28.10.2014 Views

Appendix A

Appendix A

Appendix A

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Appendix</strong>es<br />

<strong>Appendix</strong> A<br />

A:01 Beginnings in number<br />

A:02 Number: Its order and structure<br />

A:03 Fractions<br />

A:04 Decimals<br />

A:05 Percentages<br />

A:06 Angles<br />

A:07 Plane shapes<br />

A:08 Solid shapes<br />

A:09 Measurement<br />

A:10 Directed numbers<br />

A:11 The number plane<br />

A:12 Algebra<br />

<strong>Appendix</strong> B<br />

B:01 Challenge: Finite differences<br />

<strong>Appendix</strong> C<br />

C:01 Multiplying with indices<br />

C:02 Dividing with indices<br />

C:03 Power of a power<br />

C:04 Miscellaneous exercises on indices<br />

C:05 Investigation: Large numbers on a calculator<br />

<strong>Appendix</strong> D<br />

D:01 Non-numerical geometrical reasoning<br />

(extension)<br />

<strong>Appendix</strong> E<br />

E:01 Fun Spot: The Tower of Hanoi<br />

<strong>Appendix</strong> F<br />

F:01 Bisecting intervals and angles<br />

F:02 Constructing angles of 60°, 120°, 30°<br />

and 90°<br />

F:03 Constructing perpendicular and parallel lines<br />

F:04 Constructing regular polygons in a circle<br />

<strong>Appendix</strong> G<br />

G:01 The minimum conditions for congruent<br />

triangles<br />

<strong>Appendix</strong> H<br />

H:01 Similar triangles<br />

H:02 Fun Spot: Drawing enlargements<br />

<strong>Appendix</strong> I<br />

I:01 The pictogram or picture graph<br />

I:02 The column graph<br />

1


• Much of the work of Year 7 will form a foundation for our work this year.<br />

• Revision exercises based on this review can be found in Chapter 1 of the text.<br />

