientations. Shaded quadrants represent compression and<br />

white quadrants represent dilatation.<br />

65


Axes for event clusters 1 and 2 are presented for comparison in Figures 3.18 and 3.19. T-axes for<br />

Cluster 1 events have similar trends but steeper dips, while B-axis trends vary in orientation from<br />

NNE-trending and with shallow plunges to near-vertical.<br />

3.3.1.3 Fault Plane Solution Discussion<br />

Event mechanisms do not show a direct correlation to mine-scale faults. Event mechanism types<br />

are distributed over <strong>the</strong> study area (Fig. 3.20) and do not cluster or align with individual faults.<br />

The distribution <strong>of</strong> event mechanism types thus does not allow <strong>the</strong> neokinematics <strong>of</strong> specific faults<br />

to be determined and does not suggest fault activity.<br />

Microseismic event mechanisms show consistency in P- and T-axis orientations, suggesting<br />

reactivation <strong>of</strong> preferentially oriented fractures. Lack <strong>of</strong> consistency in macroseismic event<br />

solutions suggests that failure does not localize along shear zones in <strong>the</strong> Creighton Deep. This<br />

inconsistency instead indicates more variation in <strong>the</strong> geometry <strong>of</strong> failure surfaces. Alternatives to<br />

fault-slip are proposed:<br />

<br />

Macroseismic events may embody <strong>the</strong> breaking <strong>of</strong> asperities between existing fractures or<br />

weak zones. This can occur along variably oriented pathways and in different faulting<br />

styles.<br />

<br />

Joints and preexisting fractures in <strong>the</strong> rock mass may interact to form a slip radius<br />

sufficiently large to accommodate large magnitude events.<br />

Coulson (1996) postulated that slip between <strong>the</strong> 6600 and 7200 Levels in Creighton Mine<br />

occurred along networked joint planes ra<strong>the</strong>r than on faults. Coulson (1996) concluded that<br />

seismicity in <strong>the</strong> Creighton Deep is related to <strong>the</strong> rock mass joint fabric and is <strong>the</strong> result <strong>of</strong><br />

mining-induced stresses.<br />

66


Figure 3.18: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 1.<br />

67


Figure 3.19: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 2.<br />

68


Figure 3.20: Distribution <strong>of</strong> double-couple event mechanism types on <strong>the</strong> 7400 Level.<br />

In conducting fault plane solution analysis, a number <strong>of</strong> events were discarded that did not have<br />

adequate statistical or visual fits. Failure to fit a double-couple solution can be a result <strong>of</strong> ei<strong>the</strong>r<br />

(or both) <strong>the</strong> fault plane solution method or <strong>the</strong> physical failure process. Poor solution fits can be<br />

a result <strong>of</strong> poor focal sphere coverage, poor first arrival picks, uncertainty in first arrival polarities<br />

or insufficient polarity information (Urbancic and Young, 1995).<br />

Poor solution fits can also be obtained if <strong>the</strong> solutions do not have a double-couple solution. Nondouble-couple<br />

solutions are a result <strong>of</strong> <strong>the</strong> physical failure process and occur when <strong>the</strong> moment<br />

tensor contains components o<strong>the</strong>r than pure shear, such as volume change. Blasts, for example,<br />

cause large volumetric changes and result in non-double-couple mechanisms. Deviations from <strong>the</strong><br />

double-couple solution are expected in <strong>the</strong> mining environment since a number <strong>of</strong> free surfaces<br />

exist along which fractures can interact during failure. Intersections <strong>of</strong> fractures and openings,<br />

complex interactions between fractures as well as closely spaced failures in time and space are<br />

69


expected to be responsible for a large number <strong>of</strong> non-double-couple mechanisms observed in<br />

Creighton Mine.<br />

3.4 Stress Tensor Inversion<br />

P-, T- and B-axes derived from focal mechanisms can be used as a crude approximation to<br />

principal stress orientations. Axes represent <strong>the</strong> ideal stress orientations for a given solution. In<br />

<strong>the</strong> presence <strong>of</strong> preexisting fractures, <strong>the</strong> maximum principal stresses may differ significantly<br />

from P- and T-axes and be oriented elsewhere in compressional and dilatational quadrants<br />

(Gephart and Forsyth, 1984). Indeed in Creighton Mine faults and fractures are oriented obliquely<br />

to principal stress directions, which may cause <strong>the</strong> P-, T- and B-axes to differ from principal stress<br />

orientations.<br />

One way to resolve <strong>the</strong> local stress tensor is through stress tensor inversion. Inversion was done<br />

with s<strong>of</strong>tware developed by Gephart (1990). Details <strong>of</strong> <strong>the</strong> inversion method are described in<br />

Gephart and Forsyth (1984) and <strong>the</strong> program is presented in Gephart (1990). The s<strong>of</strong>tware makes<br />

use <strong>of</strong> P- and T-axis measurements and compares different solutions to find <strong>the</strong> best fit between<br />

<strong>the</strong> predicted model and actual data with minimal error.<br />

P- and T-axes from 95 focal mechanisms for events located in proximity to <strong>the</strong> 7400 Level were<br />

used for inversion. Results from this inversion indicate that <strong>the</strong> maximum principal stress is near<br />

horizontal and oriented E-W and <strong>the</strong> minimum principal stress trends SSE and has a moderate<br />

plunge (Fig. 3.20). The best model was that with a minimum misfit <strong>of</strong> 10.62º (Fig. 3.21). The<br />

parameter R ranges between 0 and 1 and is defined as:<br />

<br />

<br />

2 1<br />

R (Gephart and Forsyth, 1984). (Equation 3.2)<br />

3<br />

1<br />

70


This parameter reflects <strong>the</strong> magnitude <strong>of</strong> intermediate principal stress relative to <strong>the</strong> maximum or<br />

minimum principal stress (Bellier and Zoback, 1995). As <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> intermediate<br />

principal stress approaches that <strong>of</strong> <strong>the</strong> maximum principal stress, R approaches 0 and is indicative<br />

<strong>of</strong> an extensional stress regime; as it approaches <strong>the</strong> minimum principal stress, R approaches 1 and<br />

<strong>the</strong> rock is increasingly confined, indicative <strong>of</strong> a compressional regime (Bellier and Zoback, 1995;<br />

Bellier et al., 1997). Inversion for events on <strong>the</strong> 7400 Level yields R = 0.5 which indicates pure<br />

strike-slip failure.<br />

Stress orientations are comparable to <strong>the</strong> regional stress tensor, discussed in section 3.4.1. Stress<br />

inversion was also performed for localized clusters <strong>of</strong> events, Cluster 1 and Cluster 2, as<br />

previously defined. This was conducted using <strong>the</strong> exact solution method (described in Gephart<br />

and Forsyth, 1984) and a two-degree grid to identify perturbations in <strong>the</strong> local stress field where<br />

dense seismicity occurs. Cluster 3 was omitted from analysis due to insufficient data. Principal<br />

stresses for Cluster 2 approximate those for <strong>the</strong> 7400 Level stress inversion and <strong>the</strong> regional stress<br />

(Fig. 3.22). Principal stresses for Cluster 1, however, differ significantly from <strong>the</strong> regional stress.<br />

The inversion results with <strong>the</strong> minimal misfit identify a steeply-plunging maximum principal<br />

stress and a near-horizontal minimum principal stress (Fig. 3.23). An additional minimum<br />

principal stress axis that trends north is also identified. A second stress inversion for Cluster 1<br />

events (Fig. 3.24) shows two distinct stress orientations, though this solution has a slightly higher<br />

misfit from <strong>the</strong> previous solution (8.12 o , as compared to 7.63 o ). R parameter values for Cluster 1<br />

<strong>of</strong> 0.05 and 0.10, respectively, demonstrate that <strong>the</strong> rock mass is under extension (uniaxial<br />

eccentric compression). Rotation <strong>of</strong> <strong>the</strong> stress tensor in proximity to Cluster 1 may be responsible<br />

for high magnitude, high energy events, though <strong>the</strong> cause for this change is unclear.<br />

71


Figure 3.21: Results <strong>of</strong> focal mechanism stress inversion for 95 events around <strong>the</strong> 7400 Level. Numbered<br />

results correspond to maximum principal stresses (1 = sigma 1).<br />

Figure 3.22: Stress inversion for Cluster 2 focal mechanisms.<br />

72


Figure 3.23: Preliminary stress inversion for Cluster 1 focal mechanisms.<br />

Figure 3.24: Secondary stress inversion for Cluster 1 focal mechanisms.<br />

73


3.4.1 Stress Tensor Discussion<br />

The estimated maximum principal stress orientations are comparable to regional stress<br />

orientations as measured in Creighton Mine (Cochrane, 1991) and to <strong>the</strong> calculated stress tensor<br />

(Coulson, 1996; Bawden and Coulson, 1993). A comparison <strong>of</strong> stress orientations is shown in<br />

Table 3.4 and spatial relationships are displayed in Figure 3.25.<br />

Table 3.4: Comparison <strong>of</strong> maximum principal stress orientations from various sources<br />

Source<br />

σ-1 σ-2 σ-3<br />

Trend Plunge Trend Plunge Trend Plunge<br />

Calculated Stress Tensor 281 20 018 17 145 63<br />

Coulson, 1996<br />

Measured Stress, 7000 L, 270 20 013 32 152 51<br />

Cochrane, 1991<br />

Inversion Results<br />

265 18 007 33 151 51<br />

(7400 L, Misfit 10.62)<br />

The close proximity <strong>of</strong> principal stress orientations indicates that <strong>the</strong> local stress tensor<br />

responsible for induced failures within Creighton Mine is compatible with <strong>the</strong> regional stress<br />

tensor. Individual stress measurements however show considerable variation in orientation (Fig.<br />

3.26). The exception is <strong>the</strong> events located in Cluster 1.<br />

74


Figure 3.25: Equal area stereonet showing proximity <strong>of</strong> principal stress<br />

orientations calculated from fault plane solutions to stress orientations derived<br />

from measured and calculated stresses, as summarized in Table 3.4.<br />

Figure 3.26: Stress measurements as reported by Bawden and Coulson (1993). Data is taken from levels<br />

6800 and 7000 and includes 3 CSIR (Council for Scientific and Industrial Research) triaxial cell<br />

measurements; 3 CSIRO (Commonwealth Scientific and Industrial Research Organization) hollow<br />

inclusion cell measurements; 1 biaxial strain rosette (doorstopper) measurement.<br />

75


Although principal stress axes can vary significantly from P-, B- and T-axes, similarities exist<br />

between axis orientations.<br />

The maximum principal stress orientation agrees with P-axis<br />

orientations (Fig. 3.27A). The intermediate and minimum principal stresses also align with focal<br />

mechanism T- and B-axes. The intermediate stress, however, corresponds to <strong>the</strong> orientation <strong>of</strong> <strong>the</strong><br />

T-axis, and <strong>the</strong> minimum principal stress with null axis (Fig. 3.27B, C).<br />

A near-horizontal maximum principal stress and near-vertical minimum principal stress should, by<br />

Andersonian fault <strong>the</strong>ory (Anderson, 1951), produce reverse faults. New failures would be<br />

expected to exhibit reverse-sense kinematics. Indeed shallow fractures were observed to have<br />

reverse displacement along later fractures that intersect or displace shear zones and zones <strong>of</strong> high<br />

strain (as discussed in Chapter 2). However, strike-slip mechanisms predominate, producing<br />

mechanisms with different axis orientations. Strike-slip ruptures are also much more favourable<br />

given <strong>the</strong> steep fault geometry and attitude with respect to <strong>the</strong> stress tensor. Strike slip failures<br />

along steeply-dipping faults in Creighton Mine have been noted by Cochrane (1991).<br />

Strike-slip failures in Sudbury mines in a reverse regime were also observed by McKinnon<br />

(2006), who proposed that late stage faults subject to seismicity are in a state <strong>of</strong> critically stability.<br />

Minor perturbations (e.g., mining-induced stress changes such as blasts) can cause instabilities<br />

remote to openings. Given <strong>the</strong> variability in principal stress orientation and close proximity<br />

between measured intermediate and minimum stress magnitudes, small perturbations (reduction in<br />

sigma-2, increase in sigma 3 or both) could indeed cause strike-slip failure in an overall reverse,<br />

pre-mining stress regime.<br />

76


Figure 3.27: (A) Maximum principal stress orientations derived from stress inversion superimposed on<br />

contoured P-axis measurements for all 7400 Level events; (B) Sigma-2 orientations, superimposed on<br />

contoured B-axis measurements; and (C) orientations for Sigma-3, superimposed on contoured T-axis<br />

measurements for <strong>the</strong> same events.<br />

77


Chapter 4<br />

Modelling Stress in <strong>the</strong> Creighton Deep<br />

4.1 Introduction<br />

Stress in <strong>the</strong> mine environment results from a superposition <strong>of</strong> regional tectonic stresses, local<br />

stress induced by mining geometry and material extraction and is also influenced by <strong>the</strong> presence<br />

<strong>of</strong> geological structures and differences in material properties. It is impossible to model exact<br />

stress conditions within a mine because <strong>of</strong> <strong>the</strong> complex nature <strong>of</strong> rock and <strong>the</strong> unknown state <strong>of</strong><br />

<strong>the</strong> pre-mining stress conditions. However, simplified constitutive models with specified material<br />

properties, initial and boundary conditions allow for insight into more complex rock mass and<br />

fault behaviour.<br />

Numerical stress analysis models <strong>of</strong> <strong>the</strong> 7400 Level at Creighton Mine were used to provide<br />

insight into:<br />

<br />

<br />

<br />

<strong>the</strong> influences <strong>of</strong> mining geometry and structure on stress distribution in <strong>the</strong> mine;<br />

<strong>the</strong> extent <strong>of</strong> <strong>the</strong> yield zone surrounding <strong>the</strong> excavation;<br />

and <strong>the</strong> amount <strong>of</strong> induced displacement along faults.<br />

The sensitivity <strong>of</strong> modelled results was assessed by varying <strong>the</strong> fault strength, selectively<br />

weakening faults based on geological insight and by changing boundary stress conditions. In<br />

doing so, constraints were placed on existing stress conditions. The ultimate goal <strong>of</strong> <strong>the</strong> numerical<br />

modelling is to compare modelled stress with observed seismicity and integrate geological<br />

knowledge <strong>of</strong> <strong>the</strong> rock mass, in order to develop an understanding <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

structural system in <strong>the</strong> Creighton Deep on seismic behaviour.<br />

78


4.2 Numerical Methods<br />

Phase 2 and Universal Distinct Element Code (UDEC) are two numerical stress analysis packages<br />

that were used to model and simulate stress on <strong>the</strong> 7400 Level. Phase 2 , developed by Rocscience<br />

(Rocscience Inc., 2005), is a continuum code that employs <strong>the</strong> finite element method. Using this<br />

program <strong>the</strong> model is discretized into a mesh <strong>of</strong> triangular elements and nodes (Fig. 4.1). When<br />

boundary conditions are applied, displacements are computed at each node. The displacements<br />

within elements are used to calculate strains for each element. Strain is <strong>the</strong>n translated into stress,<br />

integrating rockmass properties (Pande et al., 1990). The behaviour <strong>of</strong> both <strong>the</strong> continuum and<br />

discontinuities in this <strong>the</strong>sis is assumed to be governed by Mohr-Coulomb failure criteria.<br />

UDEC, developed by Itasca Consulting Group, Inc. (2000), is a<br />

discontinuum code that employs <strong>the</strong> distinct element method. A<br />

discontinuum model differs from <strong>the</strong> continuum model in that <strong>the</strong><br />

Figure 4.1: Schematic<br />

diagram <strong>of</strong> triangular<br />

elements and nodes.<br />

model is defined by contacts and interfaces that separate rigid and/or<br />

deformable blocks (Cundall and Hart, 1992; Hart, 2003). UDEC<br />

models use a continuum mesh inside blocks. Contacts are allowed to<br />

interact and deform (Jing, 2003).<br />

Unlike <strong>the</strong> finite element method, <strong>the</strong> UDEC model allows for<br />

evolving contact conditions. The model proceeds through a series <strong>of</strong> time steps – a feed-forward<br />

process where results from <strong>the</strong> previous iterations are used for <strong>the</strong> next. UDEC works by applying<br />

<strong>the</strong> force-displacement law at contacts and formulating and solving equations <strong>of</strong> motion<br />

(Newton’s second law) for <strong>the</strong> defined blocks (Hart, 2003). Using block properties, forces and<br />

displacements are translated into stress and strain for each bock. As strain is accumulated, <strong>the</strong>se<br />

quantities are recalculated and used as inputs for <strong>the</strong> next time step. As <strong>the</strong> model progresses, it<br />

recognizes block rotation, sliding contacts, block detachment and new interfaces between blocks<br />

79


(Cundall and Hart, 1992). This allows for <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> medium as well as <strong>the</strong><br />

discontinuities to be modelled. Like Phase 2 , unbalanced forces must be reduced for <strong>the</strong> model to<br />

reach equilibrium. In this study, rock mass and fault behaviour is represented by a Mohr-<br />

Coulomb constitutive model. Since <strong>the</strong> Creighton Deep is pervasively faulted, discontinuum<br />

models were used in preference to continuum models and are discussed in this chapter. A<br />

discussion <strong>of</strong> Phase 2 models can be found in Appendix D.<br />

4.3 Model Input Parameters<br />

Pre-mining stress and model geometry are <strong>the</strong> main factors that influence <strong>the</strong> elastic model<br />

response. In plastic models, this and rock strength are an integral part <strong>of</strong> <strong>the</strong> rock mass response.<br />

Accurate geometry, stresses and strength parameters are thus required for models. The<br />

determination <strong>of</strong> <strong>the</strong>se parameters is outlined in this section.<br />

4.3.1 Elastic and Plastic Models<br />

Both elastic and plastic models were developed for <strong>the</strong> 7400 Level. Elastic models have a linear<br />

response to stress such that deformation is recoverable (Fig. 4.2). Beyond <strong>the</strong> elastic limit, plastic<br />

models cannot accommodate additional stress. At this point, tractions are reduced until <strong>the</strong> rock<br />

mass responds by deforming in a non-recoverable manner (yields) and stress is transferred to<br />

surrounding rock (Duncan Fama, 1993; Falmagne, 2001, Wiles, 2006). This behaviour cannot be<br />

simulated using elastic models and thus elasto-plastic models are required. In such models, this<br />

behaviour is achieved through rock mass yielding or slip on faults, if <strong>the</strong>y are present. In <strong>the</strong><br />

numerical modeling packages, when stress within an element exceeds <strong>the</strong> failure criteria, <strong>the</strong><br />

element yields and stress is transferred to surrounding elements (Duncan Fama, 1993; Wiles,<br />

2006).<br />

80


Stress-strain relationships are useful for describing <strong>the</strong> rock mass response on <strong>the</strong> 7400 Level.<br />

Remote to <strong>the</strong> excavation, rock is confined and considered to respond elastically to loading stress.<br />

In proximity to <strong>the</strong> main excavation where low confinement conditions exist, <strong>the</strong> rock is expected<br />

to behave as a plastic material when subject to continued loading. This process is nearly aseismic.<br />

The transition from an elastic to a plastic state is determined by <strong>the</strong> material or fault constitutive<br />

model, based on <strong>the</strong> relationship between stress, strain and <strong>the</strong> failure criteria.<br />

Figure 4.2: The stress versus strain model for an elastic, perfectly plastic material.<br />

4.3.2 Model Constituents and Input Parameters<br />

The model geometry is based on <strong>the</strong> 7400 Level geometry obtained from plans provided by<br />

Creighton Mine and consists <strong>of</strong> three parts (Fig. 4.3):<br />

1. An excavation;<br />

2. <strong>the</strong> rock mass surrounding <strong>the</strong> excavation; and<br />

3. faults intersecting <strong>the</strong> rock mass.<br />

81


A<br />

B<br />

Figure 4.3: (A) Complete model geometry; (B) excavation and fault geometry within inner box in (A) is<br />

shown with labeled discontinuities and excavation. The area outside <strong>the</strong> inner box in (A) is subject to<br />

boundary effects. SZ = shear zone.<br />

The excavation on <strong>the</strong> 7400 Level consists <strong>of</strong> backfilled and unfilled stopes and sills. These are<br />

modelled as one large void. This can be done under <strong>the</strong> assumption that backfill has little loadbearing<br />

capacity and stiffness compared to <strong>the</strong> surrounding rock mass and thus can be ignored in<br />

<strong>the</strong> models. Drifts and small excavations remote from <strong>the</strong> main excavation have been omitted to<br />

simplify <strong>the</strong> level model, as <strong>the</strong>y have negligible effect on <strong>the</strong> mine-scale stress field.<br />

Strength parameters for <strong>the</strong> medium surrounding <strong>the</strong> excavation reflect rock mass quantities ra<strong>the</strong>r<br />

than laboratory values for intact rock, which overestimate strength (Pande et al., 1990; Schultz,<br />

1996). These rock mass parameters (summarized in Table 4.1), except where noted, were taken or<br />

calculated from estimates made by Coulson (1996) for footwall rocks in Creighton Mine. Values<br />

for normal and shear stiffness have been increased from calculated values to prevent contact<br />

overlap. The boundaries <strong>of</strong> <strong>the</strong> model, and thus <strong>the</strong> medium, are created far from <strong>the</strong> excavation.<br />