APPENDIX A<br />

A:01 | Beginnings in Number<br />

A:01A Roman Numerals<br />

Numerals<br />

1 I<br />

5 V<br />

10 X<br />

50 L<br />

100 C<br />

500 D<br />

1000 M<br />

• LX means 50 + 10.<br />

• XL means 50 − 10.<br />

• XXXIV means<br />

10 + 10 + 10 + 5 − 1.<br />

worked examples<br />

1 392 = CCCXCII<br />

2 1988 = MCMLXXXVIII<br />

3 56 000 = LVM<br />

4 594 = DXCIV<br />

5 LXXIII = 73<br />

6 MDCXVI = 1616<br />

7 DMMLX = 502 060<br />

• Large numerals are formed by<br />

placing a stroke above the symbol.<br />

V = 5000<br />

X = 10 000<br />

M = 1 000 000<br />

see<br />

1:01<br />

A:01B Place Value and Expanded Notation<br />

314 million<br />

1 0 0 0 0 0 0 0 0<br />

1 0 0 0 0 0 0 0<br />

1 0 0 0 0 0 0<br />

952 thousand<br />

1 0 0 0 0 0<br />

1 0 0 0 0<br />

1 0 0 0<br />

1 0 0<br />

867 units<br />

1 0<br />

1<br />

3 1 4 9 5 2 8 6 7<br />

In the numeral to the left:<br />

• the value of the 3 is 300 000 000,<br />

• the value of the 1 is 10 000 000,<br />

• the value of the 4 is 4 000 000,<br />

• the value of the 9 is 900 000,<br />

• the value of the 5 is 50 000,<br />

• the value of the 2 is 2000,<br />

• the value of the 8 is 800,<br />

• the value of the 6 is 60,<br />

• the value of the 7 is 7.<br />

worked examples<br />

1 Write ‘six million, ninety thousand’ as a basic (simple) numeral.<br />

2 Write (8 × 10 000) + (4 × 1000) + (7 × 100) + (0 × 10) + (5 × 1) as a basic numeral.<br />

3 Write (7 × 10 3 ) + (5 × 10 2 ) + (3 × 10) + 9 as a basic numeral.<br />

Solutions<br />

1 We use zeros as place holders: 6 000 000 + 90 000 = 6 090 000<br />

2 (8 × 10 000) + (4 × 1000) + (7 × 100) + (0 × 10) + (5 × 1) = 84 705<br />

3 (7 × 10 3 ) + (5 × 10 2 ) + (3 × 10) + 9 = 7539<br />

2 NEW SIGNPOST MATHEMATICS 8


A:01C Long Multiplication and Long Division<br />

Multiplication<br />

Division<br />

1 Estimate first. 1 Estimate first.<br />

2 Multiply by the ones digit. 2 Use either the contracted form method or the<br />

3 Multiply by the tens digit. preferred multiples method.<br />

4 Add the two answers. 3 Write the answer using a remainder or fraction.<br />

Example<br />

Extended form<br />

531 ×<br />

48<br />

4 248 ← 8 × 531<br />

21 240 ← 40 × 531<br />

25 488<br />

A:01D Powers of Numbers<br />

five squared<br />

5 2 = 5 × 5<br />

= 25<br />

five cubed<br />

5 3 = 5 × 5 × 5<br />

= 125<br />

Example (long division)<br />

Contracted form<br />

28 r 10<br />

31) 878<br />

− 62↓<br />

258<br />

248<br />

10<br />

Answer: 28 remainder 10 or 28 10 -----<br />

31<br />

Preferred multiples<br />

28 r 10<br />

31) 878<br />

− 620 20<br />

258<br />

− 248 8<br />

10 28<br />

■ The small raised number (the index) tells how<br />

many times that number is used in the product.<br />

worked examples<br />

1 Write 2 5 in expanded form and write its basic numeral.<br />

2 Write 10 × 10 × 10 × 10 as a power of ten.<br />

3 What is the basic numeral of 8 × 10 4 ?<br />

Solutions<br />

1 2 5 2 10 × 10 × 10 × 10 3 8 × 10 4<br />

= 2 × 2 × 2 × 2 × 2 = 10 4 = 8 × (10 × 10 × 10 × 10)<br />

= 32 = 8 × 10 000<br />

= 80 000<br />

A:01E Expanded Notation Using Powers<br />

Ten-thousands<br />

10 000<br />

Thousands<br />

1000<br />

Hundreds<br />

100<br />

Tens<br />

10<br />

Units<br />

1<br />

10 × 10 × 10 × 10 10 × 10 × 10 10 × 10 10 1<br />

10 4 10 3 10 2 10 1 1<br />

6 9 8 7 5<br />

■ 6 ten-thousands<br />

9 thousands<br />

8 hundreds<br />

7 tens<br />

5 units<br />

69 875<br />

69 875 = (6 × 10 000) + (9 × 1000) + (8 × 100) + (7 × 10) + (5 × 1)<br />

= (6 × 10 4 ) + (9 × 10 3 ) + (8 × 10 2 ) + (7 × 10) + (5 × 1)<br />

APPENDIX A 3


A:01F Estimation<br />

Estimate before you calculate.<br />

We usually estimate an answer by rounding off each number involved to its<br />

leading digit and then performing the operation.<br />

worked examples<br />

Use leading digit estimation to estimate the answer for each of these.<br />

■ 5314<br />

↑<br />

leading digit<br />

Question Rounding off Estimate<br />

1 618 + 337 + 159 + 409<br />

2 38 346 − 16 097<br />

3 3250 × 11·4<br />

4 1987 ÷ 4<br />

600 + 300 + 200 + 400<br />

40 000 − 20 000<br />

3000 × 10<br />

2000 ÷ 4<br />

1500<br />

20 000<br />

30 000<br />

500<br />

see<br />

A:02 | Number: Its Order and Structure<br />

A:02A Order of Operations<br />

Mathematicians have agreed on an order of operations so that confusion does not occur.<br />

1:02 Order of Operations<br />

1 Do operations within grouping symbols.<br />

2 Do multiplications and divisions as they appear (from left to right).<br />

3 Do additions and subtractions as they appear (from left to right).<br />

■ Order of<br />

Operations<br />

1( )<br />

2 × and ÷<br />

3 + and −<br />

Where grouping symbols occur inside other grouping symbols, deal with the innermost grouping<br />

symbols first.<br />

Parentheses Brackets Braces<br />

( ) [ ] { }<br />

worked examples<br />

1 4 + 20 ÷ (4 + 1) 2 12 − 6 × 2 3 50 − (25 − [3 + 19])<br />

= 4 + 20 ÷ 5 = 12 − 12 = 50 − (25 − 22)<br />

= 4 + 4 = 0 = 50 − 3<br />

= 8 = 47<br />

1<br />

4 80 ÷ -- of 40 5 6×<br />

9+<br />

25<br />

6<br />

2<br />

= 80 ÷ 20 = 6 × 3 + 5<br />

= 4 = 23<br />

50 + 5<br />

--------------<br />

20 ÷ 4<br />

55<br />

= -----<br />

5<br />

= 11<br />

4 NEW SIGNPOST MATHEMATICS 8


A:02B Using Number Properties<br />

• Multiplying any number by 1 leaves the number unchanged,<br />

eg 347 × 1 = 347.<br />

• Multiplying any number by zero gives the answer zero<br />

eg 84 × 0 = 0.<br />

• Adding zero to any number leaves it unchanged<br />

eg 36 + 0 = 36.<br />

• When adding two numbers, the order does not change the answer<br />

eg 4 + 1 = 1 + 4.<br />

• When multiplying two numbers, the order does not change the answer<br />

eg 7 × 9 = 9 × 7.<br />

• When adding more than two numbers, we may add them in any order<br />

eg 4 + 169 + 96 = (4 + 96) + 169 = 100 + 169 = 269.<br />

• When multiplying more than two numbers, we may multiply them in any order<br />

eg 4 × 836 × 25 = (4 × 25) × 836 = 100 × 836 = 83 600.<br />

• Multiplication can be distributed over addition or subtraction<br />

eg 8 × (17 + 3) = 8 × 17 + 8 × 3, 4 × (100 − 3) = 4 × 100 − 4 × 3,<br />

7 × 99 = 7 × 100 − 7 × 1, 17 × 102 = 17 × 100 + 17 × 2.<br />

A:02C The Number Line and Using Inequality Signs<br />

To graph a number on the number line, we place a large dot on the point which represents that<br />

number.<br />

worked examples<br />

1 Graph the odd numbers less than 8. 2 On the number line graph the set {0, 4, 7}.<br />

–1 0 1 2 3 4 5 6 7 8<br />

–1 0 1 2 3 4 5 6 7 8<br />

If one number is to the left of another on the number line, then it is smaller than that number,<br />