This ensures that modelled stress around <strong>the</strong> excavation is free from edge effects that result from<br />

<strong>the</strong> modelling process.<br />

82


Rock mass failure is governed by <strong>the</strong> Mohr-Coulomb failure envelope (Fig. 4.4). The envelope is<br />

defined by <strong>the</strong> equation,<br />

τ = σ n tan(Ф) + C, (Equation 4.1)<br />

where<br />

τ = <strong>the</strong> resolved shear stress,<br />

σ n = <strong>the</strong> normal stress,<br />

C = <strong>the</strong> cohesion, and<br />

Ф = <strong>the</strong> angle <strong>of</strong> internal friction.<br />

Both cohesion and <strong>the</strong> angle <strong>of</strong> internal friction are specified in each model. Parameters are<br />

consistent for <strong>the</strong> rock mass and are varied for <strong>the</strong> discontinuities.<br />

Field <strong>of</strong><br />

Failure<br />

Field <strong>of</strong><br />

Stability<br />

Figure 4.4: Mohr circle and Mohr-Coulomb failure envelope defined by cohesion and angle <strong>of</strong> internal<br />

friction (Ф).<br />

Shear zones, which dissect <strong>the</strong> rock mass, are generally schistose as compared to <strong>the</strong>ir granitic<br />

host rock. These are modeled as discontinuities with lower strength than <strong>the</strong> surrounding rock<br />

mass (Table 4.1). The geometry <strong>of</strong> <strong>the</strong> shear zones is simplified. The model assumes that shear<br />

83


zones are planar in geometry, are <strong>of</strong> uniform strength and are laterally continuous beyond <strong>the</strong><br />

limits <strong>of</strong> <strong>the</strong> mine, though in reality shears may be discontinuous and have variable orientations<br />

and properties.<br />

Table 4.1: Rock mass and discontinuity model properties<br />

Rock mass Properties<br />

Discontinuity Properties<br />

Property Value Property Value Range<br />

Cohesion (C) 10 MPa Cohesion (C) 0-10 MPa<br />

Friction Angle (Φ) 35° Friction Angle (Φ) 10-35°<br />

Density † (ρ) 2965 kg/m 3 Normal Stiffness †† 700,000 MPa/m<br />

Young’s Modulus (E) 35 GPa Shear Stiffness †† 99,400 MPa/m<br />

Poisson Ratio (υ) 0.263 Tensile Strength 0-10 MPa<br />

Bulk Modulus * (K) 24,613 MPa<br />

Shear Modulus * (G) 13,856 MPa σ 1 (E-W) ††† –102.7 MPa<br />

σ 3 (N-S) †††<br />

–73.4 MPa<br />

*<br />

Calculated<br />

†<br />

Density from Tulk (2001)<br />

††<br />

Stiffness values increased to prevent contact overlap in UDEC<br />

†††<br />

Maximum and minimum stresses (in plane) calculated from overcoring measurements<br />

Two different approaches are used to load <strong>the</strong> model once <strong>the</strong> geometry, properties <strong>of</strong> <strong>the</strong> material<br />

and discontinuities are specified<br />

1. A homogeneous stress field was initiated within <strong>the</strong> model and at <strong>the</strong> boundaries<br />

2. Incremental displacements were used to syn<strong>the</strong>size tectonic loading<br />

Methods and results for both loading methods are discussed in <strong>the</strong> following sections. Boundary<br />

conditions for both models are depicted in Figure 4.5.<br />

Staged models were also created to better understand <strong>the</strong> effect <strong>of</strong> mining on <strong>the</strong> stress field and<br />

induced fault slip. This allowed <strong>the</strong> rock mass and faults to come to equilibrium without an<br />

excavation. UDEC code for <strong>the</strong> models used in this research can be found in Appendix E.<br />

84


Figure 4.5: (A) Model for tectonic loading. North, south and eastern boundaries are constrained such that<br />

motion perpendicular to <strong>the</strong> plane is restricted. A small eastward boundary velocity, ∆v, is applied to <strong>the</strong><br />

western model boundary. (B) A homogeneous stress field is applied at <strong>the</strong> boundaries. All sides are<br />

restrained such that motion perpendicular to <strong>the</strong> plane is restricted.<br />

4.4 Modelling with a Homogeneous Stress Field<br />

When a homogeneous stress field is applied, boundary stresses are specified such that σ 1 is<br />

oriented east-west and σ 3 is oriented north-south. Models were initiated with internal stresses set<br />

equal to <strong>the</strong> boundary stress conditions. Three cases are presented for <strong>the</strong> same model geometry to<br />

test <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> solution to changes in fault strength and boundary conditions.<br />

4.4.1 Case 1: Variable fault strength parameters<br />

In <strong>the</strong> first case, all faults within <strong>the</strong> model are considered to have <strong>the</strong> same properties regardless<br />

<strong>of</strong> geology. Four fault strength conditions are tested (Table 4.2). 1) The locked condition<br />

indicates that faults are strong, healed and inactive; 2) <strong>the</strong> strong fault condition indicates that<br />

faults are strong and cohesive, yet still weaker than <strong>the</strong> rock mass; 3) <strong>the</strong> moderately strong<br />

condition implies that faults have previously slipped and have lost cohesion; 4) and lastly, <strong>the</strong><br />

85


weak fault condition represents a reasonable failure band fault strength used to examine <strong>the</strong> effect<br />

<strong>of</strong> very weak faults.<br />

Both elastic and plastic models are tested under <strong>the</strong>se conditions. For all fault conditions, <strong>the</strong><br />

model is subjected to a compressive stress field where σ 1 = –102.7 MPa and σ 3 = –73.4 MPa.<br />

Stress magnitudes are based on stress estimates for <strong>the</strong> 7400 Level, derived from overcoring stress<br />

measurements made by Creighton Mine. The negative sign convention in UDEC indicates<br />

compressive stress.<br />

Table 4.2: Fault parameters tested for Case 1.<br />

Fault Condition<br />

Cohesion Friction<br />

(MPa) Angle (º)<br />

Locked 50 50<br />

Strong 5 35<br />

Moderately Strong 0 35<br />

Weak 0 20<br />

Both elastic and plastic models for maximum stress, differential stress, slip, and yielding produce<br />

similar results. The locked fault condition produces low maximum and differential stresses<br />

immediately to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong> excavation. Fur<strong>the</strong>r from <strong>the</strong> excavation, high stresses<br />

form a ring around <strong>the</strong> excavation. As <strong>the</strong> cohesion is lowered at a constant friction angle, from<br />

<strong>the</strong> strong to <strong>the</strong> moderately strong model, maximum stress (Fig. 4.6) and differential stress (Fig.<br />

4.7) is enhanced to <strong>the</strong> south and sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation and diminished to <strong>the</strong> southwest <strong>of</strong><br />

<strong>the</strong> excavation. When <strong>the</strong> friction angle is very low (<strong>the</strong> weak fault case), stress is diminished to<br />

<strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation and high stresses are pushed far<strong>the</strong>r outwards away from <strong>the</strong><br />

excavation. Yielding in <strong>the</strong> plastic models aligns with <strong>the</strong> strike <strong>of</strong> <strong>the</strong> 118 System shear zones<br />

and fur<strong>the</strong>r slip is induced along shear zones in proximity to <strong>the</strong> excavation.<br />

86


The zero cohesion and low friction value (20°) condition is considered too weak to produce a<br />

realistic stress distribution. In this instance, <strong>the</strong> shear zones are weak enough to accommodate slip<br />

but <strong>the</strong> resulting magnitude <strong>of</strong> stress to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation is diminished, whereas high<br />

stress is expected based on <strong>the</strong> occurrence <strong>of</strong> seismicity.<br />

East-west striking shear zones as well as <strong>the</strong> Footwall Shear Zone have negligible influence on<br />

stress distribution. The 1290 Shear Zones (and 400-East Shear Zone which is not represented in<br />

<strong>the</strong> model) strikes parallel to <strong>the</strong> far field stress and is thus not favourably aligned with <strong>the</strong> stress<br />

field to slip. Southwest-striking shear zones have <strong>the</strong> greatest impact on stress distribution; this<br />

system acts to redirect stress such that trends <strong>of</strong> high stress to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation show<br />

alignment with <strong>the</strong> strike <strong>of</strong> <strong>the</strong> shear zones. This effect is enhanced with lower fault strength,<br />

though <strong>the</strong> magnitude <strong>of</strong> stress surrounding <strong>the</strong> excavation is reduced when faults are very weak.<br />

Displacement occurs along <strong>the</strong> Plum and Return Air Raise Shear Zones as right-lateral slip and is<br />

enhanced at low friction angles (Fig. 4.8). The plastic model exhibits tensile failure <strong>of</strong> <strong>the</strong> rock<br />

mass in proximity to <strong>the</strong> excavation with past and current yielding far<strong>the</strong>r from <strong>the</strong> excavation<br />

(Fig. 4.9). In <strong>the</strong> strong and moderately strong cases yielding begins to localize along<br />

discontinuities. This effect is enhanced with lower fault strength. Stress trajectories for elastic<br />

and plastic models show a flow <strong>of</strong> stress around <strong>the</strong> excavation with little disturbance in <strong>the</strong> stress<br />

field near faults (see Appendix D). Stress orientations to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation are<br />

conformable to <strong>the</strong> regional stress inversion presented in <strong>the</strong> previous chapter.<br />

87


Figure 4.6: Model <strong>of</strong> maximum principal stress for Case 1 for (A) elastic model and (B) plastic model.<br />

Faults are assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.7: Model <strong>of</strong> differential stress for Case 1 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.8: Model <strong>of</strong> fault slip for Case 1 for (A) elastic model and (B) plastic model. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

88


Figure 4.9: Model <strong>of</strong> yielding for Case 1 for (A) elastic model and (B) plastic model. Faults are assigned a<br />

cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

4.4.2 Case 2: Variable Fault Strength by Shear Zone Family<br />

Case 2 considers families <strong>of</strong> structures that have different strength parameters based on<br />

underground observation (Table 4.3). Shear zones that are associated with increased seismicity<br />

and increased reinforcement with visible damage to mesh and/or shotcrete, indicating<br />

displacement, are assigned low strength parameters. Shear zones that are exposed with visible<br />

damage but have seemingly little seismic influence are assigned intermediate strength parameters<br />

and those with no visible damage or association with seismicity are assigned high strength<br />

parameters.<br />

The model is subjected to <strong>the</strong> standard compressive stress field where<br />

σ 1 = -102.7 MPa, oriented E–W, and σ 3 = –73.4 MPa, oriented N–S. As in Case 1, stress<br />

magnitudes are based on estimates for <strong>the</strong> 7400 Level from overcoring stress measurements made<br />

by Creighton Mine.<br />

89


Fault Family<br />

Table 4.3: Strength parameters assigned to shear families for Case 2.<br />

Cohesion<br />

(MPa)<br />

Friction<br />

Angle (º)<br />

Geological Description<br />

E–W-striking shears 5 35 No seismicity or damage<br />

and splays<br />

Footwall Shear 0 35 No Seismicity but visible<br />

damage<br />

SW-striking shears 0 20 Associated seismicity,<br />

damage and/or reinforcement<br />

necessary<br />

The southwest-striking fault system is interpreted to be <strong>the</strong> weakest (Table 4.3). As found in Case<br />

1, this fault system has <strong>the</strong> most influence on <strong>the</strong> stress field; <strong>the</strong> east-west striking shear zones<br />

and <strong>the</strong> Footwall Shear Zone show little influence.<br />

There is little difference between <strong>the</strong> modelled results for Case 2 and Case 1. Model results can<br />

be found in Appendix D. The moderately strong fault condition produces a realistic stress<br />

distribution. In both plastic and elastic models, low stresses occur adjacent to <strong>the</strong> excavation and<br />

high stresses (Fig. 4.10) and high differential stresses (Fig. 4.11) align with SW-striking shear<br />

zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation. Right-lateral displacement is induced along <strong>the</strong> Plum and<br />

<strong>the</strong> Return Air Raise Shear Zones in this area (Fig. 4.12). In <strong>the</strong> plastic model, damage shows<br />

some alignment with <strong>the</strong> SW-striking shear zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation (Fig. 4.13).<br />

Figure 4.10: Model <strong>of</strong> maximum stress for Case 2 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

90


Figure 4.11: Model <strong>of</strong> differential stress for Case 2 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.12: Model <strong>of</strong> fault slip for Case 2 for (A) elastic model and (B) plastic model. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

Figure 4.13: Model <strong>of</strong> yielding for Case 2 for (A) elastic model and (B) plastic models. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

91


4.4.3 Case 3: Increased Principal Stress Ratio<br />

Case 3 considers <strong>the</strong> effect <strong>of</strong> increasing <strong>the</strong> principal stress ratio, k = σ 1 /σ 3 . The minimum<br />

principal stress, σ 3 , was lowered such that <strong>the</strong> far-field stress was increased from k=1.4 to k=2<br />

(note that σ 2 is oriented out-<strong>of</strong>-plane). This was done to test <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> faults to<br />

boundary conditions, by increasing <strong>the</strong> shear loading on faults to induce slip. Both elastic and<br />

plastic models under this condition are assigned <strong>the</strong> variable properties summarized in Table 4.2.<br />

Modifying <strong>the</strong> principal stress ratio has <strong>the</strong> effect <strong>of</strong> only slightly modifying <strong>the</strong> stress distribution<br />

from that observed in Case 1. The moderately strong fault model is shown in Figures 4.17 and<br />

4.18. Observations from Case 3 include:<br />

• High maximum and differential stresses align with SW-striking shear zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong><br />

excavation (Figs. 4.14 and 4.15).<br />

• Right-lateral displacement is induced along <strong>the</strong> Plum and Return Air Raise Shear Zones to <strong>the</strong><br />

south <strong>of</strong> <strong>the</strong> excavation in <strong>the</strong> elastic case and solely along <strong>the</strong> Plum Shear Zone in <strong>the</strong> plastic<br />

case (Fig. 4.16).<br />

• Plastic yielding occurs along SW-striking shear zones and is enhanced along splay structures,<br />

linking <strong>the</strong> Fresh Air Raise and Plum Shear Zones in <strong>the</strong> plastic model (Fig. 4.17).<br />

92


Figure 4.14: Model <strong>of</strong> maximum stress for Case 3 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.15: Model <strong>of</strong> differential stress for Case 3 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.16: Model <strong>of</strong> fault slip for Case 3 for (A) elastic model and (B) plastic model. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

93


Figure 4.17: Model <strong>of</strong> yielding for Case 3 for (A) elastic model and (B) plastic models. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

4.5 Tectonic Loading Model<br />

In <strong>the</strong> case <strong>of</strong> <strong>the</strong> tectonically loaded model, elements are assigned a hydrostatic stress field with a<br />

value between <strong>the</strong> far-field maximum and minimum principal stresses, σ 1 and σ 3 . The north, south<br />

and east sides <strong>of</strong> <strong>the</strong> model are restrained, preventing movement normal to <strong>the</strong> boundary. It is<br />

loaded by applying an infinitesimal inward velocity to <strong>the</strong> free boundary to simulate tectonic<br />

loading, as depicted in Figure 4.5. The advantage <strong>of</strong> <strong>the</strong> tectonic model is that <strong>the</strong>re is a continual<br />

source <strong>of</strong> boundary stress, whereas <strong>the</strong> model initiated with both boundary and internal stresses<br />

may experience relaxation when <strong>the</strong> excavation is introduced. The tectonic loading model was<br />

constructed to examine <strong>the</strong> effect <strong>of</strong> this type <strong>of</strong> loading on stress and slip along faults.<br />

This method <strong>of</strong> loading produces a modified stress distribution from <strong>the</strong> homogeneous stress field<br />

model (Fig. 4.18). Higher stresses and larger zones <strong>of</strong> high stress are concentrated to <strong>the</strong> east and<br />

west <strong>of</strong> <strong>the</strong> excavation. Concentration <strong>of</strong> stresses also occurs to <strong>the</strong> sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation<br />

and aligns with SW-striking shear zones. This effect is less pronounced when examining <strong>the</strong><br />

distribution <strong>of</strong> differential stress values (Fig. 4.19). The difference may be a result <strong>of</strong> stress<br />

accumulation in <strong>the</strong> tectonic loading model, as opposed to stress relaxation in <strong>the</strong> homogeneous<br />

94


stress field model. There is little difference in modelled fault stability; <strong>the</strong> model shows similar<br />

modelled fault slip (Fig. 4.20) and rock mass yielding (Fig. 4.21) as compared to models subjected<br />

to a homogeneous stress field (Figs. 4.6 to 4.9).<br />

Figure 4.18: Tectonic model for (A) elastic model and (B) plastic model. Faults are assigned a cohesion <strong>of</strong><br />

0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.19: Tectonic model for (A) elastic model and (B) plastic model. Faults are assigned a cohesion <strong>of</strong><br />

0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.20: Tectonic model for (A) elastic model and (B) plastic model. Faults are assigned a cohesion <strong>of</strong><br />

0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

95


Figure 4.21: Tectonic model <strong>of</strong> yielding for (A) elastic model and (B) plastic models. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

4.6 Modelling Rock Mass Degradation<br />

Seismic events occur as a result <strong>of</strong> slip on existing fractures or through <strong>the</strong> creation <strong>of</strong> new<br />

fractures when stress exceeds <strong>the</strong> strength <strong>of</strong> <strong>the</strong> rock mass. Seismicity can thus signal <strong>the</strong> onset<br />

<strong>of</strong> rock mass damage and degradation. Damage begins as a process <strong>of</strong> fracture initiation and<br />

progresses to a state <strong>of</strong> fracture growth and interaction as <strong>the</strong> rock mass progressively yields.<br />

Thresholds for both rock mass damage and yield in brittle rock can be defined by stress and<br />

through seismic monitoring (Falmagne, 2001). This is <strong>the</strong> same process defined using acoustic<br />

emission monitoring at <strong>the</strong> lab scale (Eberhardt et al., 1999). The onset <strong>of</strong> microseismicity<br />

indicates that stress exceeds <strong>the</strong> damage threshold and that fracture initiation has commenced;<br />

continued emission signals fracture propagation (Falmagne, 2001). When seismic events begin to<br />

cluster, this denotes that stress levels exceed <strong>the</strong> yield threshold <strong>of</strong> <strong>the</strong> rock mass. At this stage,<br />

fractures are numerous and long enough to interact and coalesce, causing an overall change in<br />

rock mass strength properties (Falmagne, 2001). High event rates as well as dense event<br />

96


clustering are indications <strong>of</strong> rock mass yielding and increased hazard (Vasak, n.d.). Progressive<br />

yielding and tensile failure will eventually render <strong>the</strong> rock mass aseismic, as <strong>the</strong> rock begins to<br />

behave in a plastic manner, transferring stress to <strong>the</strong> surrounding, more intact rock.<br />

Similar to <strong>the</strong> degradation process described by seismic event parameters in Chapter 3, <strong>the</strong><br />

distribution <strong>of</strong> stress around <strong>the</strong> excavation is suggestive <strong>of</strong> a progressive damage process. In <strong>the</strong><br />

yield zone, in situ strength reduction <strong>of</strong> <strong>the</strong> rock mass occurs as a result <strong>of</strong> unloading from a loss<br />

<strong>of</strong> confinement, stress rotation, crack-surface interaction and rock mass heterogeneity (Diederichs,<br />

2003). Rockmass failures caused by stress and marked by seismicity can occur along existing<br />

fractures or through <strong>the</strong> creation <strong>of</strong> new fractures in <strong>the</strong> damage zone beyond <strong>the</strong> yield zone. Both<br />

failure mechanisms are explored in <strong>the</strong> following sections by mapping slip conditions and rock<br />

mass degradation stress.<br />

4.6.1 Fracture Reactivation<br />

The reactivation <strong>of</strong> favourably oriented fractures is mechanically preferable to <strong>the</strong> creation <strong>of</strong> new<br />

fractures; when failure occurs, cohesion is lost. This lowers <strong>the</strong> Mohr-Coulomb failure envelope<br />

and field <strong>of</strong> stability, outlined in Figure 4.4, and allows rock to fail at lower shear and normal<br />

stress values. In Creighton, <strong>the</strong> rock mass in proximity to <strong>the</strong> excavation is assumed to be<br />

fractured, as inferred from both stress modelling and <strong>the</strong> distribution <strong>of</strong> seismicity. Fracture<br />

reactivation is thus a likely candidate for seismic emission. Zones subject to fracture reactivation<br />

can be mapped using Mohr-Coulomb failure conditions:<br />

<br />

n<br />

tan C<br />

(Equation 4.2)<br />

and <strong>the</strong> definitions <strong>of</strong> maximum normal and shear stresses,<br />

<br />

max<br />

1<br />

2<br />

<br />

and <br />

<br />

1<br />

3<br />

max<br />

1<br />

<br />

1 3<br />

. (Equations 4.3 and 4.4)<br />

2<br />

97


The ratio <strong>of</strong> maximum principal stresses can be expressed in terms <strong>of</strong> <strong>the</strong> angle <strong>of</strong> internal friction,<br />

<br />

<br />

3<br />

1<br />

1<br />

2<br />

2<br />

(tan 1)<br />

tan<br />

, (Equation 4.5)<br />

1<br />

2<br />

2<br />

(tan 1)<br />

tan<br />

when cohesion is zero (McKinnon, pers. comm., 2009; see Appendix F for derivation). This<br />

allows for zones <strong>of</strong> eligible fracture reactivation to be mapped regardless <strong>of</strong> fracture orientation.<br />

Minimum-to-maximum principal stress ratios computed for plastic and elastic models in UDEC<br />

are shown in Figure 4.22. Such figures allow fields <strong>of</strong> fault reactivation to be contoured as a<br />

function <strong>of</strong> <strong>the</strong> internal angle <strong>of</strong> friction (Fig. 4.23). This demonstrates that, based on <strong>the</strong><br />

minimum-to-maximum principal stress ratio, <strong>the</strong>re is a large area to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation,<br />

extending to <strong>the</strong> Return Air Raise Shear Zone where cohesionless fractures in any orientation can<br />

be reactivated, even at high friction angles. This is modelled in both elastic and plastic models.<br />

Based on stress conditions, slip is possible even in <strong>the</strong> yield zone, though seismogenic slip is not<br />

expected.<br />

Figure 4.22: Ratio <strong>of</strong> minimum-to-maximum principal stress for (A) elastic model; (B) plastic model.<br />

98


Figure 4.23: Contoured domains <strong>of</strong> slip on cohesionless fractures at different angles <strong>of</strong> internal friction for<br />

(A) elastic model; (B) plastic model.<br />

4.6.2 Crack Initiation<br />

The initiation <strong>of</strong> new brittle failure is possible at stress levels much lower than <strong>the</strong> peak strength<br />

<strong>of</strong> <strong>the</strong> rock mass (Schultz, 1996). Crack initiation can be expected at levels from 0.3-0.5 σ UCS (Cai<br />

et al., 2004) and yield is modelled to occur between 0.4-0.5σ UCS for <strong>the</strong> Creighton granite<br />

(Diederichs, 2003). Fracture coalescence can occur from 0.7-0.8 σ UCS (Falmagne, 2001). Such<br />

thresholds have been applied to <strong>the</strong> 7400 Level using modelled stresses and <strong>the</strong> uniaxial<br />

compressive strength <strong>of</strong> footwall rocks to explore crack initiation as a mechanism for<br />

microseismicity in <strong>the</strong> Creighton Deep. The limits for fracture initiation and coalescence are<br />

shown in Figure 4.24.<br />

Crack initiation can also be described by differential stress, when its magnitude is a fraction <strong>of</strong> <strong>the</strong><br />

peak strength. Differential stress threshold for <strong>the</strong> Lac du Bonnet granite is measured in <strong>the</strong> range<br />

<strong>of</strong> (σ 1 – σ 3 ) = 0.3 to 0.4σ UCS to (Falmagne, 2001). This threshold is used as an analogue to <strong>the</strong><br />

Creighton granite. Differential stress plots outline zones <strong>of</strong> potential crack initiation (Fig. 4.24).<br />

99


Damage zones produced using maximum stress and differential stress outline similar areas <strong>of</strong><br />

fracture initiation. Areas <strong>of</strong> active excavation during <strong>the</strong> 2006-2007 time period as well as a zone<br />

<strong>of</strong> high-stress between <strong>the</strong> Return Air Raise Shear Zone and Plum Shear Zone are identified as<br />

areas <strong>of</strong> possible fracture initiation under both maximum stress and differential conditions. This<br />

demonstrates that fracturing <strong>of</strong> intact rock is a possible mechanism for seismicity to <strong>the</strong> south <strong>of</strong><br />

<strong>the</strong> excavation where seismicity is observed, but <strong>the</strong> crack coalescence threshold is not surpassed.<br />

Fracture contours identify <strong>the</strong> area south <strong>of</strong> <strong>the</strong> excavation as a region that is in a state <strong>of</strong> damage<br />

but not yield (Fig. 4.24). This is a lower state <strong>of</strong> degradation than was found in Chapter 3 using<br />

seismic source parameters, where <strong>the</strong> rock mass to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation was hypo<strong>the</strong>sized<br />

to be in post-peak conditions.<br />

Figure 4.24 shows that cracking is not possible immediately to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong><br />

excavation, based on <strong>the</strong> final state <strong>of</strong> models produced for Case 1 (Φ=30 o , C=0 MPa). This is<br />

because yielding has already occurred and high stress cannot be accommodated by <strong>the</strong><br />

disintegrated rock mass in this state. UDEC code and routines can be found in Appendix E.<br />

100


Figure 4.24: Fracture initiation thresholds mapped using maximum and differential stress conditions.<br />

4.7 Modelling Summary and Discussion<br />

The distribution <strong>of</strong> stress on <strong>the</strong> 7400 Level in Creighton Mine is strongly dependent on both <strong>the</strong><br />

excavation geometry and <strong>the</strong> strength <strong>of</strong> <strong>the</strong> discontinuities. UDEC models demonstrate that<br />

cohesion and <strong>the</strong> friction angle <strong>of</strong> <strong>the</strong> discontinuities modify <strong>the</strong> flow <strong>of</strong> stress around <strong>the</strong><br />

excavation. Faults must have sufficiently low friction values for shear slip to occur. Under <strong>the</strong><br />

current stress field, faults must have some residual friction as low values produced unrealistic<br />

stress distributions.<br />

Models demonstrate that stress is substantially reduced in a yield zone adjacent to an excavation.<br />

Tensile and shear failure associated with <strong>the</strong> yield zone is directly incurred by <strong>the</strong> presence <strong>of</strong> <strong>the</strong><br />

excavation. Diederichs (2003) states that this is an area <strong>of</strong> tensile fracture accumulation and<br />

101


propagation as confining stresses are relaxed. Beyond this exists a damage zone where yielding<br />

occurs with some localization along failure planes. High stresses occur on <strong>the</strong> periphery <strong>of</strong> <strong>the</strong><br />

yield zone as <strong>the</strong> rock transitions from a fractured rock mass into a stronger, more intact rock<br />

mass. This parallels <strong>the</strong> rock mass model <strong>of</strong> an inner yield zone, damage zone and outer intact<br />

zone as discussed in Chapter 3.<br />

When <strong>the</strong> faults are weaker than <strong>the</strong> rock mass, right-lateral slip is induced on <strong>the</strong> Plum Shear<br />

Zone and <strong>of</strong>ten on <strong>the</strong> Return Air Raise Shear Zone to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation. Remote to <strong>the</strong><br />

excavation, no slip occurs along <strong>the</strong>se or o<strong>the</strong>r discontinuities. The deflection <strong>of</strong> stress around <strong>the</strong><br />

excavation may act to enhance <strong>the</strong> normal stress, and thus <strong>the</strong> frictional resistance, along<br />

discontinuities remote from <strong>the</strong> excavation, preventing slip. Closer to <strong>the</strong> excavation maximum<br />

principal stresses are reduced but oriented at a low angle to <strong>the</strong> Plum Shear Zone, increasing <strong>the</strong><br />

shear stress on <strong>the</strong> fault and instigating slip in both plastic and elastic models. This, however,<br />

occurs within <strong>the</strong> yield zone and may not contribute to seismogenic slip.<br />

4.7.1 Syn<strong>the</strong>sis: Stress, Seismicity and Structure<br />

The relationship between structure and seismicity in <strong>the</strong> Creighton Deep is intimately linked to<br />

stress. The spatial distribution <strong>of</strong> seismicity closely corresponds to zones <strong>of</strong> high stress. A<br />

comparison <strong>of</strong> seismicity and stress is shown in Figure 4.25. This similar distribution supports <strong>the</strong><br />

idea <strong>of</strong> <strong>the</strong> presence <strong>of</strong> a yield zone in proximity to <strong>the</strong> excavation where low stress and no<br />

seismicity occurs; a damage zone <strong>of</strong> high stress where dense seismicity occurs, and beyond this an<br />

intact zone where low to intermediate stress is associated with little seismicity, as discussed in<br />

Chapter 3. Both <strong>the</strong> distribution <strong>of</strong> stress and seismicity appear to be modified to align with <strong>the</strong><br />

strike <strong>of</strong> <strong>the</strong> 118-System shear zones, but not within <strong>the</strong> shear zones <strong>the</strong>mselves. The exception is<br />

102


seismic Cluster 1, which corresponds to an area <strong>of</strong> elevated modelled differential stress but with<br />

background levels <strong>of</strong> modelled maximum stress (Fig. 4.25).<br />

Geological evidence <strong>of</strong> degradation is difficult to observe in underground conditions due to<br />

limited access and enhanced support in proximity to <strong>the</strong> excavation. However, drilling supports<br />

this degradation process. Drill cores in proximity to <strong>the</strong> main excavation (in <strong>the</strong> proposed yield<br />

zone) are heavily fractured and highly degraded (Dave Andrews; pers. comm., 2009). The<br />

damage zone has already extended below <strong>the</strong> base <strong>of</strong> <strong>the</strong> mine at <strong>the</strong> 7940 ramp, which is also<br />

evident from drilling and excavation as <strong>the</strong> mine is progressively deepened (Dave Andrews; pers.<br />

comm., 2009).<br />

Slip along mine-scale shear zones has not been identified as a failure mechanism during seismic<br />

or stress analysis. Instead, slip along existing fractures and cracking <strong>of</strong> intact rock have been<br />

demonstrated to be plausible alternative mechanisms to fault slip. Mapping zones <strong>of</strong> fracture<br />

reactivation and crack initiation using modelled stresses suggests that existing fractures without<br />

cohesion may be reactivated and new cracks can form in zones <strong>of</strong> high stress. Though modelled<br />

stresses are not elevated enough to lead to fracture interaction and coalescence, clustering <strong>of</strong><br />

seismic events signifies <strong>the</strong> onset <strong>of</strong> yield as <strong>the</strong> rock mass is seismically weakened, which<br />

supports observations made using seismic event parameters in Chapter 2.<br />

103


Figure 4.25: Comparison <strong>of</strong> stress and seismicity. (A) Distribution <strong>of</strong> seismicity on <strong>the</strong> 7400 Level; (B)<br />

highlighted areas <strong>of</strong> dense seismicity; (C) maximum stress distribution and (D) differential stress for<br />

comparison. Faults have C = 0 MPa and Ø= 35°.<br />

4.7.2 Model Limitations<br />

Mining is a three-dimensional process; blasting and material extraction occur on multiple levels<br />

simultaneously. Mining-induced stress on any given level is <strong>the</strong> result <strong>of</strong> stress flow around <strong>the</strong><br />

excavation as well as contributions from mining above and below. Two-dimensional models thus<br />

are a simplification <strong>of</strong> <strong>the</strong> three-dimensional problem.<br />

Models <strong>of</strong> <strong>the</strong> 7400 Level suffer from this problem, limiting <strong>the</strong> comparison <strong>of</strong> stress on<br />

individual levels with seismicity. The westernmost cluster, (Cluster 1, as defined in Chapter 3)<br />

104


contains energetic events and is not wholly accounted for by stress models. In this area models<br />

show elevated differential stress as compared to background stress but lower maximum stress as<br />

compared to o<strong>the</strong>r seismically active areas. Influences external to <strong>the</strong> 7400 Level may play an<br />

important role in generating seismicity in this area. During <strong>the</strong> 2006-2007 time period, two<br />

orebodies may contribute to stress changes: <strong>the</strong> 461 Orebody, mined from 7680 to 7755 Level and<br />

<strong>the</strong> Plum Orebody, which is mined on levels above (Vale Inco, pers. comm., 2009). A threedimensional<br />

model incorporating <strong>the</strong>se orebody geometries would allow for a more<br />

comprehensive analysis <strong>of</strong> stress distribution in <strong>the</strong> Deep.<br />

105


Chapter 5<br />

Conclusions and Recommendations<br />

5.1 Summary<br />

The goal <strong>of</strong> this study was to examine <strong>the</strong> relationship between <strong>the</strong> structures in <strong>the</strong> Creighton<br />

Deep and mining-induced seismicity. This was accomplished through geological investigations,<br />

seismic analysis and numerical modelling <strong>of</strong> stress.<br />

Geological investigations identified four principal systems <strong>of</strong> structures: <strong>the</strong> Footwall Shear Zone,<br />

E–W-striking shear zones, SW-striking shear zones (<strong>the</strong> 118 System) and splays between SWstriking<br />

shear zones. Numerical stress modelling demonstrates that <strong>the</strong>se structures constitute<br />

weak zones within <strong>the</strong> rock mass and underground investigations indicate that such structures are<br />

healed. The Footwall Shear Zone and 1290 Shear Zone are laterally and vertically continuous but<br />

have little impact on stress or seismicity. SW-striking shear zones do not have a consistent<br />

composition and <strong>of</strong>ten do not correlate level-to-level. Small displacements were noted along<br />

younger fractures that cross-cut shear zones and foliation ra<strong>the</strong>r than along <strong>the</strong> shear zones<br />

<strong>the</strong>mselves, fur<strong>the</strong>r suggesting that shear zones are healed.<br />

Analysis <strong>of</strong> seismic events within <strong>the</strong> Creighton Deep did not reveal a relationship between<br />

structure and seismicity. Microseismic events do not spatially correspond to <strong>the</strong> mapped fault<br />

geometry. Fur<strong>the</strong>rmore, analysis <strong>of</strong> seismic event parameters does not reveal any spatial<br />

correlation to shear zones but does reveal areas <strong>of</strong> preferred seismic activity. Focal mechanisms<br />

<strong>of</strong> <strong>the</strong>se microseismic events do not indicate any spatial correlation with structure. Consistency in<br />

focal plane solution axes for microseismic events, however, suggests that slip occurs on<br />

106


preferentially oriented fracture planes but fracture orientations do not conform to mine-scale shear<br />

zone orientations. Macroseismic event focal mechanisms are inconsistent and fault plane<br />

solutions do not have coherent nodal planes or pressure and tension axes. A stress inversion <strong>of</strong> P-<br />

and T-axes from microseismic events on <strong>the</strong> 7400 Level indicates that mine-scale stress<br />

orientations are consistent with far-field stresses.<br />

An anomalous cluster <strong>of</strong> microseismic and macroseismic events, referred to as Cluster 1 in this<br />

<strong>the</strong>sis, exhibits unusual seismic event parameter values and stress inversion results. Influences<br />

external to <strong>the</strong> 7400 Level, including mining <strong>of</strong> <strong>the</strong> Plum Orebody and 461 Orebody, may create a<br />

complex stress environment, complicating analysis <strong>of</strong> <strong>the</strong> 7400 Level.<br />

Numerical modelling <strong>of</strong> stress on <strong>the</strong> 7400 Level shows that stress flows around <strong>the</strong> excavation,<br />

forming a ring <strong>of</strong> high stress. In this two-dimensional analysis, <strong>the</strong>re is little deflection in stress<br />

trajectories in proximity to faults. This suggests that faults are strong and brittle. High stresses<br />

align parallel to SW-striking structures to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation, lowering stresses to <strong>the</strong><br />

southwest. Comparison <strong>of</strong> modelling results with seismicity shows an agreement between areas<br />

<strong>of</strong> high stress and areas <strong>of</strong> dense seismicity, as well as between areas <strong>of</strong> low modelled stress and<br />

areas <strong>of</strong> little to no seismicity. Numerical models that allow for non-recoverable deformation<br />

show yielding around <strong>the</strong> excavation and along SW-striking shear zones and both elastic and<br />

plastic models demonstrate slip along <strong>the</strong> Plum Shear Zone and <strong>of</strong>ten along <strong>the</strong> Return Air Raise<br />

Shear Zone in proximity to <strong>the</strong> excavation, though this occurs where <strong>the</strong> rockmass has yielded.<br />

5.2 Conclusions<br />

Given that large-magnitude events require large slip surfaces, it would be expected that mine-scale<br />

shear zones would provide <strong>the</strong> area necessary to produce macroseismic events in <strong>the</strong> Creighton<br />

107


Deep. Little evidence, however, has been found in this <strong>the</strong>sis to support displacements along<br />

mine-scale discontinuities as a source <strong>of</strong> seismicity in <strong>the</strong> footwall region to <strong>the</strong> south <strong>of</strong> <strong>the</strong><br />

excavation. Results indicate that seismicity in <strong>the</strong> Creighton Deep is <strong>the</strong> product <strong>of</strong> a degradation<br />

process. As stress flows around <strong>the</strong> excavation, zones <strong>of</strong> high stress are created that coincide with<br />

zones <strong>of</strong> preferential seismic activity. Shear zones slightly modify <strong>the</strong> stress field to <strong>the</strong> south <strong>of</strong><br />

<strong>the</strong> excavation by realigning high stresses with <strong>the</strong> strike <strong>of</strong> major structures and reducing stress to<br />

<strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation where little seismicity is observed. Shear zones in Creighton<br />

Deep thus only play a secondary role in <strong>the</strong> production <strong>of</strong> seismicity by modifying <strong>the</strong> stress state.<br />

Seismicity on mine levels in <strong>the</strong> Creighton Deep can be explained by <strong>the</strong> diffusion <strong>of</strong> rock mass<br />

degradation. Immediately to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong> excavation, rock is heavily fractured and<br />

permanently strained in a yield zone. The rock mass in this zone cannot accommodate high stress<br />

and this stress is transferred to <strong>the</strong> peripheral damage zone. Little to no seismicity is recorded<br />

within <strong>the</strong> yield zone and this area is modelled as having yielded and as having low stress and low<br />

differential stress.<br />

The damage zone has been demonstrated to be an area <strong>of</strong> damage accumulation, where crack<br />

initiation and fracture reactivation are possible seismic sources. This zone contains <strong>the</strong> highest<br />

modelled stresses and hosts <strong>the</strong> densest seismic activity. It is recognized as a zone <strong>of</strong> increased<br />

seismic hazard. Rock is intact beyond <strong>the</strong> damage zone and little seismicity occurs remote to<br />

mine drifts. Stress levels in <strong>the</strong> damage zone are near background levels.<br />

Large events are <strong>of</strong>ten associated with structure, and in many instances fault slip is <strong>the</strong> source <strong>of</strong><br />

high magnitude seismic events. While seismic and stress analyses conducted in this <strong>the</strong>sis have<br />

not revealed any significant relationship between mining-induced seismicity and structure, <strong>the</strong><br />

108


methodologies employed are <strong>of</strong> value to o<strong>the</strong>r underground environments excavating in disturbed<br />

ground, and may show more positive results in cases where faults are geologically weak.<br />

5.3 Recommendations for Future Work<br />

Based on <strong>the</strong> results <strong>of</strong> this study, <strong>the</strong> following recommendations are made:<br />

<br />

Continued monitoring <strong>of</strong> seismic event parameters should be carried out in order to identify<br />

signs <strong>of</strong> fur<strong>the</strong>r rock mass degradation. Extra caution should be given to <strong>the</strong> area identified as<br />

Cluster 1. This is identified as an area <strong>of</strong> increased hazard and continues to be a source <strong>of</strong><br />

energetic events. Fur<strong>the</strong>r studies <strong>of</strong> events in this area may help characterize and understand<br />

anomalous activity in this area.<br />

<br />

Additional triaxial sensors are recommended to improve location accuracy and to facilitate<br />

fur<strong>the</strong>r seismic studies in <strong>the</strong> Creighton Deep. Denser spacing in key areas <strong>of</strong> interest may<br />

also facilitate studies.<br />

A comparison <strong>of</strong> fault plane solutions for microseismic events with joint fabric on <strong>the</strong> 7400<br />

Level is suggested as future work. A correlation with joint planes may explain <strong>the</strong> deviation<br />

<strong>of</strong> estimated fault plane orientations from mapped fault orientations.<br />

<br />

Moment tensor inversion for microseismic events is recommended to study <strong>the</strong> damage<br />

process and characterize seismicity. Mechanisms such as crack dilation and closure could be<br />

identified using this method. Moment tensor inversion may also be a suitable method for<br />

studying events in Cluster 1.<br />

<br />

Fur<strong>the</strong>r analysis <strong>of</strong> macroseismic events is recommended once <strong>the</strong> triaxial strong ground<br />

motion system is calibrated. Waveforms recorded by <strong>the</strong> calibrated triaxial system will allow<br />

109


for <strong>the</strong> calculation <strong>of</strong> seismic event parameters, which will aid in characterizing large events in<br />

<strong>the</strong> Creighton Deep.<br />

<br />

Mine personnel should recognize <strong>the</strong> role <strong>of</strong> faults in influencing <strong>the</strong> flow <strong>of</strong> stress when<br />

monitoring established levels.<br />

<br />

Three-dimensional models are recommended in order to gain insight into stress migration<br />

from sources external to <strong>the</strong> 7400 Level. The 461 Orebody and Plum Orebody seem to have<br />

an effect on stress distribution and have a large impact on seismicity in Cluster 1.<br />

<br />

Lastly, diligent structural mapping and shear characterization is highly recommended to<br />

fur<strong>the</strong>r develop and refine <strong>the</strong> existing structural model. Knowledge <strong>of</strong> geological<br />

environment is essential to understand <strong>the</strong> response <strong>of</strong> <strong>the</strong> rock mass to mining. It is<br />

recommended that structures encountered during excavation be thoroughly described and<br />

documented before applying shotcrete or support that inhibits future analysis. Descriptions<br />

should include dimensions <strong>of</strong> high strain zones and damage zones as well as incidences <strong>of</strong><br />

fault gauge, slickenlines, brittle failure and brittle kinematic indicators.<br />