eg 3 < 5, −1 < 0. The number to the right is larger, eg 7 > 4, 0 > −1.<br />

A:02D Special Groups of Whole Numbers<br />

Name of group Pattern Diagram or<br />

explanation<br />

Cardinal numbers 0, 1, 2, 3, . . . Zero + counting<br />

numbers<br />

Counting<br />

numbers<br />

Zero is included.<br />

Comment or rule<br />

1, 2, 3, 4, . . . Zero is not included.<br />

, , , , , , ...<br />

0 1 2 3 4 5 6 7<br />

Even numbers 2, 4, 6, 8, . . . All dots are in pairs. (2 × n)<br />

, , , , ...<br />

0 1 2 3 4 5 6 7<br />

Odd numbers 1, 3, 5, 7, . . . One dot not paired. (2n − 1)<br />

, , , ...<br />

0 1 2 3 4 5 6 7<br />

0 1<br />

2<br />

3<br />

4<br />

5<br />

6 7<br />

APPENDIX A 5


Name of group Pattern Diagram or<br />

explanation<br />

Comment or rule<br />

Square numbers 1, 4, 9, 16, . . . A counting number times itself,<br />

, , , , ... eg 1 × 1, 2 × 2, 3 × 3, etc. (n 2 )<br />

Triangular<br />

numbers<br />

Hexagonal<br />

numbers<br />

Fibonacci<br />

numbers<br />

Palindromic<br />

numbers<br />

1, 3, 6, 10, 15,<br />

. . .<br />

1, 7, 19, 37,<br />

. . .<br />

1, 1, 2, 3, 5, 8,<br />

. . .<br />

Examples<br />

929, 7337<br />

, , , , ...<br />

1, 1 + 2, 1 + 2 + 3,<br />

1 + 2 + 3 + 4, . . .<br />

The sum of the first n counting<br />

numbers.<br />

, , , ...<br />

1, 1 + (6 × 1), 1 + (6 × 1) + (6 × 2),<br />

1 + (6 × 1) + (6 × 2) + (6 × 3), . . .<br />

+6 +12 +18 +24 +30<br />

ie 1, 7, 19, 37, 61, 91, . . .<br />

Except for the first two in the pattern, each term is the<br />

sum of the two terms before it.<br />

The number reads<br />

the same forwards<br />

or backwards.<br />

‘Able was I ere I saw Elba’<br />

is a palindromic sentence.<br />

A:02E Factors and Multiples<br />

• A factor of a counting number divides it exactly.<br />

• A multiple of a counting number is found when you multiply<br />

it by another counting number.<br />

■ 3 × 8 = 24. Here 3 and 8<br />

are factors of 24, and 24 is<br />

a multiple of both 3 and 8.<br />

worked examples<br />

1 List all factors of 102. 2 List the first nine multiples of 7.<br />

To do this we look for numbers that 7 × 1 = 7, 7 × 2 = 14, 7 × 3 = 21,<br />

multiply together to give 102. 7 × 4 = 28, 7 × 5 = 35, 7 × 6 = 42,<br />

1 × 102 = 102 7 × 7 = 49, 7 × 8 = 56, 7 × 9 = 63.<br />

2 × 51 = 102<br />

The first nine multiples of 7 are:<br />

3 × 34 = 102<br />

7, 14, 21, 28, 35, 42, 49, 56, 63.<br />

6 × 17 = 102<br />

Note: 4, 5, 7, 8, 9, 10 and 11<br />

do not divide 102 exactly.<br />

The factors of 102 are:<br />

1, 102, 2, 51, 3, 34, 6, 17.<br />

■ You need not check numbers higher than 11.<br />

102 ÷ 11 9·27<br />

When your answer (9·27) is smaller than your divisor (11)<br />

you have gathered all factors.<br />

• The highest common factor of two numbers is the largest number that is a factor<br />

of both. This is called the HCF.<br />

• The lowest common multiple of two numbers is the smallest number that is a multiple<br />

of both. This is called the LCM.<br />

6 NEW SIGNPOST MATHEMATICS 8


worked examples<br />

1 Find the highest common factor 2 Find the lowest common multiple<br />

(HCF) of 102 and 153. (LCM) of 15 and 9.<br />

Number Factors Number Multiples<br />

102 1, 102, 2, 51 , 3, 34, 6, 17. 15 15, 30, 45 , 60, 75, 90, . . .<br />

153 1, 153, 3, 51 , 9, 17. 9 9, 18, 27, 36, 45 , 54, . . .<br />

The common factors are red.<br />

The highest common factor is 51.<br />

There would be other common multiples<br />

but the lowest common multiple can be<br />

seen in the table to be 45.<br />

A:02F Prime and Composite Numbers<br />

• A prime number is a counting number that has exactly two factors, itself and 1.<br />

7 has only two factors, 7 and 1, so 7 is a prime number.<br />

• A composite number has more than two factors.<br />

25 has three factors, 25, 1 and 5, so 25 is a composite number.<br />

• The number 1 has only one factor, 1, so it is neither prime nor composite.<br />