110


References<br />

Alcott, J. M., Kaiser, P. K., & Simser, B. P. (1998). Use <strong>of</strong> microseismic source parameters for<br />

rockburst hazard assessment. Pure and Applied Geophysics, 153(1), 41-65.<br />

Ames, D.E., Davidson, A., Buckle, J.L., and Card, K.D. (2005). <strong>Geology</strong>, Sudbury bedrock<br />

compilation, Ontario: Geological Survey <strong>of</strong> Canada, Open File 4570, scale: 1:50 000.<br />

Anderson, E. (1951). The dynamics <strong>of</strong> faulting: London. Oliver and Boyd, 206.<br />

Bailey, J., Lafrance, B., McDonald, A. M., Fedorowich, J. S., Kamo, S., & Archibald, D. A.<br />

(2004). Mazatzal–Labradorian-age (1.7–1.6 Ga) ductile deformation <strong>of</strong> <strong>the</strong> south range<br />

Sudbury impact structure at <strong>the</strong> Thayer Lindsley mine, Ontario. Canadian Journal <strong>of</strong> Earth<br />

Sciences, 41(12), 1491-1505.<br />

Bawden, W.F., Coulson, A.L. (1993). Structural and Geochemical Study <strong>of</strong> Creighton Mine with<br />

Increased Attention Focused on <strong>the</strong> Levels Below <strong>the</strong> 6600 Level. Report prepared for<br />

INCO Mines Research, Sudbury, Ontario by <strong>the</strong> <strong>Department</strong> <strong>of</strong> Mining Engineering,<br />

Queen’s <strong>University</strong>, Kingston, Canada.<br />

Beck, D. A., Brady, B. H. G., & Grant, D. R. (1997). Induced stress and microseismicity in <strong>the</strong><br />

3000 Orebody, Mount Isa. Geotechnical and Geological Engineering, 15(3), 221-233.<br />

Bellier, O., Over, S., Poisson, A., & Andrieux, J. (1997). Recent temporal change in <strong>the</strong> stress<br />

state and modern stress field along <strong>the</strong> North Anatolian Fault Zone (Turkey). Geophysical<br />

Journal International, 131(1), 61-86.<br />

Bellier, O., & Zoback, M. L. (1995). Recent state <strong>of</strong> stress change in <strong>the</strong> Walker Lane zone,<br />

western Basin and Range province, United States. Tectonics, 14(3), 564-593.<br />

Blake, W., & Hedley, D. G. F. (2003). Rockbursts: Case studies from North American hard-rock<br />

mines. USA: society for Mining, Metallurgy and Exploration Inc..<br />

Brocoum, S. J., & Dalziel, I. W. D. (1974). The Sudbury Basin, <strong>the</strong> Sou<strong>the</strong>rn Province, <strong>the</strong><br />

Grenville Front, and <strong>the</strong> Penokean Orogeny. Bulletin <strong>of</strong> <strong>the</strong> Geological Society <strong>of</strong> America,<br />

85(10), 1571-1580.<br />

Cai, M., Kaiser, P. K., Tasaka, Y., Maejima, T., Morioka, H., & Minami, M. (2004). Generalized<br />

crack initiation and crack damage stress thresholds <strong>of</strong> brittle rock masses near underground<br />

excavations. International Journal <strong>of</strong> Rock Mechanics and Mining Sciences, 41(5), 833-847.<br />

Cochrane, L. B. (1991). Analysis <strong>of</strong> <strong>the</strong> structural and tectonic environments associated<br />

with rockmass failures in <strong>the</strong> mines <strong>of</strong> <strong>the</strong> Sudbury District. Ph.D. Thesis, Queen’s<br />

<strong>University</strong>, Kingston.<br />

111


Corfu, F., & Andrews, A. J. (1986). A U-Pb age for mineralized Nipissing diabase, Gowganda,<br />

Ontario. Canadian Journal <strong>of</strong> Earth Sciences, 23(1), 107-109.<br />

Coulson, A.L. (1996). Mine induced Seismicity in highly stressed ground: a case study –<br />

Creighton Mine Inco Ltd., Sudbury. Ph.D. Thesis, Queen’s <strong>University</strong>, Kingston.<br />

Coulson, A. L., & Bawden, W. F. (2008). Observation <strong>of</strong> <strong>the</strong> spatial and temporal changes <strong>of</strong><br />

microseismic source parameters and locations, used to identify <strong>the</strong> state <strong>of</strong> <strong>the</strong> rock mass in<br />

relation to <strong>the</strong> peak and post-peak strength conditions. The 42nd US Rock Mechanics<br />

Symposium and 2nd US-Canada Rock Mechanics Symposium, San Francisco, 2008.<br />

Cundall, P. A., & Hart, R. D. (1992). Numerical modelling <strong>of</strong> discontinua. Engineering<br />

Computations, 9(2), 101-113.<br />

Diederichs, M. S. (2003). Rock fracture and collapse under low confinement conditions. Rock<br />

Mechanics and Rock Engineering, 36(5), 339-381.<br />

Dietz, R. S. (1964). Sudbury structure as an astrobleme. The Journal <strong>of</strong> <strong>Geology</strong>, 72(4), 412-434.<br />

Dressler, B. O. (1984). General geology <strong>of</strong> <strong>the</strong> Sudbury area. The <strong>Geology</strong> and Ore Deposits <strong>of</strong><br />

<strong>the</strong> Sudbury Structure, Edited by EG Pye, AJ Naldrett, and PE Giblin. Ontario Geological<br />

Survey, Special Volume, 1, 57–82.<br />

Dressler, B. O., & Reimold, W. U. (2001). Terrestrial impact melt rocks and glasses. Earth<br />

Science Reviews, 56(1-4), 205-284.<br />

Duncan Fama, M. E. (1993). Numerical modelling <strong>of</strong> yield zones in weak rocks. Comprehensive<br />

Rock Engineering, 2, 49–75. Oxford: Pergamon Press.<br />

Durrheim, R. J., Anderson, R. L., Cichowicz, A., Ebrahim-Trolloped, R., Hubert, G., Kijko, A., et<br />

al. (2006). The risks to miners, mines, and <strong>the</strong> public posed by large seismic events in <strong>the</strong> gold<br />

mining districts <strong>of</strong> South Africa. In J. Hadjigeorgiou, M. Grenon (Eds.), Proceedings <strong>of</strong> <strong>the</strong><br />

Third International Seminar on Deep and High Stress Mining, 2-4 October 2006, Quebec<br />

City, Université Laval, Canada.<br />

Eberhardt, E., Stead, D. & Stimpson, B. (1999). Quantifying progressive pre-peak brittle fracture<br />

damage in rock during uniaxial compression. International Journal <strong>of</strong> Rock Mechanics and<br />

Mining Sciences, 36, 361-380.<br />

Falmagne, V. (2001). Quantification <strong>of</strong> Rock Mass Degradation using Microseismic Monitoring<br />

and Applications for Mine Design, Ph. D. Thesis, <strong>Department</strong> <strong>of</strong> Mining Engineering,<br />

Queen’s <strong>University</strong>, Kingston, Canada.<br />

Feustel, A. J. (1998). Seismic attenuation in underground mines: A comparative evaluation <strong>of</strong><br />

methods and results. Tectonophysics, 289(1-3), 31-49.<br />

Freund, R. (1974). Kinematics <strong>of</strong> transform and transcurrent faults. Tectonophysics, 21, 93-134.<br />

112


Galkin, V., Mungall, J. (2005). Structural and Chemical Controls on Mineralization at <strong>the</strong><br />

Creighton Mine, Sudbury. Vale Inco Limited Internal Report.<br />

Gay, N. C., Spencer, D., Van Wyk, J. J., & Van Der Heever, P. K. (1984). The control <strong>of</strong><br />

geological and mining parameters on seismicity in <strong>the</strong> Klerksdorp gold mining district. Proc.<br />

1st Int. Congr. Rockbursts and Seismicity in Mines. S. Afr. Inst. Min. Metall., Johannesburg,<br />

107–120.<br />

Gephart, J. W. (1990). FMSI: A FORTRAN program for inverting fault/slickenside and<br />

earthquake focal mechanism data to obtain <strong>the</strong> regional stress tensor. Computers &<br />

Geosciences, 16(7), 953-989.<br />

Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining <strong>the</strong> regional stress<br />

tensor using earthquake focal mechanism data: Application to <strong>the</strong> San Fernando earthquake<br />

sequence. Journal <strong>of</strong> Geophysical Research-Solid Earth, 89(B11).<br />

Gibowicz, S. J., Kijko, A., & McGarr, A. (1994). An introduction to mining seismology. USA:<br />

Academic Press.<br />

Gibowicz, S. J., Young, R. P., Talebi, S., & Rawlence, D. J. (1991). Source parameters <strong>of</strong> seismic<br />

events at <strong>the</strong> underground research laboratory in Manitoba, Canada: Scaling relations for<br />

events with moment magnitude smaller than-2. Bulletin <strong>of</strong> <strong>the</strong> Seismological Society <strong>of</strong><br />

America, 81(4), 1157-1182.<br />

Grant, R. W., & Bite, A. (1984). Sudbury quartz diorite <strong>of</strong>fset dikes. In E.G. Pye, A.J. Naldrett,<br />

P.E. Giblin (eds.), The geology and ore deposits <strong>of</strong> <strong>the</strong> Sudbury Structure (275–301). Ontario<br />

Geological Survey Special Volume 1.<br />

Hart, R.D. (1993). An introduction to distinct element modeling for rock engineering in weak<br />

rock. In J.A. Hudston (Ed.), Comprehensive rock engineering, 2 (p. 245–261). Oxford,<br />

England: Pergamon Press.<br />

Heaman, L. M. (1997). Global mafic magmatism at 2.45 Ga; remnants <strong>of</strong> an ancient large igneous<br />

province? <strong>Geology</strong>, 25(4), 299-302.<br />

Hemming, S. R., McDaniel, D. K., McLennan, S. M., & Hanson, G. N. (1996). Pb isotope<br />

constraints on <strong>the</strong> provenance and diagenesis <strong>of</strong> detrital feldspars from <strong>the</strong> Sudbury Basin,<br />

Canada. Earth and Planetary Science Letters, 142(3-4), 501-512.<br />

Hodder, D. 2002. Major structural trends <strong>of</strong> <strong>the</strong> Creighton Embayment and related exploration<br />

targets along <strong>the</strong> South Range. Vale Inco Technical Services Internal Report.<br />

Itasca Consulting Group, Inc. 2000. UDEC (Universal Distinct Element Code), Version 3.10,<br />

Minneapolis : ICG.<br />

Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). Fundamentals <strong>of</strong> rock mechanics (4 th<br />

ed.). London: Blackwell Publishers, 38-41.<br />

113


Jager, A. J., & Ryder, J. A. (1999). A handbook on rock engineering practice for tabular hard<br />

rock mines. Safety in Mines Research Advisory Committee, Johannesburg.<br />

Jing, L. (2003). A review <strong>of</strong> techniques, advances and outstanding issues in numerical modelling<br />

for rock mechanics and rock engineering. International Journal <strong>of</strong> Rock Mechanics and<br />

Mining Sciences, 40(3), 283-353.<br />

Jones, A. P. (2005). Meteorite Impacts as Triggers to Large Igneous Provinces. Elements, 1, 277-<br />

281.<br />

Kaiser, P. K., Vasak, P., Suorineni, F. T., & Thibodeau, D. (2005). New dimensions in seismic<br />

data interpretation with 3-D virtual reality visualization for burst-prone mines. RaSiM6-Sixth<br />

International Symposium on Rock Burst and Seismicity in Mines Proceedings. Australia:<br />

Australian Centre for Geomechanics, 33-45<br />

Krogh, T. E., Corfu, F., Davis, D. W., Dunning, G. R., Heaman, L. M., Kamo, S. L., et al. (1987).<br />

Precise U–Pb isotopic ages <strong>of</strong> diabase dykes and mafic to ultramafic rocks using trace<br />

amounts <strong>of</strong> baddeleyite and zircon. In H.C. Halls, W.F. Fahrig (eds.). Mafic dyke swarms<br />

(147–152). Geological Association <strong>of</strong> Canada Special Paper 34.<br />

Krogh, T. E., Davis, D. W., & Corfu, F. (1984). Precise U-pb zircon and baddeleyite ages for <strong>the</strong><br />

sudbury area: Ontario geological survey special volume 1. In Pye, E.G., Naldrett, A.J., Giblin,<br />

P.E. (eds.) The geology and ore deposits <strong>of</strong> <strong>the</strong> Sudbury Structure. 431–446.<br />

Long, D. G. F. (2004). The tectonostatigraphic evolution <strong>of</strong> <strong>the</strong> Huronian basement and <strong>the</strong><br />

subsequent basin fill: Geological constraints on impact models <strong>of</strong> <strong>the</strong> Sudbury event.<br />

Precambrian Research, 129(3-4), 203-223.<br />

Madariaga, R. (1976). Dynamics <strong>of</strong> an expanding circular fault. Bulletin <strong>of</strong> <strong>the</strong> Seismological<br />

Society <strong>of</strong> America, 66(3), 639-666.<br />

Malek, F., Espley, S., Yao, M., Trifu, C., & Suorineni, F. T. (2008). Management <strong>of</strong> high stress<br />

and seismicity at Vale Inco Creighton mine. The 42nd US Rock Mechanics Symposium and<br />

2nd US-Canada Rock Mechanics Symposium, San Francisco, 2008.<br />

McGarr, A., Spottiswoode, S. M., & Gay, N. C. (1975). Relationship <strong>of</strong> mine tremors to induced<br />

stresses and to rock properties in <strong>the</strong> focal region. Bulletin <strong>of</strong> <strong>the</strong> Seismological Society <strong>of</strong><br />

America, 65(4), 981-993.<br />

McKinnon, S. D. (2006). Triggering <strong>of</strong> seismicity remote from active mining excavations. Rock<br />

Mechanics and Rock Engineering, 39(3), 255-279.<br />

Mendecki, A. J. (1997). Seismic monitoring in mines. London: Chapman & Hall.<br />

Miller, A. D., Foulger, G. R., & Julian, B. R. (1998). Non-double-couple earthquakes. 2.<br />

observations. Reviews <strong>of</strong> Geophysics, 36(4), 551–568.<br />

114


Mungall, J. E., & Hanley, J. J. (2004). Origins <strong>of</strong> outliers <strong>of</strong> <strong>the</strong> Huronian Supergroup within <strong>the</strong><br />

Sudbury Structure. The Journal <strong>of</strong> <strong>Geology</strong>, 112(1), 59-70.<br />

Pande, G. N., Beer, G., & Williams, J. R. (1990). Numerical methods in rock mechanics. England:<br />

John Wiley & Sons.<br />

Riller, U., Schwerdtner, W. M., Halls, H. C., & Card, K. D. (1999). Transpressive tectonism in <strong>the</strong><br />

eastern penokean orogen, canada-consequences for proterozoic crustal kinematics and<br />

continental fragmentation. Precambrian Research, 93(1), 51-70.<br />

Rocscience Inc. 1998, Dips Version 5.0 - Graphical and Statistical Analysis <strong>of</strong> Orientation Data.<br />

www.rocscience.com, Toronto, Ontario, Canada.<br />

Rocscience Inc. 2005, Phase2 Version 6.0 - Finite Element Analysis for Excavations and Slopes.<br />

www.rocscience.com, Toronto, Ontario, Canada.<br />

Rousell, D. H., Gibson, H. L., & Jonasson, I. R. (1997). The tectonic, magmatic and<br />

mineralization history <strong>of</strong> <strong>the</strong> Sudbury Structure. Exploration and Mining <strong>Geology</strong>, 6(1), 1-<br />

22.<br />

Scholz, C. H. (2002). The mechanics <strong>of</strong> earthquakes and faulting (2nd ed.). New York:<br />

Cambridge <strong>University</strong> Press.<br />

Schultz, R. A. (1996). Relative scale and <strong>the</strong> strength and deformability <strong>of</strong> rock masses. Journal <strong>of</strong><br />

Structural <strong>Geology</strong>, 18(9), 1139-1149.<br />

Schulz, K. J., & Cannon, W. F. (2007). The penokean orogeny in <strong>the</strong> lake superior region.<br />

Precambrian Research, 157(1-4), 4-25.<br />

Seidler, J.K. 2008. Creighton Deep Mine Structural Review. Vale Inco Limited Internal Report.<br />

Sibson, R. H., Robert, F., & Poulsen, K. H. (1988). High-angle reverse faults, fluid-pressure<br />

cycling, and meso<strong>the</strong>rmal gold-quartz deposits. <strong>Geology</strong>, 16(6), 551-555.<br />

Siddorn, J. 2006. Memo to Creighton Mine: 7680 Level visit. SRK Consulting Engineers and<br />

Scientists<br />

Stein, S., & Wysession, M. (2003). An introduction to seismology, earthquakes, and earth<br />

structure. Oxford: Wiley-Blackwell.<br />

Stockwell, C.H. (1982). Proposals for <strong>the</strong> time classification and correlation <strong>of</strong> Precambrian<br />

rocks and events in Canada and adjacent areas <strong>of</strong> <strong>the</strong> Canadian Shield. Geological Survey <strong>of</strong><br />

Canada Paper 80-19, 135 pp.<br />

Szwedzicki, T. (2003). Rock mass behaviour prior to failure. International Journal <strong>of</strong> Rock<br />

Mechanics and Mining Sciences, 40(4), 573-584.<br />

115


Tulk, L. 2001. Creighton Deep structural study. Unpublished report prepared for INCO Limited<br />

Mines Research.<br />

Urbancic, T. I., & Young, R. P. (1995). Structural characterization <strong>of</strong> highly stressed rock masses<br />

using microseismic fault: Plane solutions. In L.R. Myer, N.G.W. Cook, R.E. Goodman, C.F.<br />

Tsang (eds.), Proc. Fractured and Jointed Rock Masses. Balkema, Rotterdam.<br />

Vale Inco Limited, MineCad map G_17_7200, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7400, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7530, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7680, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7810, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7940, accessed 2009<br />

Van Breemen, O., & Davidson, A. (1988). Nor<strong>the</strong>ast extension <strong>of</strong> proterozoic terrances <strong>of</strong> midcontinental<br />

north america. Bulletin <strong>of</strong> <strong>the</strong> Geological Society <strong>of</strong> America, 100(5), 630-638.<br />

Van Schmus, W. R. (1976). Early and middle proterozoic history <strong>of</strong> <strong>the</strong> great lakes area, north<br />

america. Philosophical Transactions for <strong>the</strong> Royal Society <strong>of</strong> London.Series A, Ma<strong>the</strong>matical<br />

and Physical Sciences, 280, 605-628.<br />

Vasak, P., Suorineni, F., Verma, A.. N.D. Identification <strong>of</strong> seismically active structures for<br />

hazard assessment at Creighton Mine. Report prepared for <strong>the</strong> INCO Technology Centre by<br />

MIRARCO/Geomechancis Research Centre: Laurentian <strong>University</strong>, Sudbury, Ontario,<br />

Canada.<br />

Wiles, T. D. (2006). Reliability <strong>of</strong> numerical modelling predictions. International Journal <strong>of</strong> Rock<br />

Mechanics and Mining Sciences, 43(3), 454-472.<br />

Zolnai, A. I., Price, R. A., & Helmstaedt, H. (1984). Regional cross section <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn<br />

Province adjacent to Lake Huron, Ontario: Implications for <strong>the</strong> tectonic significance <strong>of</strong> <strong>the</strong><br />

Murray fault zone. Canadian Journal <strong>of</strong> Earth Sciences, 21(4), 447-456.<br />

116


Appendix A<br />

Geological Maps and Sample Locations<br />

A.1 Site Locations<br />

Site locations, samples and thin sections are summarized in Table A1.<br />

<br />

<br />

<br />

<br />

A denotes cut along lineation, perpendicular to foliation<br />

B denotes cut perpendicular to lineation and foliation<br />

C denotes cut along slickenlines, perpendicular to foliation<br />

No assigned letter indicates cut along lineation, perpendicular to foliation (A)<br />

Table A1: Summary <strong>of</strong> site visit locations, oriented samples and thin sections<br />

Location Level Feature<br />

Oriented<br />

Sample<br />

Thin Section<br />

29-1 7680 6730 Sill -- --<br />

29-2 7810 Isoclinally folded breccia -- --<br />

29-3 7810 Isoclinally folded breccia -- --<br />

02-1 7940 Fresh Air Raise-Type Shear Zone Yes 02-1<br />

02-2 7940 Fresh Air Raise-Type Shear Zone Yes (02-2) 02-2A, 02-2B, 02-2L<br />

02-3 7400 Footwall Shear Zone Yes (02-3) 02-3<br />

02-4 7400 Footwall Shear Zone Yes (02-4) 02-4<br />

02-5 7400 RAR Shear Zone Yes (02-5) 02-5A<br />

02-6 7400 Grizzly Splay Shear Zone Yes (02-6) 02-6A, 02-6B<br />

03-1 7940 Fresh Air Raise-Type Shear Zone Yes --<br />

03-2 7530 Footwall Shear Zone -- --<br />

03-3 7530 Minor shear along dyke Not oriented --<br />

03-4 7530 Cracked shotcrete along RAR Shear Zone -- --<br />

04-1 7680 Return Air Raise Shear Zone -- --<br />

04-2A, B 7680 Near projected Northwest Shear Zone -- --<br />

04-3 7680 Near projected Northwest Shear Zone -- --<br />

04-5 7680 Projected Plum Shear Zone location -- --<br />

04-6 7680 Shear zone parallel to Footwall Shear Zone Not oriented 04-6<br />

04-7 7680 Footwall Shear Zone Yes 04-7A, 04-7B<br />

117


05-1A-D 7810 400-East Shear Zone and 1290 Shear Zone Yes 05-1D A, 05-1D B, 05-<br />