Use a factor tree to write 252 as a product of prime numbers.<br />

252<br />

worked examples<br />

4<br />

63<br />

2 2 3 21<br />

252 = 2 × 2 × 3 × 3 × 7<br />

= 2 2 × 3 2 × 7<br />

2<br />

2<br />

3<br />

3<br />

7<br />

APPENDIX A 7


A:02G HCF and LCM by Prime Factors<br />

When we express numbers as products of their prime factors it is sometimes easier to find their<br />

HCF and LCM.<br />

For the numbers 400 and 1080 find:<br />

1 the HCF, and 2 the LCM.<br />

400<br />

20 20<br />

4 5 5 4<br />

2 2 5 5 2 2<br />

worked examples<br />

1080<br />

20 54<br />

4 5 6 9<br />

2 2 5 2 3 3 3<br />

From these factor trees we find:<br />

Number<br />

The two numbers have 2 × 2 × 2 × 5 in common.<br />

2 × 2 × 2 × 5 = 2 3 × 5 or 40.<br />

∴ HCF = 40<br />

The highest common factor of 400 and 1080 is 40.<br />

The LCM must contain the whole of both numbers, so it will contain the whole of 400<br />

(ie 2 × 2 × 2 × 2 × 5 × 5) as well as any other prime factors of 1080 not already written down.<br />

LCM = (2 × 2 × 2 × 2 × 5 × 5) × (3 × 3 × 3)<br />

= 2 4 × 3 3 × 5 2<br />

= 10 800<br />

The lowest common multiple of 400 and 1080 is 10 800.<br />

■ Note:<br />

The HCF is found by using the smallest common power of each prime factor of the numbers.<br />

The LCM is found by using the highest power of each prime factor of the numbers.<br />

400<br />

1080<br />

Product of prime factors<br />

2 × 2 × 2 × 2 × 5 × 5<br />

or 2 4 × 5 2<br />

2 × 2 × 2 × 3 × 3 × 3 × 5<br />

or 2 3 × 3 3 × 5<br />

A:02H Divisibility Tests<br />

If 4 divides a number and leaves no remainder, then the number is divisible by 4. Here are some<br />

simple divisibility tests you should know.<br />

Divisor Divisibility test Example<br />

2 The number is even,<br />

ie it ends in 0, 2, 4, 6 or 8.<br />

3 The sum of the digits is<br />

divisible by 3.<br />

4 The number formed by the last<br />

two digits is divisible by 4.<br />

4136 is divisible by 2<br />

as it is even.<br />

30 012 is divisible by 3<br />

as (3 + 0 + 0 + 1 + 2) is<br />

divisible by 3.<br />

76 112 is divisible by 4<br />

as 12 is divisible by 4.<br />

5 The last digit is 5 or 0. 11 225 is divisible by 5<br />

as it ends with a 5.<br />

Learn these!<br />

They’re useful.<br />

8 NEW SIGNPOST MATHEMATICS 8


Divisor Divisibility test Example<br />

6 The number is divisible by<br />

both 2 and 3<br />

8 The number found by the last<br />

three digits is divisible by 8.<br />

9 The sum of the digits is<br />

divisible by 9.<br />

10 002 is even and its<br />

digit sum is divisible by 3.<br />

963 216 is divisible by 8<br />

as 216 is divisible by 8.<br />

142 128 is divisible by 9<br />

as (1 + 4 + 2 + 1 + 2 + 8)<br />

is divisible by 9.<br />

10 The last digit is 0. 814 170 is divisible by 10<br />

as it ends with 0.<br />

11 The sum of the odd-numbered<br />

digits is equal to the sum of the<br />

even-numbered digits or differs<br />

from it by a multiple of 11.<br />

25 The last two digits are 00, 25,<br />

50 or 75.<br />

7 081 426 is divisible by<br />

11 as (7 + 8 + 4 + 6) −<br />

(0 + 1 + 2) is 22 and this<br />

is divisible by 11.<br />

80 925 is divisible by 25<br />

as it ends in 25.<br />

100 The last two digits are 00. 81 700 is divisible by 100<br />

as it ends in 00.<br />

By using the tests in<br />

the table, we can<br />

construct other tests.<br />

■ • Divisibility<br />

by 12 is<br />

the same as<br />

divisibility by<br />

both 3 and 4.<br />

• Divisibility by<br />

50 is the same<br />

as divisibility by<br />

both 2 and 25.<br />

A:02I Square and Cube Roots<br />

• The number which when squared gives 225 is called the<br />

square root of 225.<br />

• The number which when cubed gives 512 is called the<br />

cube root of 512.<br />

If the square of 15 is 225, then the square root of 225 is 15.<br />

■ If 15 2 = 225, then 225 = 15 .<br />

If the cube of 8 is 512, then the cube root of 512 is 8.<br />

■ If 8 3 = 512, then 3 512 = 8 .<br />

■<br />

3<br />

means ‘the square root of’.<br />

means ‘the cube root of’.<br />

A:03 | Fractions<br />

A:03A Basic Concepts<br />

3<br />

• ----- means 3 of 10 equal parts.<br />

10<br />

• 10 tenths make 1 whole.<br />

3 ← numerator<br />

• A mixed numeral has a ‘whole number’<br />

10 ← denominator<br />

3<br />

part and a ‘fraction’ part, eg 2 ----- .<br />

10<br />

23<br />

• An improper fraction has a numerator that is bigger than its denominator, eg ----- .<br />

10<br />

see<br />

1:03<br />

APPENDIX A 9


A:03B The Fraction Bar<br />

The fraction bar is like a division sign.<br />

10<br />

worked examples<br />

1 ----- = 10 ÷ 2 2 -- = 9 ÷ 4 3 ----- = 87 ÷ 10<br />

2<br />

4<br />

10<br />

1<br />

7<br />

= 5 = 2 --<br />

= 8-----<br />

9<br />

4<br />

8<br />

4<br />

1<br />

4<br />

Note: -- = -- + -- = 2<br />

87<br />

-----<br />

10<br />

80<br />

10<br />

7<br />

10<br />

1<br />

--<br />

4<br />

= ----- + ----- = 8<br />

7<br />

-----<br />

10<br />

9<br />

4<br />

87<br />

10<br />

A:03C Mixed Numerals and Improper Fractions<br />

To write a mixed numeral as an improper fraction, express the whole number with the same<br />

denominator as the fraction part.<br />

worked examples<br />

1<br />

1 3<br />

3 -- = --<br />

1<br />

+ --<br />

2 5 5<br />

----- = --<br />

3<br />

+ ----- 3 1 -- =<br />

2 1 × 2 2<br />

10 1 × 10 10<br />

4<br />

6<br />

=<br />

1<br />

=<br />

50<br />

--<br />

3<br />

+ --<br />

----- + -----<br />

2 2<br />

10 10<br />

=<br />

7<br />

53<br />

= --<br />

= -----<br />

2<br />

10<br />

=<br />

1<br />

--<br />

1<br />

4<br />

--<br />

4<br />

7<br />

--<br />

4<br />

× 4<br />

× 4<br />

3<br />

+ --<br />

4<br />

3<br />

+ --<br />

4<br />

A:03D Simplifying Fractions<br />

A fraction may be simplified by casting out equal factors from both the numerator and<br />

denominator. (This process is called cancelling.)<br />

8 8<br />

1 ----- = ----- ÷ 2 2 20 ----- =<br />

10 10 ÷ 2<br />

50<br />

8 4<br />

= -------<br />

10 5<br />

=<br />

4<br />

= --<br />

5<br />

=<br />

worked examples<br />

20 ÷ 10<br />

-----<br />

50 ÷ 10<br />

20<br />

-------<br />

2<br />

50 5<br />

2<br />

--<br />

5<br />

-----<br />

8<br />

10<br />

and<br />

4<br />

--<br />

5<br />

the same!<br />

are<br />

A:03E Equivalent Fractions<br />

The size of a fraction is unchanged if both the numerator and denominator are multiplied by the<br />