1D A1, 05-1D C<br />

05-2A-J 7810 Isoclinally folded breccia -- --<br />

05-3 7810 -- --<br />

05-4 7810 Minor shear zone -- --<br />

05-5 7810 Veins in projected Plum Shear location -- --<br />

05-6 7810 Face exposure -- --<br />

05-7 7810 Face exposure -- --<br />

09-1 7680 Footwall Shear Zone (same as 04-7) Not oriented --<br />

09-2 7400 Grizzly Splay Shear Zone (same as 02-6) Yes 02-6A, 02-6B<br />

09-3 7200 Persistent joints marked as ‘Shear Zone’ -- --<br />

09-4 7200 FAR Shear Zone Yes 09-4A, 09-4B<br />

09-5 7200 Projected Plum Shear Zone location -- --<br />

09-6 7200 Projected 1290 Shear location -- --<br />

09-7 7200 Strained but cohesive granite and gabbro -- --<br />

10-2 6600 Footwall Shear Zone Yes 10-2A, 10-2B<br />

10-3 6600 Deformed quartz boudins -- --<br />

10-4 6600 Localized failure and overbreak -- --<br />

10-5 7000 Projected Plum Shear location -- --<br />

10-6 7000 Near Projected Plum Shear location Yes 10-6A<br />

10-7 7810 400-East Shear Zone (same as 05-1) -- --<br />

11-1 7680 Large parallel quartz veins -- --<br />

11-2 7680 Folded dykelet (?) -- --<br />

11-3 7680 Near projected NW shear Yes --<br />

11-4 7680 RAR Shear Zone Yes 12-4A<br />

11-5 7680 Veins and brittle fractures -- --<br />

11-6 7680 RAR Shear Zone -- --<br />

11-7 7680 Near projected NW shear -- --<br />

16-1 7810 Minor shear in Face -- --<br />

17-1 7400 FAR Shear Zone Yes 17-1A, 17-1B<br />

17-2 7400 Minor shear at lithological contact -- --<br />

17-3 7150 Pinched out vein near projected 402 Shear<br />

Zone location<br />

118<br />

-- --<br />

17-4 7150 Pinched out vein -- --<br />

17-5 6900 Zone <strong>of</strong> high strain -- --<br />

18-1 6400 1290 Shear Zone Yes 18-1


A.2 Level Plans with Sample Locations<br />

Figure A1: 7000 Level, modified form Vale Inco. RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

119


Figure A2: 7200 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

120


Figure A3: 7400 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

121


Figure A4: 7530 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

122


Figure A5: 7680 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

123


Figure A6: 7810 Level, modified form Vale Inco. RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

124


Figure A7: 7940 Ramp, modified from Vale Inco. FAR = Fresh Air Raise.<br />

125


Appendix B<br />

Seismic Event Parameters<br />

B.1 Event Population Statistics for <strong>the</strong> Creighton Deep<br />

Table B1: Summary Statistics for microseismic, macroseismic and blast events below 7000 feet with<br />

location errors less than 30 feet.<br />

MICROSEISMIC<br />

EVENTS Error Ns Nu uMag Nt tMag<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E Es/Ep<br />

Mean 18.31 21.91 14.95 -2.70 5.23 -1.85 -1.04 7.87 2.51 8.62<br />

Standard Error 0.05 0.07 0.04 0.01 0.02 0.01 0.00 0.01 0.02 0.06<br />

Median 18.00 21.00 15.00 -2.70 5.00 -1.90 -1.10 7.64 2.30 7.60<br />

Mode 16.00 20.00 15.00 -2.80 6.00 -2.10 -1.30 7.01 2.03 5.50<br />

Standard Dev. 4.80 5.89 3.83 0.54 1.49 0.70 0.44 0.84 1.61 5.14<br />

Sample Variance 23.01 34.68 14.65 0.29 2.23 0.49 0.19 0.70 2.58 26.47<br />

Kurtosis -0.28 -0.16 -0.16 0.97 -0.49 8.83 82.21 0.21 -0.45 32.91<br />

Skewness 0.38 0.37 0.05 0.57 -0.05 -0.10 -3.34 0.94 0.51 3.61<br />

Range 24.00 35.00 27.00 4.90 9.00 11.40 10.70 4.18 8.27 92.20<br />

Minimum 6.00 8.00 3.00 -4.60 0.00 -9.90 -9.90 6.49 -0.63 0.10<br />

Maximum 30.00 43.00 30.00 0.30 9.00 1.50 0.80 10.68 7.64 92.30<br />

Count 8066 8066 8066 8066 8066 8066 8066 8061 8061 8061<br />

MACROSEISMIC<br />

EVENTS Error Ns Nu uMag Nt tMag<br />

Es/Ep<br />

Mean 19.48 33.47 14.96 -1.17 6.70 -0.08 0.12 9.69 5.73 17.17<br />

Standard Error 0.41 0.43 0.45 0.05 0.13 0.06 0.03 0.05 0.10 1.50<br />

Median 18.00 34.00 15.00 -1.20 7.00 0.00 0.10 9.74 5.84 13.55<br />

Mode 18.00 34.00 19.00 -1.10 6.00 0.50 0.20 9.55 6.53 8.40<br />

Standard Dev. 4.07 4.24 4.48 0.47 1.27 0.63 0.27 0.46 1.03 14.84<br />

Sample Variance 16.60 17.98 20.10 0.22 1.61 0.40 0.07 0.21 1.07 220.26<br />

Kurtosis 0.05 -0.38 -0.58 0.53 0.76 -0.28 -0.34 -0.31 -0.28 9.46<br />

Skewness 0.70 -0.26 -0.03 0.21 -0.50 -0.05 0.10 -0.40 -0.53 2.69<br />

Range 18.00 20.00 20.00 2.70 6.00 3.10 1.20 2.10 4.55 91.20<br />

Minimum 12.00 23.00 5.00 -2.40 3.00 -1.60 -0.40 8.58 3.09 1.10<br />

Maximum 30.00 43.00 25.00 0.30 9.00 1.50 0.80 10.68 7.64 92.30<br />

Count 98 98 98 98 98 98 98 98 98 98<br />

BLASTS Error Ns Nu uMag Nt tMag<br />

Mean 21.16 25.79 16.44 -1.69 5.36 -1.07 -0.38 9.07 4.54 5.44<br />

Standard Error 0.37 0.58 0.44 0.05 0.10 0.05 0.04 0.07 0.14 0.30<br />

Median 21.00 27.00 17.00 -1.60 6.00 -1.00 -0.30 9.30 5.05 4.30<br />

Mode 18.00 30.00 19.00 -1.50 6.00 -1.00 -0.20 8.14 5.17 2.30<br />

Standard Dev. 4.50 6.95 5.33 0.66 1.19 0.66 0.45 0.89 1.68 3.60<br />

Sample Variance 20.22 48.36 28.40 0.44 1.43 0.43 0.20 0.79 2.84 12.96<br />

Kurtosis -0.46 -0.03 0.18 0.32 0.24 0.74 0.12 -0.17 -0.20 1.48<br />

Skewness -0.09 -0.44 -0.29 -0.45 -0.45 -0.68 -0.84 -0.88 -0.80 1.38<br />

Range 23.00 36.00 27.00 3.50 6.00 3.50 1.90 3.66 7.29 16.50<br />

Minimum 7.00 8.00 3.00 -3.60 2.00 -3.20 -1.50 6.86 0.15 0.60<br />

Maximum 30.00 44.00 30.00 -0.10 8.00 0.30 0.40 10.51 7.43 17.10<br />

Count 145 145 145 145 145 145 145 145 145 145<br />

126<br />

Mom.<br />

Mag.<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

M<br />

LOG<br />

E<br />

LOG<br />

E<br />

Es/Ep


MICROSEISMIC<br />

EVENTS<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.89 0.72 6.27 5.20 6.81 -3.82 -1.62 5.71<br />

Standard Error 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01<br />

Median 2.77 0.62 6.24 5.16 6.70 -3.94 -1.74 5.60<br />

Mode 2.46 1.06 6.00 5.03 7.03 -3.92 -1.95 5.09<br />

Standard Deviation 0.75 0.36 0.64 0.86 0.58 0.69 0.69 0.58<br />

Sample Variance 0.56 0.13 0.41 0.74 0.34 0.47 0.47 0.34<br />

Kurtosis 1.26 6.65 -0.47 -0.75 0.14 -0.05 -0.05 0.14<br />

Skewness 0.87 2.10 0.12 0.11 0.78 0.69 0.69 0.78<br />

Range 7.92 3.52 3.83 4.75 3.39 3.92 3.92 3.39<br />

Minimum 1.08 0.23 4.55 3.08 5.40 -5.44 -3.24 4.30<br />

Maximum 9.00 3.75 8.38 7.83 8.79 -1.52 0.69 7.69<br />

Count 8061 8061 8061 8061 8061 8061 8061 8061<br />

REPORTABLE<br />

EVENTS<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 4.38 1.69 7.37 6.60 7.79 -2.43 -0.23 6.69<br />

Standard Error 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05<br />

Median 4.50 1.65 7.44 6.61 7.85 -2.34 -0.13 6.75<br />

Mode 4.13 1.68 7.89 6.30 8.26 -2.87 -0.67 7.16<br />

Standard Deviation 0.63 0.48 0.50 0.63 0.47 0.45 0.45 0.47<br />

Sample Variance 0.39 0.23 0.25 0.39 0.22 0.20 0.20 0.22<br />

Kurtosis -0.05 1.37 -0.49 -0.23 -0.04 -0.45 -0.45 -0.05<br />

Skewness -0.56 0.85 -0.40 -0.38 -0.65 -0.39 -0.39 -0.65<br />

Range 2.85 2.50 2.13 2.81 2.12 1.90 1.90 2.12<br />

Minimum 2.65 0.67 6.25 5.02 6.67 -3.42 -1.21 5.57<br />

Maximum 5.50 3.17 8.38 7.83 8.79 -1.52 0.69 7.69<br />

Count 98 98 98 98 98 98 98 98<br />

BLASTS<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 4.13 1.94 6.92 6.03 7.21 -3.04 -0.84 6.11<br />

Standard Error 0.09 0.09 0.05 0.07 0.05 0.06 0.06 0.05<br />

Median 4.33 1.88 7.03 6.29 7.26 -2.90 -0.69 6.15<br />

Mode 4.94 3.14 6.08 6.48 6.68 -3.23 -0.51 5.58<br />

Standard Deviation 1.13 1.02 0.65 0.85 0.65 0.71 0.71 0.65<br />

Sample Variance 1.27 1.05 0.42 0.73 0.42 0.50 0.50 0.42<br />

Kurtosis -0.80 -0.94 -0.26 0.00 -0.83 -0.04 -0.04 -0.83<br />

Skewness -0.36 0.29 -0.61 -0.70 -0.06 -0.54 -0.53 -0.06<br />

Range 4.63 4.01 3.07 4.38 2.72 3.36 3.37 2.72<br />

Minimum 1.63 0.33 5.02 3.47 5.74 -4.99 -2.79 4.64<br />

Maximum 6.26 4.34 8.09 7.84 8.46 -1.63 0.58 7.36<br />

Count 145 145 145 145 145 145 145 145<br />

127


Log E<br />

10<br />

8<br />

6<br />

4<br />

Energy-Moment Relataion<br />

LogE = 2.13 LogM - 14.90<br />

LogE = 1.84 LogM - 12.17<br />

LogE = 1.75 LogM - 11.28<br />

Events<br />

Blasts<br />

Reportable<br />

Linear (Reportable)<br />

Linear (Blasts)<br />

Linear (Events)<br />

2<br />

0<br />

-2<br />

0 2 4 6 8 10 12<br />

Log M<br />

Figure B1: Energy-Moment relation showing distribution <strong>of</strong> events, blasts and large magnitude events.<br />

Well-located events (


2006 Event Frequency with Depth<br />

6000<br />

5000<br />

Frequency<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500<br />

Depth (feet)<br />

Figure B3: Events within Creighton Mine increase with Depth. This is shown in this event frequency<br />

histogram. This trend is noted over many years, though some increase on lower levels reflects level<br />

development.<br />

Distribution <strong>of</strong> Recorded Events (2006 Data,<br />

Below 7300 ft.)<br />

123<br />

979<br />

e<br />

r<br />

b<br />

9317<br />

Figure B4: Events within <strong>the</strong> Creighton Deep study area consists <strong>of</strong> mostly microseismic events (89.4%),<br />

blasts (9.4%) and few macroseismic events (1.2%)<br />

129


Frequency <strong>of</strong> 2006 Events by Month<br />

1600<br />

1400<br />

1200<br />

Frequency<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Month<br />

Figure B5: Event frequency by month reveals some seasonality to events. Higher event rates occur in<br />

November to January, while low rates occur after a late summer shut-down.<br />

Event frequency by hour, 2006 events<br />

700<br />

600<br />

500<br />

Frequency<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1 3 5 7 9 11 13 15 17 19 21 23<br />

Time (Hour)<br />

Figure B6: Event Frequency is plotted by hour. High event rates in early morning hours reflect blasting<br />

schedules for <strong>the</strong> Creighton Deep.<br />

130


B.2 Spatial Distribution <strong>of</strong> Seismic Event Parameters for <strong>the</strong> 7400 Level<br />

Figure B7: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

magnitude.<br />

Figure B8: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by <strong>the</strong><br />

number <strong>of</strong> phones used in recording, a relative measure <strong>of</strong> magnitude.<br />

131


Figure B9: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

Seismic Energy (Log scale used).<br />

Figure B10: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

Seismic Moment (Log scale used).<br />

132


Figure B11: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

dynamic stress drop (Log scale used).<br />

Figure B12: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by static<br />

stress drop (Log scale used).<br />

133


Figure B13: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by static<br />

stress drop (Log scale used).<br />

Figure B14: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by peak<br />

particle velocity (Log scale used).<br />

134


Figure B15: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by peak<br />

particle acceleration (Log scale used).<br />

Figure B16: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

maximum particle displacement (Log scale used).<br />

135


Figure B17: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

source radius<br />

Figure B18: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

asperity radius<br />

136


Figure B19: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

location error. Events that locate outside <strong>the</strong> network to <strong>the</strong> north have a greater location error.<br />

137


B.3 Cluster Statistics<br />

Table B2: Summary Statistics for microseismic event clusters about <strong>the</strong> 7400 Level with location errors<br />

less than 30 feet.<br />

Cluster 1 Error Ns Nu uMag Nt tMag<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E<br />

Es/Ep<br />

Mean 17.06 21.89 15.57 -2.67 6.32 -1.61 -1.11 7.79 3.28 8.89<br />

Standard Error 0.16 0.15 0.13 0.02 0.04 0.02 0.01 0.02 0.04 0.20<br />

Median 17.00 22.00 16.00 -2.70 6.00 -1.70 -1.20 7.67 3.20 7.70<br />

Mode 18.00 24.00 17.00 -2.80 6.00 -2.00 -1.20 7.49 3.11 6.30<br />

Standard Dev. 4.01 3.72 3.26 0.48 1.11 0.50 0.30 0.57 0.97 5.04<br />

Sample Variance 16.10 13.81 10.63 0.23 1.22 0.25 0.09 0.32 0.94 25.36<br />

Kurtosis 0.13 0.06 0.13 0.47 -0.45 1.20 2.01 1.29 0.74 29.63<br />

Skewness 0.54 -0.39 -0.34 0.54 -0.27 0.92 0.99 1.00 0.49 3.85<br />

Range 21.00 22.00 20.00 3.00 5.00 3.00 2.00 3.74 6.34 62.30<br />

Minimum 9.00 9.00 5.00 -3.90 3.00 -2.70 -1.90 6.19 0.37 2.60<br />

Maximum 30.00 31.00 25.00 -0.90 8.00 0.30 0.10 9.93 6.71 64.90<br />

Count 619 619 619 619 619 619 619 619 619 619<br />

Cluster 2 Error Ns Nu uMag Nt tMag<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E<br />

Es/Ep<br />

Mean 15.88 22.96 15.04 -2.92 6.46 -2.04 -1.28 7.37 1.73 7.52<br />

Standard Error 0.21 0.30 0.18 0.03 0.08 0.04 0.02 0.03 0.07 0.28<br />

Median 15.00 23.00 15.00 -3.00 7.00 -2.20 -1.30 7.26 1.58 6.70<br />

Mode 16.00 19.00 17.00 -2.80 8.00 -2.40 -1.50 7.23 1.38 4.70<br />

Standard Dev. 3.67 5.19 3.05 0.48 1.39 0.62 0.32 0.57 1.18 4.83<br />

Sample Variance 13.45 26.95 9.33 0.23 1.95 0.39 0.10 0.33 1.40 23.30<br />

Kurtosis 1.83 -0.38 0.26 1.20 -0.70 0.05 1.23 1.14 -0.34 120.14<br />

Skewness 1.11 0.09 -0.29 0.79 -0.50 0.78 0.75 0.73 0.55 9.00<br />

Range 21.00 27.00 18.00 3.30 5.00 3.10 1.90 3.47 5.21 71.40<br />

Minimum 9.00 10.00 5.00 -4.10 3.00 -3.10 -2.10 5.85 -0.19 2.40<br />

Maximum 30.00 37.00 23.00 -0.80 8.00 0.00 -0.20 9.32 5.02 73.80<br />

Count 297 297 297 297 297 297 297 297 297 297<br />

Cluster 3 Error Ns Nu uMag Nt tMag<br />

138<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E<br />

Es/Ep<br />

Mean 14.78 21.55 14.13 -3.10 5.84 -2.22 -1.37 7.23 1.31 9.42<br />

Standard Error 0.24 0.38 0.22 0.03 0.10 0.04 0.03 0.05 0.08 0.32<br />

Median 15.00 20.50 14.00 -3.10 6.00 -2.35 -1.40 7.12 0.98 8.60<br />

Mode 15.00 20.00 14.00 -3.10 5.00 -2.80 -1.50 7.01 0.31 8.60<br />

Standard Dev. 3.60 5.67 3.29 0.49 1.44 0.65 0.38 0.68 1.22 4.72<br />

Sample Variance 12.97 32.19 10.83 0.24 2.06 0.42 0.14 0.46 1.48 22.24<br />

Kurtosis 0.75 -0.29 -0.30 -0.22 -0.43 0.71 2.34 1.11 0.40 19.43<br />

Skewness 0.46 0.52 -0.16 0.24 -0.22 0.97 0.84 0.68 0.94 3.24<br />

Range 22.00 28.00 17.00 2.60 6.00 3.70 2.40 3.94 6.13 44.30<br />

Minimum 6.00 9.00 5.00 -4.20 2.00 -3.50 -2.20 5.73 -0.57 2.00<br />

Maximum 28.00 37.00 22.00 -1.60 8.00 0.20 0.20 9.67 5.56 46.30<br />

Count 220 220 220 220 220 220 220 220 220 220


Cluster 1<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.10 0.60 6.84 6.05 7.12 -3.56 -1.36 6.02<br />

Standard Error 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02<br />

Median 2.12 0.57 6.85 6.09 7.09 -3.59 -1.39 5.99<br />

Mode 2.03 0.53 7.01 6.24 7.01 -3.92 -1.72 5.98<br />

Standard Deviation 0.56 0.18 0.37 0.50 0.40 0.46 0.46 0.40<br />

Sample Variance 0.31 0.03 0.14 0.25 0.16 0.21 0.21 0.16<br />

Kurtosis 0.49 2.94 0.67 1.35 0.25 0.68 0.69 0.24<br />

Skewness -0.32 1.40 -0.28 -0.57 0.57 0.67 0.67 0.57<br />

Range 3.14 1.23 2.47 3.71 2.28 2.81 2.81 2.28<br />

Minimum 0.73 0.30 5.39 3.79 6.19 -4.67 -2.47 5.09<br />

Maximum 3.87 1.53 7.86 7.51 8.47 -1.87 0.34 7.37<br />

Count 619 619 619 619 619 619 619 619<br />

Cluster 2<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.24 0.59 6.11 4.92 6.50 -4.21 -2.01 5.40<br />

Standard Error 0.04 0.01 0.03 0.04 0.02 0.03 0.03 0.02<br />

Median 2.34 0.55 6.14 4.93 6.43 -4.30 -2.10 5.33<br />

Mode 1.99 0.45 6.14 4.50 6.12 -4.45 -1.97 5.02<br />

Standard Deviation 0.68 0.19 0.53 0.73 0.40 0.49 0.49 0.40<br />

Sample Variance 0.46 0.04 0.29 0.53 0.16 0.24 0.24 0.16<br />

Kurtosis -0.23 1.02 -0.45 -0.79 -0.13 -0.11 -0.11 -0.13<br />

Skewness -0.60 1.00 0.08 -0.03 0.64 0.68 0.68 0.65<br />

Range 3.19 1.13 2.83 3.39 1.99 2.29 2.29 1.99<br />

Minimum 0.70 0.25 5.05 3.52 5.82 -5.03 -2.83 4.72<br />

Maximum 3.89 1.38 7.88 6.91 7.80 -2.74 -0.53 6.70<br />

Count 297 297 297 297 297 297 297 297<br />

Cluster 3<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.55 0.49 5.86 4.64 6.49 -4.30 -2.09 5.39<br />

Standard Error 0.07 0.01 0.04 0.05 0.03 0.04 0.04 0.03<br />

Median 2.66 0.45 5.84 4.58 6.40 -4.46 -2.26 5.30<br />

Mode 2.46 0.38 5.35 5.31 6.10 -4.53 -2.47 5.00<br />

Standard Dev. 1.03 0.16 0.63 0.76 0.42 0.53 0.53 0.42<br />

Sample Variance 1.06 0.03 0.39 0.58 0.18 0.28 0.28 0.18<br />

Kurtosis -0.74 3.23 -0.83 -0.93 -0.07 0.15 0.15 -0.08<br />

Skewness -0.35 1.54 0.18 0.22 0.71 0.86 0.86 0.71<br />

Range 3.96 0.95 2.70 3.37 2.15 2.68 2.68 2.15<br />

Minimum 0.66 0.26 4.66 3.08 5.66 -5.28 -3.07 4.56<br />

Maximum 4.62 1.21 7.36 6.45 7.81 -2.60 -0.39 6.71<br />

Count 220 220 220 220 220 220 220 220<br />

139


B.4 Temporal Distribution <strong>of</strong> Seismic Event Parameters<br />

Events belonging to Clusters 1, 2 and 3, as identified in Chapter 3 are plotted to assess temporal<br />

variation. Events are shown in grey; a moving average <strong>of</strong> 50 events is shown in black. Events are as<br />

labeled. Bottom axis represents local time.<br />

Parameter units are summarized here:<br />

Seismic moment, Nm<br />

Energy, J<br />

Source radius, m<br />

Asperity radius, m<br />

Static stress drop, Pa<br />

Apparent stress drop, Pa<br />

Dynamic Stress drop, Pa<br />

Maximum displacement (m)<br />

Peak velocity, m/s<br />

Peak acceleration, m/s 2<br />

B.4.1 Temporal Distribution <strong>of</strong> Cluster 1 Events<br />

Moment Magnitude<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

140


Seismic Moment<br />

10.0<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

141


142<br />

Energy<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

7.0<br />

8.0<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007<br />

Apparent Stress<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007<br />

Dynamic Stress Drop<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

8.5<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007


143<br />

Peak Velocity Parameter<br />

-2.5<br />

-2.0<br />

-1.5<br />

-1.0<br />

-0.5<br />

0.0<br />

0.5<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

Es/Ep<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

Source Radius<br />

0.5<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

3.0<br />

3.5<br />

4.0<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007


144<br />

Static Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007<br />

Complexity (DySD:StSD)<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

7.0<br />

8.0<br />

9.0<br />

10.0<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007


B.4.2 Temporal Distribution <strong>of</strong> Cluster 2 Events<br />

Moment Magnitude<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Seismic Moment<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

145


146<br />

Energy<br />

-1.0<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Es/Ep<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Source Radius<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007


147<br />

Static Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Apparent Stress<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Dynamic Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007


Peak Velocity Parameter<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Complexity (DySD:StSD)<br />

12.0<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

148


B.4.3 Temporal Distribution <strong>of</strong> Cluster 3 Events<br />

Moment Magnitude<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Seismic Moment<br />

10.0<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

149


150<br />

Energy<br />

-1.0<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Es/Ep<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Source Radius<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007


151<br />

Static Stress Drop<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Apparent Stress<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Dynamic Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007


Peak Velocity Parameter<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

-3.0<br />

-3.5<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Com pexity (DySD:StSD)<br />

30.0<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

152


Frequency-Magnitude Relation<br />

for Cluster 1<br />

3.0<br />

Magnitude-Frequency Relation for Cluster 2<br />

2.5<br />

y = -1.62x + 0.71<br />

2.5<br />

LOG Cumulative Frequency<br />

2.0<br />

1.5<br />

1.0<br />

Log Cumulative Frequency<br />

2<br />

1.5<br />

1<br />

y = -1.27x + 0.53<br />

y = -2.17x + 0.07<br />

0.5<br />

0.5<br />

0.0<br />

-1.5 -1.0 -0.5 0.0 0.5<br />

0<br />

-1.5 -1 -0.5 0 0.5<br />

A<br />

Moment Magnitude<br />

B<br />

Moment Magnitude<br />

Magnitude-Frequency Relation for Cluster 3<br />

2.0<br />

LOG Cumulative Frequency<br />

1.5<br />

1.0<br />

0.5<br />

y = -1.30x + 0.10<br />

0.0<br />

-1.5 -1.0 -0.5 0.0 0.5<br />

C<br />

Moment Mangitude<br />

Figure B20: Magnitude-Frequency relations for (A) Cluster 1; (B) Cluster 2; and (C) Cluster 3.<br />

153


Appendix C<br />

Fault Plane Solutions<br />

Table C1 Fault Plane Solution Data for 7400 and 7530 Levels, January 1, 2006 – December 31, 2006<br />

154<br />

P-axis B-axis T-axis<br />

Fault Plane<br />

1<br />

Fault Plane<br />

2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

1 18/01/2006 5:10:49 7400 6153 4353 7371 226.0 33.0 324.0 12.0 72.0 54.0 147.0 79.0 276.0 17.0 84<br />

2 01/01/2006 6:30:27 7400 6231 4698 7325 92.0 4.0 190.0 64.0 0.0 26.0 43.0 75.0 139.0 69.0 80<br />

3 05/01/2006 11:05:48 7400 6238 4841 7372 244.0 68.0 358.0 10.0 92.0 20.0 354.0 66.0 199.0 26.0 78<br />

4 18/01/2006 20:11:40 7400 6182 4482 7341 306.0 32.0 50.0 21.0 168.0 50.0 347.0 24.0 238.0 80.0 81<br />

5 17/01/2006 3:38:14 7400 6222 4301 7417 250.0 8.0 150.0 49.0 347.0 40.0 125.0 69.0 20.0 56.0 77<br />

7 27/01/2006 4:12:13 7400 6548 4136 7386 354.0 19.0 259.0 17.0 129.0 64.0 251.0 66.0 110.0 30.0 88<br />

8 01/02/2006 2:26:41 7400 6187 4697 7348 247.0 15.0 135.0 55.0 346.0 31.0 119.0 79.0 22.0 57.0 77<br />

9 13/02/2006 3:18:51 7400 6276 4459 7445 298.0 16.0 90.0 72.0 205.0 8.0 341.0 73.0 72.0 84.0 77<br />

10 14/02/2006 6:12:52 7400 6096 4374 7306 227.0 13.0 327.0 38.0 121.0 49.0 165.0 68.0 279.0 46.0 75<br />

11 02/02/2006 13:30 7400 6150 4409 7352 219.0 75.0 125.0 1.0 34.0 15.0 123.0 30.0 305.0 60.0 84<br />

12 15/02/2006 17:33:06 7400 6134 4800 7348 294.0 9.0 44.0 66.0 201.0 22.0 204.0 81.0 340.0 68.0 81<br />

13 13/02/2006 3:56:38 7400 6327 4171 7294 244.0 65.0 127.0 12.0 33.0 21.0 312.0 67.0 102.0 26.0 83<br />

14 07/02/2006 17:59:48 7400 6005 4579 7351 53.0 10.0 146.0 19.0 298.0 68.0 339.0 57.0 121.0 39.0 82<br />

15 29/03/2006 13:23:26 7400 6160 4503 7347 307.0 40.0 156.0 46.0 50.0 15.0 353.0 74.0 97.0 50.0 81<br />

16 08/03/2006 18:51:35 7400 6137 4446 7300 221.0 25.0 327.0 31.0 100.0 49.0 155.0 76.0 266.0 34.0 83<br />

17 06/03/2006 13:30:48 7400 231.0 13.0 23.0 75.0 139.0 7.0 275.0 76.0 6.0 85.0 81<br />

18 19/03/2006 16:46:50 7400 6771 4867 7341 139.0 52.0 27.0 16.0 286.0 33.0 210.0 80.0 329.0 19.0 80<br />

19 01/04/2006 1:54:25 7400 6168 4421 7376 98.0 85.0 323.0 4.0 233.0 4.0 319.0 41.0 146.0 49.0 83<br />

20 21/04/2006 2:49:56 7400 6285 4472 7437 257.0 56.0 120.0 26.0 19.0 20.0 310.0 70.0 73.0 34.0 74<br />

21 21/04/2006 2:35:13 7400 6239 4498 7420 267.0 84.0 122.0 5.0 31.0 4.0 306.0 49.0 116.0 42.0 86<br />

22 30/05/2006 7:02:55 7400 6172 4318 7353 237.0 15.0 332.0 17.0 108.0 67.0 161.0 62.0 304.0 34.0 75


P-axis B-axis T-axis<br />

155<br />

Fault Plane<br />

1<br />

Fault Plane<br />

2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

23 22/05/2006 2:21:29 7400 6185 4787 7433 86.0 40.0 338.0 21.0 228.0 42.0 337.0 89.0 244.0 21.0 80<br />

24 23/05/2006 8:30:33 7400 6275 4878 7376 52.0 2.0 321.0 36.0 145.0 54.0 293.0 57.0 173.0 53.0 76<br />

25 30/05/2006 7:02:55 7400 6172 4318 7353 239.0 18.0 335.0 16.0 103.0 65.0 162.0 65.0 305.0 30.0 75<br />

26 03/05/2006 8:25:31 7400 6170 4609 7315 291.0 20.0 121.0 70.0 22.0 3.0 335.0 79.0 68.0 74.0 74<br />

27 25/06/2006 10:19:17 7400 6066 4692 7379 241.0 21.0 137.0 34.0 356.0 48.0 125.0 74.0 14.0 39.0 88<br />

28 23/06/2006 5:34:19 7400 6342 4752 7442 225.0 79.0 29.0 10.0 120.0 3.0 221.0 43.0 20.0 49.0 75<br />

29 20/06/2006 4:47:23 7400 6372 4445 7455 92.0 2.0 186.0 64.0 1.0 26.0 44.0 74.0 140.0 71.0 68<br />

30 22/06/2006 14:44:03 7400 6205 4482 7307 140.0 12.0 246.0 52.0 41.0 35.0 86.0 75.0 187.0 56.0 83<br />

31 19/06/2006 9:38:09 7400 6246 4491 7424 5.0 82.0 123.0 4.0 312.0 7.0 120.0 52.0 307.0 38.0 75<br />

32 19/06/2006 12:32:56 7400 6085 4377 7346 87.0 6.0 356.0 7.0 217.0 81.0 350.0 51.0 185.0 40.0 75<br />

33 19/06/2006 2:19:03 7400 6115 4366 7330 306.0 1.0 214.0 68.0 36.0 22.0 173.0 75.0 79.0 74.0 77<br />

34 19/06/2006 14:38:09 7400 6149 4331 7332 229.0 50.0 135.0 3.0 43.0 40.0 316.0 85.0 104.0 6.0 80<br />

35 27/06/2006 7:41:46 7400 6291 4319 7451 165.0 3.0 258.0 46.0 73.0 44.0 110.0 63.0 219.0 59.0 83<br />

36 08/07/2006 11:18:25 7400 6390 4953 7399 215.0 58.0 9.0 29.0 106.0 11.0 227.0 42.0 353.0 62.0 77<br />

37 01/07/2006 13:07:24 7400 6321 4700 7459 36.0 69.0 274.0 12.0 180.0 17.0 100.0 63.0 253.0 30.0 89<br />

38 13/07/2006 23:50:42 7400 6331 4544 7451 166.0 31.0 50.0 36.0 284.0 39.0 47.0 85.0 310.0 37.0 83<br />

39 19/07/2006 20:56:36 7400 6315 4145 7325 116.0 10.0 207.0 9.0 337.0 76.0 33.0 56.0 195.0 36.0 85<br />

40 10/07/2006 22:01:32 7400 6411 4455 7447 85.0 29.0 206.0 43.0 333.0 33.0 28.0 88.0 121.0 43.0 72<br />

41 11/07/2006 3:14:05 7400 6198 4395 7419 265.0 7.0 167.0 50.0 0.0 39.0 139.0 69.0 35.0 58.0 77<br />

42 04/07/2006 11:18:42 7400 6185 4288 7292 248.0 23.0 30.0 62.0 15.0 35.0 21.0 85.0 288.0 62.0 81<br />

43 05/07/2006 9:11:35 7400 6085 4364 7300 53.0 4.0 150.0 59.0 321.0 31.0 3.0 72.0 102.0 65.0 76<br />

44 11/07/2006 6:15:13 7400 6127 4488 7310 281.0 10.0 157.0 73.0 13.0 14.0 147.0 87.0 57.0 74.0 73<br />

45 11/07/2006 8:01:54 7400 6156 4652 7316 258.0 1.0 166.0 64.0 348.0 26.0 126.0 73.0 30.0 71.0 71<br />

46 10/07/2006 22:19:51 7400 6248 4615 7441 240.0 26.0 49.0 64.0 148.0 4.0 281.0 69.0 17.0 75.0 75<br />

47 10/07/2006 21:17:18 7400 6186 4554 7378 55.0 78.0 255.0 11.0 164.0 4.0 85.0 50.0 242.0 42.0 78<br />

48 03/07/2006 23:57:07 7400 6126 4705 7379 205.0 22.0 302.0 18.0 68.0 61.0 129.0 69.0 265.0 28.0 81<br />

49 27/07/2006 8:54:53 7400 6251 4835 7406 241.0 55.0 149.0 1.0 58.0 35.0 330.0 80.0 142.0 10.0 81


P-axis B-axis T-axis<br />

156<br />

Fault Plane<br />

1<br />

Fault Plane<br />

2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

50 10/07/2006 20:21:38 7400 6184 4580 7375 277.0 35.0 127.0 51.0 18.0 15.0 323.0 77.0 63.0 54.0 82<br />

51 10/07/2006 19:52:55 7400 6165 4553 7371 282.0 35.0 100.0 55.0 192.0 1.0 321.0 65.0 63.0 67.0 79<br />

52 11/07/2006 6:34:29 7400 6194 4638 7339 281.0 36.0 133.0 49.0 23.0 16.0 328.0 77.0 68.0 52.0 67<br />

53 15/07/2006 16:12:09 7400 6189 4674 7313 274.0 21.0 149.0 57.0 15.0 25.0 145.0 87.0 53.0 57.0 78<br />

54 11/07/2006 2:45:28 7400 6169 4613 7309 279.0 16.0 86.0 74.0 189.0 4.0 323.0 76.0 55.0 82.0 78<br />

55 06/08/2006 10:44:08 7400 6204 4737 7301 268.0 77.0 47.0 10.0 138.0 9.0 39.0 54.0 240.0 37.0 86<br />

56 04/08/2006 3:59:07 7400 6337 4815 7412 76.0 69.0 228.0 19.0 321.0 9.0 215.0 57.0 72.0 39.0 77<br />

57 04/08/2006 3:58:56 7400 6332 4837 7421 81.0 70.0 214.0 14.0 308.0 14.0 56.0 33.0 206.0 60.0 74<br />

58 06/08/2006 0:29:27 7400 6400 4914 7352 283.0 39.0 91.0 51.0 188.0 6.0 62.0 68.0 318.0 59.0 77<br />

59 02/09/2006 17:44:27 7400 6187 4648 7302 268.0 10.0 150.0 69.0 1.0 18.0 135.0 84.0 43.0 70.0 84<br />

60 05/09/2006 16:54:52 7400 6183 4621 7319 287.0 21.0 27.0 26.0 163.0 56.0 217.0 71.0 339.0 33.0 80<br />

61 29/09/2006 6:31:23 7400 6207 4561 7443 39.0 61.0 146.0 9.0 241.0 27.0 143.0 73.0 354.0 19.0 80<br />

62 26/09/2006 14:32:38 7400 6133 4497 7322 250.0 4.0 152.0 62.0 342.0 28.0 119.0 74.0 23.0 68.0 67<br />

63 01/09/2006 5:22:40 7400 6118 4425 7341 178.0 7.0 275.0 48.0 82.0 41.0 123.0 68.0 228.0 57.0 76<br />

64 01/09/2006 9:01:03 7400 6038 4343 7307 21.0 63.0 284.0 3.0 192.0 26.0 105.0 71.0 274.0 19.0 85<br />

65 04/09/2006 16:54:58 7400 6069 4337 7297 318.0 1.0 227.0 32.0 50.0 57.0 200.0 55.0 76.0 52.0 76<br />

66 11/09/2006 5:57:26 7400 6105 4359 7313 256.0 6.0 152.0 67.0 348.0 22.0 124.0 79.0 30.0 70.0 63<br />

67 01/09/2006 7:37:40 7400 6192 4296 7439 96.0 25.0 282.0 65.0 187.0 2.0 138.0 74.0 234.0 71.0 75<br />

68 17/10/2006 20:53:10 7400 6195 4617 7313 113.0 6.0 233.0 77.0 22.0 11.0 67.0 87.0 158.0 78.0 80<br />

69 02/10/2006 18:32:23 7400 6109 4324 7296 288.0 65.0 42.0 11.0 137.0 23.0 38.0 68.0 248.0 25.0 89<br />

70 28/11/2006 4:48:59 7400 6256 4562 7415 280.0 30.0 141.0 53.0 22.0 21.0 64.0 54.0 329.0 84.0 76<br />

71 29/11/2006 6:25:34 7400 6185 4553 7365 278.0 34.0 128.0 52.0 18.0 15.0 324.0 78.0 63.0 55.0 72<br />

72 19/11/2006 21:02:21 7400 6145 4347 7364 241.0 32.0 131.0 28.0 9.0 44.0 127.0 83.0 25.0 29.0 76<br />

73 19/11/2006 21:21:09 7400 6156 4384 7387 309.0 36.0 160.0 50.0 50.0 15.0 356.0 77.0 96.0 53.0 76<br />

74 29/11/2006 22:28:35 7400 6203 4309 7333 245.0 49.0 135.0 17.0 33.0 37.0 317.0 84.0 67.0 18.0 73<br />

75 29/11/2006 19:28:56 7400 6214 4677 7364 222.0 14.0 328.0 47.0 121.0 39.0 166.0 74.0 269.0 52.0 80<br />

76 29/11/2006 16:31:59 7400 6199 4656 7323 134.0 12.0 26.0 56.0 232.0 31.0 6.0 77.0 268.0 59.0 72


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

77 29/11/2006 6:05:52 7400 6225 4648 7361 101.0 22.0 351.0 40.0 213.0 42.0 341.0 78.0 238.0 42.0 76<br />

78 29/11/2006 1:51:20 7400 6193 4640 7345 306.0 27.0 59.0 37.0 189.0 41.0 244.0 82.0 345.0 38.0 73<br />

79 28/11/2006 17:53:00 7400 6251 4561 7418 77.0 61.0 261.0 29.0 170.0 2.0 106.0 53.0 234.0 50.0 68<br />

80 28/11/2006 15:18:50 7400 6172 4601 7295 302.0 49.0 172.0 29.0 66.0 26.0 359.0 77.0 111.0 33.0 74<br />

81 28/11/2006 14:45:47 7400 6264 4662 7451 338.0 19.0 236.0 32.0 94.0 52.0 223.0 71.0 108.0 38.0 78<br />

82 28/11/2006 11:06:18 7400 6207 4602 7310 285.0 4.0 162.0 82.0 15.0 7.0 150.0 88.0 60.0 82.0 73<br />

83 28/11/2006 7:52:47 7400 6193 4594 7324 295.0 34.0 169.0 41.0 48.0 31.0 351.0 88.0 83.0 41.0 79<br />

84 23/12/2006 4:30:58 7400 6157 4365 7317 259.0 33.0 129.0 44.0 9.0 27.0 313.0 86.0 46.0 45.0 61<br />

85 18/12/2006 18:21:56 7400 6083 4327 7295 286.0 26.0 191.0 10.0 81.0 62.0 187.0 72.0 39.0 21.0 77<br />

86 12/12/2006 14:41:35 7400 6076 4380 7322 177.0 42.0 53.0 32.0 301.0 32.0 237.0 84.0 336.0 32.0 70<br />

87 02/12/2006 7:15:39 7400 6102 4410 7420 297.0 68.0 112.0 22.0 203.0 2.0 93.0 51.0 314.0 47.0 74<br />

88 01/12/2006 22:39:49 7400 6129 4387 7352 55.0 2.0 152.0 74.0 324.0 16.0 8.0 80.0 100.0 77.0 86<br />

89 20/12/2006 3:45:59 7400 6392 4418 7399 100.0 12.0 296.0 77.0 190.0 3.0 144.0 84.0 236.0 79.0 76<br />

90 02/12/2006 4:25:22 7400 6187 4512 7347 154.0 41.0 0.0 33.0 256.0 13.0 304.0 51.0 199.0 73.0 67<br />

91 19/12/2006 3:58:22 7400 6155 4608 7301 263.0 61.0 173.0 0.0 83.0 29.0 353.0 74.0 172.0 16.0 82<br />

92 19/12/2006 1:20:12 7400 6169 4538 7317 267.0 33.0 153.0 33.0 30.0 40.0 150.0 86.0 54.0 33.0 78<br />

93 18/12/2006 18:35:32 7400 6046 4544 7429 212.0 3.0 306.0 56.0 120.0 33.0 161.0 69.0 262.0 65.0 81<br />