same number.<br />

10 NEW SIGNPOST MATHEMATICS 8


worked examples<br />

Complete the following equivalent fractions:<br />

2<br />

3<br />

1 -- = -----<br />

2 -- = --------<br />

5 10<br />

4 100<br />

Multiply top and<br />

Multiply top and<br />

bottom by 2. bottom by 25.<br />

2<br />

--<br />

× 2 4<br />

= -----<br />

3 × 25<br />

--<br />

75<br />

= --------<br />

5 × 2 10<br />

4 × 25 100<br />

They’re<br />

the same!<br />

3<br />

4<br />

-- = -----<br />

1 10<br />

Multiply top and<br />

bottom by 10.<br />

4 × 10<br />

--<br />

40<br />

= -----<br />

1 × 10 10<br />

A:03F Addition and Subtraction (1)<br />

To add or subtract fractions that have the same denominator, add or subtract the numerators.<br />

A:03G Addition and Subtraction (2)<br />

To add or subtract fractions that have different denominators, use equivalent fractions to give each<br />

the same denominator.<br />

A:03H Comparing Fractions<br />

worked examples<br />

3 4 3+<br />

4<br />

1 ----- + ----- = -----------<br />

2<br />

19 6 19 – 6<br />

-------- – -------- = -------------- 3<br />

3 7 3+<br />

7<br />

-- + -- = -----------<br />

10 10 10<br />

100 100 100<br />

8 8 8<br />

7<br />

13<br />

10<br />

= -----<br />

= --------<br />

= -----<br />

10<br />

100<br />

8<br />

2<br />

= 1 -- or 1<br />

worked examples<br />

3 3<br />

1 2<br />

9 3<br />

--<br />

3<br />

3<br />

+ -----<br />

2<br />

----- – --<br />

-- + --<br />

5 10<br />

10 4<br />

4 5<br />

3<br />

= --<br />

× 2 3<br />

+ -----<br />

= 9 × 2 3<br />

----- – --<br />

× 5 =<br />

3 × 5 2 × 4<br />

-- + --<br />

5 × 2 10<br />

10 × 2 4 × 5<br />

4 × 5 5 × 4<br />

=<br />

6 3<br />

=<br />

18 15<br />

-----<br />

=<br />

15<br />

+ -----<br />

8<br />

----- – -----<br />

----- + -----<br />

10 10<br />

20 20<br />

20 20<br />

9<br />

3<br />

23<br />

= -----<br />

= -----<br />

= ----- or 1-----<br />

3 10<br />

20<br />

20 20<br />

To compare fractions, use equivalent fractions to give them the same denominator.<br />