94 11/12/2006 12:38:37 7400 6179 4619 7322 287.0 20.0 64.0 64.0 190.0 16.0 59.0 88.0 328.0 64.0 74<br />

95 09/12/2006 2:50:36 7400 6134 4574 7389 107.0 8.0 352.0 71.0 199.0 17.0 334.0 84.0 242.0 72.0 89<br />

96 27/12/2006 23:50:14 7400 6163 4790 7366 250.0 25.0 46.0 63.0 156.0 10.0 25.0 79.0 290.0 65.0 72<br />

97 24/12/2006 1:47:58 7400 6159 4722 7375 286.0 15.0 27.0 36.0 177.0 50.0 223.0 69.0 337.0 44.0 70<br />

98 30/01/2006 3:36:39 7400 5907 4522 7461 66.0 30.0 175.0 29.0 300.0 46.0 360.0 81.0 106.0 30.0 73<br />

99 21/01/2006 11:51:09 7400 6281 4361 7467 80.0 51.0 227.0 34.0 329.0 17.0 212.0 70.0 98.0 41.0 72<br />

100 20/01/2006 9:41:03 7740 6277 4369 7462 187.0 37.0 88.0 12.0 343.0 50.0 86.0 83.0 327.0 13.0 76<br />

101 20/01/2006 4:01:19 7530 6344 4486 7525 319.0 58.0 54.0 3.0 147.0 32.0 54.0 77.0 249.0 13.0 70<br />

102 18/01/2006 7:33:27 7530 6334 4477 7508 95.0 14.0 251.0 75.0 4.0 6.0 139.0 76.0 230.0 85.0 79<br />

103 17/01/2006 23:08:20 7530 6306 4615 7519 357.0 71.0 96.0 3.0 187.0 19.0 94.0 64.0 282.0 26.0 82<br />

157


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

104 17/01/2006 19:32:24 7530 6274 4821 7461 245.0 32.0 94.0 54.0 344.0 14.0 291.0 78.0 29.0 56.0 75<br />

105 17/01/2006 11:53:10 7530 6363 4394 7481 92.0 39.0 268.0 51.0 0.0 2.0 233.0 65.0 129.0 62.0 78<br />

106 17/01/2006 5:00:25 7530 6329 4686 7592 99.0 36.0 331.0 40.0 213.0 29.0 155.0 86.0 249.0 40.0 79<br />

107 16/01/2006 22:49:22 7530 6360 4526 7520 101.0 55.0 199.0 5.0 292.0 34.0 198.0 79.0 44.0 12.0 77<br />

108 16/01/2006 22:38:10 7530 6514 4488 7534 28.0 70.0 295.0 1.0 204.0 20.0 115.0 65.0 292.0 25.0 84<br />

109 16/01/2006 21:31:24 7530 6267 4404 7486 222.0 77.0 95.0 8.0 4.0 10.0 281.0 56.0 85.0 36.0 71<br />

110 16/01/2006 21:26:25 7400 6383 4399 7465 278.0 42.0 38.0 30.0 151.0 34.0 36.0 86.0 298.0 30.0 75<br />

111 13/01/2006 19:19:15 7400 6256 4578 7495 128.0 11.0 35.0 15.0 252.0 71.0 25.0 58.0 236.0 37.0 80<br />

112 05/01/2006 21:56:42 7400 6196 4584 7496 295.0 7.0 193.0 60.0 29.0 29.0 166.0 75.0 68.0 64.0 76<br />

113 21/02/2006 8:59:38 7400 6260 4339 7408 333.0 34.0 221.0 29.0 101.0 42.0 219.0 86.0 121.0 29.0 80<br />

114 20/02/2006 5:17:21 7400 6068 4372 7323 47.0 16.0 253.0 73.0 139.0 7.0 93.0 84.0 184.0 74.0 74<br />

115 20/02/2006 2:00:36 7400 6145 4354 7310 263.0 26.0 3.0 20.0 126.0 56.0 189.0 74.0 316.0 26.0 74<br />

116 19/02/2006 10:34:47 7400 6144 4349 7352 150.0 38.0 9.0 45.0 257.0 20.0 200.0 79.0 300.0 47.0 75<br />

117 19/02/2006 6:37:37 7400 6138 4348 7358 124.0 23.0 261.0 60.0 26.0 18.0 256.0 87.0 164.0 60.0 67<br />

118 19/02/2006 3:00:18 7400 6139 4332 7345 291.0 37.0 72.0 46.0 185.0 20.0 61.0 80.0 322.0 48.0 84<br />

119 19/02/2006 1:12:08 7400 6137 4379 7390 73.0 11.0 323.0 60.0 169.0 27.0 304.0 79.0 208.0 63.0 71<br />

120 17/02/2006 17:07:49 7400 6169 4326 7433 281.0 23.0 177.0 30.0 43.0 51.0 168.0 74.0 53.0 35.0 74<br />

121 17/02/2006 0:41:20 7400 6097 4384 7293 48.0 63.0 189.0 22.0 285.0 16.0 178.0 64.0 44.0 35.0 79<br />

122 16/02/2006 13:04:46 7400 6235 4346 7402 186.0 34.0 311.0 41.0 72.0 31.0 309.0 88.0 217.0 41.0 75<br />

123 16/02/2006 1:12:18 7400 6134 4359 7371 66.0 32.0 270.0 55.0 163.0 11.0 111.0 76.0 209.0 59.0 68<br />

124 15/02/2006 11:41:18 7400 6178 4301 7301 244.0 44.0 124.0 27.0 14.0 34.0 307.0 84.0 48.0 28.0 80<br />

125 14/02/2006 6:12:52 7400 6096 4374 7306 227.0 13.0 327.0 38.0 121.0 49.0 165.0 68.0 279.0 46.0 75<br />

126 14/02/2006 3:32:57 7400 6171 4366 7344 321.0 57.0 116.0 30.0 213.0 11.0 335.0 43.0 99.0 62.0 74<br />

127 13/02/2006 3:56:38 7400 6327 4171 7294 244.0 65.0 127.0 12.0 33.0 21.0 312.0 67.0 102.0 26.0 83<br />

128 13/02/2006 3:18:51 7400 6276 4459 7445 298.0 21.0 84.0 65.0 202.0 13.0 339.0 66.0 71.0 84.0 73<br />

129 13/02/2006 1:55:58 7400 6167 4354 7445 202.0 8.0 296.0 25.0 95.0 63.0 134.0 58.0 266.0 43.0 75<br />

130 12/02/2006 15:31:58 7400 6242 4313 7388 149.0 37.0 276.0 38.0 33.0 30.0 273.0 86.0 177.0 38.0 75<br />

158


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

#<br />

131 12/02/2006 4:24:22 7400 6135 4336 7385 299.0 20.0 43.0 34.0 184.0 49.0 235.0 73.0 347.0 39.0 72<br />

132 12/02/2006 3:54:59 7400 6193 4310 7348 173.0 2.0 81.0 38.0 265.0 52.0 52.0 58.0 295.0 54.0 73<br />

133 12/02/2006 1:29:21 7400 6271 4368 7328 262.0 49.0 130.0 30.0 24.0 25.0 318.0 77.0 69.0 34.0 67<br />

134 11/02/2006 10:53:51 7400 6268 4444 7410 250.0 60.0 159.0 0.0 69.0 30.0 340.0 75.0 159.0 15.0 77<br />

135 09/02/2006 23:32:50 7400 6075 4285 7291 312.0 47.0 100.0 38.0 203.0 17.0 85.0 72.0 334.0 44.0 73<br />

136 09/02/2006 18:04:04 7400 6163 4316 7363 270.0 21.0 176.0 9.0 65.0 67.0 172.0 67.0 16.0 25.0 68<br />

137 09/02/2006 3:16:41 7400 6161 4330 7440 248.0 26.0 342.0 7.0 86.0 63.0 164.0 72.0 321.0 20.0 81<br />

138 05/02/2006 15:07:30 7400 6228 4308 7404 291.0 10.0 44.0 67.0 197.0 21.0 335.0 68.0 242.0 82.0 72<br />

139 03/02/2006 23:50:12 7400 6177 4320 7351 156.0 24.0 273.0 45.0 47.0 35.0 100.0 83.0 196.0 45.0 79<br />

140 03/02/2006 18:33:38 7400 6180 4325 7413 162.0 51.0 271.0 15.0 12.0 35.0 269.0 82.0 150.0 17.0 67<br />

141 02/02/2006 7:22:05 7400 6190 4343 7320 315.0 28.0 183.0 52.0 59.0 24.0 6.0 87.0 98.0 52.0 74<br />

142 02/02/2006 6:58:23 7400 6175 4391 7390 191.0 20.0 288.0 18.0 57.0 62.0 116.0 68.0 252.0 30.0 78<br />

143 02/02/2006 6:56:09 7400 6192 4449 7419 337.0 9.0 239.0 39.0 77.0 49.0 217.0 65.0 103.0 50.0 65<br />

144 01/02/2006 12:46:13 7400 6140 4376 7371 85.0 7.0 319.0 77.0 176.0 10.0 311.0 88.0 221.0 78.0 68<br />

145 20/03/2006 9:12:41 7400 6229 4263 7328 69.0 23.0 244.0 67.0 338.0 2.0 206.0 75.0 111.0 73.0 82<br />

146 18/03/2006 20:43:26 7400 6189 4579 7366 269.0 13.0 160.0 54.0 7.0 32.0 142.0 77.0 43.0 57.0 62<br />

147 16/03/2006 13:30:48 7400 6232 4379 7422 231.0 15.0 25.0 73.0 139.0 7.0 274.0 74.0 6.0 84.0 81<br />

148 16/03/2006 13:30:46 7400 6262 4380 7420 230.0 28.0 35.0 61.0 136.0 6.0 6.0 75.0 269.0 66.0 82<br />

149 13/03/2006 3:47:31 7400 6249 4686 7298 235.0 29.0 118.0 39.0 350.0 37.0 114.0 85.0 18.0 40.0 83<br />

150 11/03/2006 14:03:05 7400 6233 4372 7365 225.0 73.0 98.0 11.0 5.0 13.0 81.0 33.0 284.0 59.0 72<br />

151 10/03/2006 0:38:25 7400 6362 4821 7458 69.0 70.0 184.0 9.0 277.0 18.0 180.0 63.0 21.0 28.0 82<br />

152 08/03/2006 18:51:35 7400 6137 4446 7300 215.0 29.0 311.0 10.0 58.0 59.0 134.0 75.0 279.0 18.0 78<br />

153 06/03/2006 3:07:20 7400 6217 4589 7458 257.0 25.0 143.0 40.0 9.0 39.0 136.0 82.0 37.0 41.0 75<br />

154 05/03/2006 18:42:15 7400 6190 4431 7325 271.0 7.0 170.0 56.0 6.0 32.0 143.0 73.0 44.0 62.0 79<br />

155 30/03/2006 19:51:46 7400 6130 4357 7361 109.0 5.0 226.0 79.0 19.0 10.0 64.0 87.0 154.0 80.0 74<br />

156 29/03/2006 13:23:26 7400 6160 4503 7347 284.0 55.0 159.0 22.0 58.0 26.0 346.0 74.0 108.0 28.0 77<br />

157 27/04/2006 0:49:12 7400 6296 4893 7381 109.0 48.0 292.0 42.0 200.0 2.0 144.0 59.0 256.0 57.0 79<br />

159


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

#<br />

158 26/04/2006 11:03:58 7400 6300 4839 7358 61.0 51.0 258.0 37.0 161.0 8.0 100.0 63.0 216.0 49.0 71<br />

159 24/04/2006 15:06:09 7400 6317 4871 7455 300.0 9.0 203.0 39.0 41.0 50.0 180.0 65.0 67.0 49.0 71<br />

160 22/04/2006 11:50:29 7400 6453 4883 7450 150.0 50.0 28.0 24.0 284.0 30.0 213.0 79.0 326.0 27.0 88<br />

161 21/04/2006 6:39:42 7400 6254 4465 7431 70.0 3.0 172.0 75.0 339.0 15.0 24.0 82.0 116.0 77.0 75<br />

162 21/04/2006 2:35:13 7400 6239 4498 7420 267.0 84.0 122.0 5.0 31.0 4.0 306.0 49.0 116.0 42.0 86<br />

163 15/04/2006 23:35:34 7400 6161 4340 7418 221.0 6.0 328.0 70.0 129.0 19.0 173.0 81.0 266.0 72.0 72<br />

164 13/04/2006 21:12:21 7400 6331 4344 7376 336.0 3.0 234.0 64.0 69.0 26.0 205.0 77.0 109.0 68.0 65<br />

165 12/04/2006 3:25:13 7400 6231 4659 7327 250.0 75.0 113.0 11.0 22.0 10.0 99.0 37.0 301.0 56.0 74<br />

166 07/04/2006 13:59:30 7400 6278 4466 7456 208.0 67.0 57.0 20.0 323.0 10.0 250.0 58.0 30.0 39.0 67<br />

167 04/04/2006 8:58:05 7400 6181 4386 7310 243.0 29.0 140.0 21.0 20.0 53.0 135.0 77.0 17.0 25.0 79<br />

168 03/04/2006 17:49:39 7400 6168 4316 7373 183.0 11.0 279.0 29.0 74.0 59.0 116.0 62.0 242.0 42.0 84<br />

169 03/04/2006 2:43:25 7400 6328 4789 7437 99.0 74.0 298.0 15.0 206.0 5.0 280.0 42.0 130.0 52.0 79<br />

170 02/04/2006 7:49:10 7400 6118 4331 7338 227.0 54.0 107.0 20.0 5.0 28.0 292.0 76.0 54.0 25.0 73<br />

171 30/05/2006 7:02:55 7400 6172 4318 7353 239.0 18.0 335.0 16.0 103.0 65.0 162.0 65.0 305.0 30.0 75<br />

172 27/05/2006 17:22:40 7400 6162 4347 7393 312.0 27.0 201.0 36.0 70.0 43.0 194.0 81.0 92.0 37.0 77<br />

173 15/05/2006 13:45:16 7400 6108 4374 7306 265.0 32.0 97.0 57.0 359.0 5.0 47.0 64.0 308.0 72.0 65<br />

174 06/05/2006 13:51:29 7400 6228 4340 7426 204.0 27.0 94.0 34.0 324.0 44.0 88.0 81.0 344.0 35.0 71<br />

175 30/05/2006 7:02:55 7400 6172 4318 7353 237.0 15.0 332.0 17.0 108.0 67.0 161.0 62.0 304.0 34.0 75<br />

176 27/05/2006 17:22:40 7400 6162 4347 7393 313.0 28.0 201.0 35.0 71.0 42.0 195.0 82.0 94.0 37.0 77<br />

177 23/05/2006 6:39:08 7400 6304 4887 7379 263.0 32.0 124.0 51.0 7.0 21.0 313.0 83.0 49.0 51.0 76<br />

178 09/05/2006 5:38:27 7400 6294 4759 7417 282.0 6.0 39.0 77.0 191.0 11.0 327.0 78.0 236.0 86.0 74<br />

179 09/05/2006 4:02:01 7400 6264 4710 7438 38.0 75.0 243.0 14.0 152.0 6.0 227.0 41.0 74.0 53.0 80<br />

180 09/05/2006 3:48:22 7400 6286 4693 7459 103.0 42.0 245.0 41.0 354.0 20.0 233.0 77.0 129.0 44.0 81<br />

181 05/05/2006 2:44:00 7400 6310 4880 7438 221.0 4.0 116.0 76.0 312.0 14.0 87.0 83.0 355.0 78.0 79<br />

182 03/05/2006 8:25:31 7400 6170 4609 7315 291.0 20.0 121.0 70.0 22.0 3.0 335.0 79.0 68.0 74.0 74<br />

183 30/06/2006 23:49:53 7400 6242 4764 7297 264.0 29.0 138.0 46.0 12.0 30.0 138.0 90.0 48.0 46.0 63<br />

184 27/06/2006 7:41:46 7400 6291 4319 7451 165.0 3.0 258.0 46.0 73.0 44.0 110.0 63.0 219.0 59.0 83<br />

160


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

185 26/06/2006 4:16:07 7400 6257 4795 7378 220.0 73.0 74.0 14.0 342.0 9.0 55.0 38.0 264.0 56.0 74<br />

186 25/06/2006 10:19:17 7400 6066 4692 7379 197.0 45.0 96.0 11.0 355.0 43.0 276.0 89.0 10.0 11.0 82<br />

187 24/06/2006 18:56:57 7400 6159 4359 7367 357.0 28.0 106.0 32.0 235.0 45.0 292.0 80.0 38.0 34.0 77<br />

188 24/06/2006 0:53:35 7400 6349 4758 7438 43.0 64.0 159.0 12.0 254.0 23.0 154.0 69.0 7.0 25.0 84<br />

189 23/06/2006 17:24:50 7400 6188 4745 7362 213.0 70.0 303.0 0.0 34.0 20.0 303.0 65.0 124.0 25.0 82<br />

190 23/06/2006 5:34:19 7400 6342 4752 7442 47.0 86.0 199.0 4.0 290 2.0 23.0 43.0 196.0 47.0 67<br />

191 22/06/2006 14:44:03 7400 6205 4482 7307 140.0 12.0 246.0 52.0 41.0 35.0 86.0 75.0 187.0 56.0 83<br />

192 21/06/2006 15:54:34 7400 6186 4539 7389 318.0 23.0 193.0 54.0 60.0 26.0 190.0 88.0 98.0 54.0 80<br />

193 20/06/2006 4:47:23 7400 6367 4456 7496 92.0 2.0 182.0 64.0 1.0 26.0 44.0 74.0 140.0 71.0 68<br />

194 06/06/2006 4:02:43 7400 6130 4374 7437 50.0 21.0 176.0 57.0 310.0 24.0 360.0 88.0 91.0 58.0 69<br />

195 09/06/2006 16:31:39 7400 6202 4660 7352 87.0 44.0 264.0 46.0 355.0 1.0 122.0 60.0 230.0 62.0 89<br />

196 15/06/2006 19:07:06 7400 6150 4355 7368 17.0 6.0 282.0 38.0 115.0 51.0 257.0 61.0 141.0 51.0 67<br />

197 13/06/2006 3:27:21 7400 6087 4953 7375 18.0 25.0 208.0 64.0 109.0 4.0 61.0 75.0 156.0 69.0 69<br />

161


Appendix D<br />

Modelling Results<br />

D.1 UDEC Results<br />

Results for UDEC models are presented in this section.<br />

C = Cohesion, in MPa<br />

Ф = Friction angle, in degrees.<br />

162


D.1.1: Case 1 Models<br />

Figure D1: Case 1, elastic models showing maximum stress. (A) Locked condition. Pinks and reds indicate high stress; (B) C=5 MPa, Φ=35°; (C) C=0 MPa,<br />

Φ=35°; (D) C=0 MPa, Φ=20°.<br />

163


Figure D2: Case 1, elastic models showing differential stress. (A) Locked condition. Greens and yellow indicate high differential stress; (B) C=5, Φ=35°; (C)<br />

C=0, Φ=35°; (D) C=0, Φ=20°.<br />

164


Figure D3: Case 1, elastic models shear displacement along discontinuities. Green indicates right-lateral slip. (A) Locked condition; (B) C=5, Φ=35°; (C) C=0,<br />

Φ=35°; (D) C=0, Φ=20°.<br />

165


A B<br />

C D<br />

Figure D4: Case 1, plastic models showing major principal stress. Pinks and reds indicate high stress. (A) Locked condition; (B) C=5, Φ=35°; (C) C=0, Φ=35°;<br />

(D) C=0, Φ=20°.<br />

166


A B<br />

C D<br />

Figure D5: Case 1, plastic models showing differential stress. Greens and yellow indicate high differential stress. (A) Locked condition; (B) C=5, Φ=35°; (C)<br />

C=0, Φ=35°; (D) C=0, Φ=20°.<br />

167


A B<br />

C D<br />

Figure D6: Case 1, plastic model showing yielding. Purple indicates tensile failure; green and pink indicate past and current yielding. (A) Locked condition; (B)<br />

C=5, Φ=35°; (C) C=0, Φ=35°; (D) C=0, Φ=20°.<br />

168


A B<br />

C D<br />

Figure D7: Case 1, plastic models showing shear displacement along discontinuities. Green indicates right-lateral slip. (A) Locked condition; (B) C=5, Φ=35°;<br />

(C) C=0, Φ=35°; (D) C=0, Φ=20°.<br />

169


Figure D8: Stress distribution <strong>of</strong> elastic model, C=0, Φ=35°.<br />

Figure D9: Stress distribution <strong>of</strong> plastic model, C=0, Φ=35°.<br />

170


D.1.2: Case 2 Models<br />

A B<br />

C D<br />

Figure D10: Case 2, elastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress. Yellow and greens<br />

indicate high differential stress; (C) assigned fault materials according to Table 4.3; (D) shear displacement along discontinuities.<br />

171


A B<br />

C D<br />

Figure D11: Case 2, plastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress. Yellow and greens<br />

indicate high differential stress; (C) Plastic yielding. Purple indicates tensile failures, green and pink indicate past and current yielding; (D) shear displacement<br />

along discontinuities.<br />

172


D.1.3: Case 3 Models<br />

A B<br />

C<br />

Figure D12: Case 3 (k=2), elastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) shear displacement along discontinuities.<br />

173


A B<br />

C D<br />

Figure D13: Case 3 (k=2), plastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) Plastic yielding. Purple indicates tensile failures, green and pink indicate past and current<br />

yielding; (D) shear displacement along discontinuities.<br />

174


D1.4 Tectonic Loading Models<br />

Figure D14: Tectonic model, elastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) shear displacement along discontinuities.<br />

175


Figure D15: Tectonic model, plastic model for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) Plastic yielding. Purple indicates tensile failures, green and pink indicate past and current<br />

yielding; (D) shear displacement along discontinuities.<br />

176


D.2 Discussion <strong>of</strong> Phase 2 Models<br />

Elastic and plastic models were created using <strong>the</strong> finite element method in Phase 2 (Rocscience,<br />

2005) to model <strong>the</strong> stress distribution resulting from geological structure and mining geometry on<br />

<strong>the</strong> 7200, 7400 and 7530 Levels. The modelling approach and results are discussed in this<br />

appendix. A comparison <strong>of</strong> results from Phase 2 and UDEC for <strong>the</strong> 7400 Level is also presented.<br />

D.2.1 Model Constituents<br />

Like UDEC models presented in Chapter 4, model geometry constructed in Phase 2 consists <strong>of</strong>:<br />

a) <strong>the</strong> model medium, whose geomechanical properties are modelled after footwall rocks in<br />

<strong>the</strong> Creighton Deep. Property values are taken or derived from values provided by<br />

Coulson (1996) for footwall rocks. Rock mass failure is governed by Mohr-Coulomb<br />

criteria (cohesion and friction). Values used in Phase 2 models are <strong>the</strong> same values used<br />

in UDEC models discussed in Chapter 4.<br />

b) pervasive joints that represent shear zones. Failure along <strong>the</strong>se features is also governed<br />

by Mohr-Coulomb criteria. Like models created in UDEC, discontinuities in Phase 2<br />

models assume lateral continuity <strong>of</strong> shear zones, far beyond <strong>the</strong> excavation.<br />

c) <strong>the</strong> main excavation that was modelled after level plans provided by Vale Inco. This<br />

comprises stopes and sills in <strong>the</strong> 400 Orebody.<br />

Model constituents are shown in Figure D16.<br />

177


Figure D16 Phase 2 model depicting model and boundary conditions. The model consists <strong>of</strong> a rockmass,<br />

joints (orange) and an excavation, outlined in black. This figure shows <strong>the</strong> first stage in a two-stage model<br />

where material within <strong>the</strong> excavation removed in <strong>the</strong> second stage.<br />

D.2.2 Boundary Conditions<br />

The model is subject to an external stress field where <strong>the</strong> maximum principal stress is directed<br />

EW and <strong>the</strong> minimum principal stress is oriented NS. An intermediate, out-<strong>of</strong>-plane stress is<br />

applied in <strong>the</strong> vertical direction. Phase 2 uses a positive sign convention to denote compressive<br />

stress. Movement on <strong>the</strong> model boundaries is restricted by pinning <strong>the</strong> corners <strong>of</strong> <strong>the</strong> model so<br />

that NS or EW movement <strong>of</strong> <strong>the</strong> model is not possible. This is appropriate as it simulates <strong>the</strong><br />

confined conditions <strong>of</strong> <strong>the</strong> mine within <strong>the</strong> Canadian Shield.<br />

178


Staged models were created in which <strong>the</strong> medium and discontinuities are allowed to come to<br />

equilibrium before introducing <strong>the</strong> excavation. In this manner <strong>the</strong> stress conditions simulate<br />

stress conditions within <strong>the</strong> mine and influence <strong>of</strong> <strong>the</strong> excavation on <strong>the</strong> distribution <strong>of</strong> stress can<br />

be better understood. This approach did not yield appreciable differences from <strong>the</strong> applying<br />

external stresses to a model complete with an excavation.<br />

Unlike models created in UDEC, tectonically loaded models were not created due to limitations<br />

on <strong>the</strong> program version.<br />

Phase 2 results are shown for Case 1, described in Chapter 4, in which all faults are assigned equal<br />

properties. Faults within <strong>the</strong> model are progressively weakened to induce slip by varying <strong>the</strong><br />

cohesion and angle <strong>of</strong> internal friction. Material properties were also tested to examine <strong>the</strong> effect<br />

<strong>of</strong> rock mass strength on fault slip.<br />

D.3 Phase 2 Model Results<br />

Results for <strong>the</strong> 7200, 7400 and 7530 Level indicate that stress is bounded by faults ra<strong>the</strong>r than<br />

accumulated along weaker geological structure. This indicates that seismicity is a result <strong>of</strong> <strong>the</strong><br />

stress concentrations that occurs between faults, ra<strong>the</strong>r than slip on <strong>the</strong> mine-scale structures.<br />

The stress distribution closely matches <strong>the</strong> distribution <strong>of</strong> seismicity in <strong>the</strong> January 2006-<br />

December 2007 time period. Areas <strong>of</strong> high maximum and differential stress are areas <strong>of</strong> dense<br />

event localization, while areas <strong>of</strong> low modelled stress are areas <strong>of</strong> sparse activity. In plastic<br />

models, yielding occurs directly to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong> excavation and displacement is<br />

modelled along discontinuities within this yielded zone. Low stress is modelled in this yield zone<br />

and correspondingly, <strong>the</strong>re is little-to no seismicity.<br />

179


The 7200 Level (Fig. D17) is an excellent example <strong>of</strong> how stress is modelled to be bounded and<br />

channelled between faults. To <strong>the</strong> north <strong>of</strong> <strong>the</strong> excavation, high stresses are concentrated between<br />

<strong>the</strong> Northwest and Fresh Air Raise Shear Zones, and bounded to <strong>the</strong> south by <strong>the</strong> Footwall Shear<br />

Zone. High stress is modelled between <strong>the</strong> Return Air Raise and Plum Shear Zones to <strong>the</strong> south<br />

<strong>of</strong> <strong>the</strong> excavation and is bounded to <strong>the</strong> north by <strong>the</strong> Footwall Shear Zone. This area corresponds<br />

to dense seismic activity.<br />

The 7400 Level (Fig. D18) model shows that high stress forms a ring around <strong>the</strong> excavation and<br />

is bounded by faults, lowering stress to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation. NE-striking faults act to<br />

shield this area from high stress. Shear zones in this model act as a boundary to stress ra<strong>the</strong>r than<br />

a conduit or concentrator for stress.<br />

The 7530 Level model (Fig. D19) has similar excavation geometry as <strong>the</strong> 7400 Level and has a<br />

similar stress distribution. Stress is diminished in <strong>the</strong> southwest, as highlighted best in <strong>the</strong> elastic<br />

case (Fig. D19A, B) and is elevated in a ring around <strong>the</strong> excavation, as highlighted in <strong>the</strong> plastic<br />

case (Fig. D19C, D). High stress occurs between <strong>the</strong> Plum and Return Air Raise Shear Zones.<br />

Seismicity on this level occurs between <strong>the</strong> Plum and 402 Shear Zones and thus may not be<br />

accurately represented by <strong>the</strong> 7530 Level model.<br />

Damage domains are identified in Figure D20. The yield zone, damage zone and intact rock<br />

correspond to those modelled in UDEC.<br />

180


Figure D17 (A) Elastic model showing sigma-1 for <strong>the</strong> 7200 Level. Areas in white exceed <strong>the</strong> maximum<br />

stress on <strong>the</strong> scale; (B) Elastic model showing deviatoric stress; (C) Plastic model showing sigma-1; (D)<br />

Plastic model showing deviatoric stress; (E) Plastic model showing failure in shear and in tension; (F)<br />

seismicity corresponding to <strong>the</strong> 7200 Level for comparison with modelled stress.<br />

181


Figure D18 (A) Elastic model showing sigma-1 for <strong>the</strong> 7400 Level. Areas in white exceed <strong>the</strong> maximum<br />

stress on <strong>the</strong> scale; (B) Elastic model showing deviatoric stress; (C) Plastic model showing sigma-1; (D)<br />

Plastic model showing deviatoric stress; (E) Plastic model showing failure in shear and in tension; (F)<br />

seismicity corresponding to <strong>the</strong> 7400 Level for comparison with modelled stress.<br />

182


Figure D19 (A) Elastic model showing sigma-1 for <strong>the</strong> 7530 Level; (B) Elastic model showing deviatoric<br />

stress; (C) Plastic model showing sigma-1; (D) Plastic model showing deviatoric stress. Slip on faults is<br />

indicated in red; (E) Plastic model showing failure in shear and in tension; (F) seismicity corresponding to<br />

<strong>the</strong> 7530 Level for comparison with modelled stress.<br />

183


Figure D20 Rock mass states <strong>of</strong> degradation, as modelled for <strong>the</strong> 7400 Level in Phase 2 .<br />

D.4 Comparison <strong>of</strong> Phase 2 and UDEC Modelling Results<br />

The stress distribution in Phase 2<br />

results closely correspond to that modelled with UDEC.<br />

Differences in results using <strong>the</strong> two programs and numerical methods are reviewed.<br />

D.4.1 Similarities<br />

• The distribution <strong>of</strong> stress around <strong>the</strong> excavation on <strong>the</strong> 7400 Level is comparable to that<br />

in UDEC: Stress flows in a ring around <strong>the</strong> main excavation. This stress is intensified to<br />

<strong>the</strong> SE <strong>of</strong> <strong>the</strong> excavation and diminished in <strong>the</strong> SW. This result is comparable to <strong>the</strong><br />

distribution <strong>of</strong> seismicity around <strong>the</strong> main excavation. Results are similar even with<br />

different initial loading conditions.<br />

184


• Similar damage zones surrounding <strong>the</strong> excavation are modelled in both programs with<br />

tensile deformation in proximity to <strong>the</strong> excavation and damage in shear beyond this.<br />

D.4.2 Differences<br />

• The modelled elevated differential stress in Phase2 is <strong>of</strong>ten restricted to <strong>the</strong> area between<br />

two shear zones (<strong>the</strong> Return Air Raise Shear Zone and Plum Shear Zone on <strong>the</strong> 7400<br />

Level, for example) or bounded by shear zones. This suggests that stress is bounded by<br />

shear zones. High stresses occur in stiffer rock ra<strong>the</strong>r than accumulated in weak zones.<br />

• In plastic models, yielding is restricted to a zone surrounding <strong>the</strong> excavation, similar to<br />

UDEC model results, but no yielding is modeled along shear zones.<br />

• Slip is induced on <strong>the</strong> Fresh Air Raise, Plum, 402 and Northwest Shear Zones to <strong>the</strong><br />

south <strong>of</strong> <strong>the</strong> excavation. This slip occurs within <strong>the</strong> yield zone. This differs from slip<br />

modelled in UDEC, in which slip is only induced along <strong>the</strong> Plum and Fresh Air Raise<br />

Shear Zones.<br />

Model results produced using <strong>the</strong> distinct element method (UDEC) and finite element method<br />

(Phase 2 ) are very similar. The interactive visual display in Phase 2 and <strong>the</strong> minimal computing<br />

time required to produce a stress model make <strong>the</strong> finite element method a time-efficient way to<br />

model stress in two-dimensions in <strong>the</strong> Creighton Deep. The capabilities <strong>of</strong> UDEC are more<br />

robust. More detail is available for individual models and routines can be easily to expand <strong>the</strong><br />

depth <strong>of</strong> <strong>the</strong> analysis.<br />

185


Appendix E<br />

UDEC Code<br />

E.1 Case 1: Variable fault strength parameters (Elastic model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC Elastic Model ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

round 0.5<br />

set edge 5.173<br />

;<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

crack (0,1309.295) (1564.64,307.925)<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

186


;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=0<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

change jmat=2 range 446,1118, 446,448<br />

change jmat=2 range 446,1118 1117,1118<br />

change jmat=2 range 446,448 446,1118<br />

change jmat=2 range 1117,1118 446,1118<br />

;<br />

;==========================================================<br />

;===== Mohr-Coulomb Elastic Material ===============<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

;<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 10000<br />

set plot po color<br />

187


E.2 Case 1: Variable fault strength parameters (Plastic model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC PLASTIC MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

crack (0,1309.295) (1564.64,307.925)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=0<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

188


change jmat=1 range 0,1564.64 0,1564.64<br />

change jmat=2 range 446,1118, 446,448<br />

change jmat=2 range 446,1118 1117,1118<br />

change jmat=2 range 446,448 446,1118<br />

change jmat=2 range 1117,1118 446,1118<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 670.560,922.020 726.440,843.788<br />

;<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

189


E.3 Case 2: Variable Fault Strength by Shear Zone Family (Elastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- VARIABLE FAULT STRENGTH ----<br />

;---- Elastic Model ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

;===FAR-type===<br />

crack (0,251.92736) (1564.64,820.8772)<br />

;===FAR===<br />

crack (0,290.59632) (1564.64,859.54616)<br />

;===plum===<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

;===402===<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

;===RAR===<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

;===NW===<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

190


crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=20<br />

PROP jmat=3 jkn=700000 jks=99400 jcoh=0 jfric=20 jtens=20<br />

PROP jmat=4 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=3 range 0,1564.64 246,1171 angle 15,30<br />

;<br />

change jmat=2 range -1,1565 303,1324 angle 140,160<br />

;<br />

change jmat=4 range 446,1118, 446,448 angle -1,1<br />

change jmat=4 range 446,1118 1117,1118 angle -1,1<br />

change jmat=4 range 446,448 446,1118 angle 89,91<br />

change jmat=4 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

191


;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.4 Case 2: Variable Fault Strength by Shear Zone Family (Plastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- VARIABLE FAULT STRENGTH ----<br />

;---- Plastic Model ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

;===FAR-type===<br />

crack (0,251.92736) (1564.64,820.8772)<br />

;===FAR===<br />

crack (0,290.59632) (1564.64,859.54616)<br />

192


;===plum===<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

;===402===<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

;===RAR===<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

;===NW===<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

;<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=20<br />

PROP jmat=3 jkn=700000 jks=99400 jcoh=0 jfric=20 jtens=20<br />

PROP jmat=4 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;(EW structures and splays)<br />

;<br />

change jmat=3 range 0,1564.64 246,1171 angle 15,30<br />

;(NE-trending structures)<br />

;<br />

change jmat=2 range -1,1565 303,1324 angle 140,160<br />

;(FW fault)<br />

;<br />

change jmat=4 range 446,1118, 446,448 angle -1,1<br />

change jmat=4 range 446,1118 1117,1118 angle -1,1<br />

change jmat=4 range 446,448 446,1118 angle 89,91<br />

change jmat=4 range 1117,1118 446,1118 angle 89,91<br />

;(locked box)<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

193


;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

;<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

;END<br />

E.5 Case 3: Increased Principal Stress Ratio (Elastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- Elastic Stress Ratio K=2 ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

194


crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=10 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

195


;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-51 range 0,1564.64 -1,1<br />

bound stress 0,0,-51 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -51<br />

INITIAL sxx -102.70<br />

INITIAL syy -51<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.6 Case 3: Increased Principal Stress Ratio (Plastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- Plastic Stress Ratio K=2 ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

196


crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

197


;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-51 range 0,1564.64 -1,1<br />

bound stress 0,0,-51 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -51<br />

INITIAL sxx -102.70<br />

INITIAL syy -51<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.7 Tectonic Loading Model (Elastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- ELASTIC TECTONIC LOADING MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

198


crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=10<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 15.0<br />

;<br />

;==========================================================<br />

199


;===== set initial stress conditions ==============<br />

;==========================================================<br />

;***initial hydrostatic stress***<br />

INITIAL sxx -85<br />

INITIAL syy -85<br />

INITIAL szz -85<br />

;***rollers with compressed boundaries***<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.000001 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.000001 range 1563,1565 0,1564.64<br />

;insitu stress -102.70, 0, -73.43<br />

;==========================================================<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 5000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.8 Tectonic Loading Model (Plastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- PLASTIC TECTONIC LOADING MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

200


;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=10 jtens=10<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 15.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

;***initial hydrostatic stress***<br />

INITIAL sxx -85<br />

INITIAL syy -85<br />

201


INITIAL szz -85<br />

;***rollers with compressed boundaries***<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.000001 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.000001 range 1563,1565 0,1564.64<br />

;insitu stress -102.70, 0, -73.43<br />

;==========================================================<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 5000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

202


E.9 S3:S1 Model for fracture reactivation<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

203


;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 1000<br />

set plot po color<br />

;<br />

def ratios3s1<br />

bi=block_head<br />

loop while bi#0<br />

zi=b_zone(bi)<br />

loop while zi#0<br />

xval= abs(z_sxx(zi))<br />

204


yval= abs(z_syy(zi))<br />

xyval= abs(z_sxy(zi))<br />

subt=abs(xval-yval)<br />

s1 = 0.5*(xval+yval) + sqrt(subt*subt+4*xyval*xyval)<br />

s3 = 0.5*(xval+yval) - sqrt(subt*subt+4*xyval*xyval)<br />

ratio = s3/s1<br />

z_extra(zi)=ratio<br />

zi=z_next(zi)<br />

endloop<br />

bi=b_next(bi)<br />

endloop<br />

end<br />

ratios3s1<br />

plot hold z_extra fill block<br />

E.9.1 FISH Routine: ratio s3s1.fis<br />

def ratios3s1<br />

bi=block_head<br />

loop while bi#0<br />

zi=b_zone(bi)<br />

loop while zi#0<br />

xval= z_sxx(zi)<br />

yval= z_syy(zi)<br />

xyval= z_sxy(zi)<br />

s1 = 0.5*(xval+yval) + sqrt((xval-yval)*(xval-yval)+4*xyval*xyval)<br />

s3 = 0.5*(xval+yval) - sqrt((xval-yval)*(xval-yval)+4*xyval*xyval)<br />

ratio = s3/s1<br />

z_extra(zi)=ratio<br />

zi=z_next(zi)<br />

endloop<br />

bi=b_next(bi)<br />

endloop<br />

end<br />

ratios3s1<br />

plot fill z_extra block<br />

205


Appendix F<br />

Fracture Reactivation<br />

F.1 Maximum-to-minimum Principal Stress Ratio<br />

Mapping fracture reactivation, as done in Chapter 4, is a function <strong>of</strong> <strong>the</strong> maximum-to minimum<br />

principal stress ratio. This is described in terms <strong>of</strong> <strong>the</strong> friction angle when <strong>the</strong>re is no cohesion.<br />

Using <strong>the</strong> Mohr-Coulomb failure envelope as well as <strong>the</strong> Mohr circle, <strong>the</strong> Sine Law can be<br />

written as<br />

, (Equation F1)<br />

as shown in for triangle PBR in Figure F.1.<br />

Figure F1: Mohr-Coulomb failure envelope with Mohr circle depicting angles and quantities used in<br />

derivation<br />

Defining lengths BR and PB,<br />

(Equation F2)<br />

These can be substituted into Equation F1,<br />

206<br />

(Equation F3)


and rearranged to<br />

, (Equation F4)<br />

. (Equation F5)<br />

There are two intersections <strong>of</strong> <strong>the</strong> Mohr Circle with <strong>the</strong> Mohr-Coulomb failure envelope and thus<br />

two angles at which slip can occur:<br />

and<br />

(Equation F6)<br />

. (Equation F7)<br />

When cohesion is reduced to zero, <strong>the</strong>se angles can be expressed as:<br />

(Equation F8)<br />

. (Equation F9)<br />

For <strong>the</strong> argument,<br />

, (Equation F10)<br />

. (Equation F11)<br />

By defining <strong>the</strong> maximum normal and shear stress,<br />

(Equation F12)<br />

, (Equation F13)<br />

<strong>the</strong> ratio <strong>of</strong> <strong>the</strong>se quantities can be defined in terms <strong>of</strong> <strong>the</strong> maximum and minimum principal<br />

stress,<br />

207


. (Equation F14)<br />

Substituting this definition into equation 11,<br />

, (Equation F15)<br />

this ratio can be states as:<br />

. (Equation F16)<br />

This is <strong>the</strong> definition used to contour areas <strong>of</strong> slip in Chapter 4, based on <strong>the</strong> friction angle.<br />

F.2 Definitions for Deviatoric and Differential Stress<br />

Differential and deviatoric stress are plotted in UDEC and Phase 2 , respectively. There exists a<br />

need to define <strong>the</strong>se parameters. Differential stress is defined as<br />

.<br />

It is a scalar quantity and is not to be confused with deviatoric stress, which defined by a tensor.<br />

Notation used to describe <strong>the</strong> deviatoric stress tensor is that used by Jaeger et al., (2007).<br />

The deviatoric stress tensor is obtained from subtracting <strong>the</strong> isotropic component <strong>of</strong> <strong>the</strong> stress<br />

tensor<br />

, (Equation F17)<br />

,<br />

where τ m is <strong>the</strong> mean <strong>of</strong> <strong>the</strong> principal stresses, from <strong>the</strong> full stress tensor, (Equation F18)<br />

208


Such that<br />

, (Equation F19)<br />

I is <strong>the</strong> identity matrix,<br />

. (Equation F20)<br />

. (Equation F21)<br />

The resulting deviatoric tensor takes <strong>the</strong> form<br />

. (Equation F22)<br />

Principal deviatoric stresses have <strong>the</strong> same orientation as principal stresses and are defined as:<br />

, (Equation F23)<br />

, (Equation F24)<br />

. (Equation F25)<br />

209

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!