8<br />

1<br />

--<br />

4<br />

APPENDIX A 11


worked examples<br />

1 Which fraction is 2 Arrange in order, from smallest<br />

3 6<br />

8 17 3<br />

smaller, -- or ----- ? to largest: { ----- , ----- , -- }.<br />

4<br />

10<br />

3<br />

--<br />

× 5 = 15<br />

8<br />

-----<br />

-----<br />

× 2 =<br />

16 -----<br />

4 × 5 20<br />

10 × 2 20<br />

6<br />

-----<br />

× 2 = 12<br />

17 17<br />

-----<br />

----- = -----<br />

10 × 2 20<br />

20 20<br />

6<br />

3<br />

∴ ----- is the smaller. --<br />

× 5 =<br />

15 -----<br />

10<br />

4 × 5 20<br />

3 8 17<br />

In order they are -- , ----- , ----- .<br />

10<br />

20<br />

4<br />

4<br />

10<br />

20<br />

■ When denominators<br />

are the same, compare<br />

numerators.<br />

A:03I Addition and Subtraction of Mixed Numerals<br />

worked examples<br />

2<br />

3<br />

1 3 -- + 1--<br />

2 10 -- − 1--<br />

5 4<br />

5 2<br />

2 3<br />

1 1<br />

= (3 + 1) + (--<br />

+ -- ) = (10 − 1) + (--<br />

− -- )<br />

5 4<br />

5 2<br />

2<br />

= 4 + (-- × 4 3<br />

+ -- × 5<br />

1 1<br />

) = 9 + (--<br />

− -- )<br />

5 × 4 4 × 5<br />

5 2<br />

8 15<br />

1 1<br />

= 4 + (-----<br />

+ ----- ) = 8 + (1 -- − -- )<br />

20 20<br />

5 2<br />

23<br />

3<br />

6<br />

= 4 ----- (ie 4 + 1 ----- ) = 8 + (-- × 2 1<br />

− -- × 5 )<br />

20<br />

20<br />

5 × 2 2 × 5<br />

3<br />

12 5<br />

= 5 -----<br />

= 8 + (-----<br />

− ----- )<br />

20<br />

10 10<br />

7<br />

= 8-----<br />

10<br />

3<br />

3 5 − 2--<br />

5<br />

3<br />

= (5 − 2) − --<br />

5<br />

3<br />

= 3 − --<br />

5<br />

3<br />

= 2 + (1 − -- )<br />

5<br />

2<br />

= 2--<br />

5<br />

1<br />

1<br />

1<br />

■ -- is bigger<br />

2<br />

1<br />

than -- , so use<br />

5<br />

one whole.<br />

A:03J Multiplication<br />

To multiply fractions, we may multiply numerators and multiply denominators.<br />

1<br />

worked examples<br />

3<br />

2<br />

■ -- has been ■ of the shaded part<br />

4<br />

5<br />

-- ■ ( 2<br />

of 3<br />

) or ( 2<br />

× 3<br />

) is 6<br />

-- -- -- -- -----<br />

5 4 5 4 20<br />

.<br />

shaded.<br />

has been cut out.<br />

12 NEW SIGNPOST MATHEMATICS 8


2<br />

5<br />

Conclusion: -- × -- = ----------- = ----- or<br />

If a number will divide into a numerator and a denominator, this should be done. It is easier to<br />

do it before multiplying, rather than doing it when you simplify the answer.<br />

3 7<br />

3<br />

2 -----<br />

2<br />

× -----<br />

9<br />

3 --<br />

15<br />

× --<br />

4 ----- × -----<br />

10 10<br />

5 3<br />

10 16<br />

(No number will exactly<br />

1<br />

3 2<br />

9 15<br />

(divide top and bottom.) = ---- × ----<br />

= -------<br />

5 3 1<br />

2 10 × -------<br />

3<br />

16<br />

3×<br />

7<br />

= -----------------<br />

10 × 10<br />

1×<br />

2<br />

9×<br />

3<br />

= -----------<br />

= --------------<br />

5×<br />

1<br />

2×<br />

16<br />

21<br />

= --------<br />

100<br />

2<br />

27<br />

= --<br />

= -----<br />

5<br />

32<br />

A:03K Multiplication of Mixed Numerals<br />

To multiply mixed numerals, write them as improper fractions.<br />

3<br />

5<br />

4<br />

1<br />

A:03L Division<br />

3<br />

4<br />

2 × 3<br />

5 × 4<br />

6<br />

20<br />

3<br />

-----<br />

10<br />

worked examples<br />

1 4 × --<br />

2 1 -- × 3 3 3 -- × 1<br />

3<br />

5<br />

= -- × --<br />

= ----- × --<br />

= ------- ×<br />

12<br />

5<br />

2<br />

5<br />

= -----<br />

= -----<br />

=<br />

7<br />

8<br />

= 2 --<br />

= 5 --<br />

= 5<br />

15<br />

8<br />

45<br />

8<br />

5<br />

8<br />

3<br />

1<br />

There are two methods for doing division involving fractions. The method on the right is more<br />

popular.<br />

3<br />

4<br />

5<br />

15<br />

1 4<br />

5<br />

--<br />

1<br />

1<br />

--<br />

3<br />

4<br />

----<br />

1<br />

2 1<br />

When the fractions have the same<br />

denominator, you can divide the<br />

numerators to get the answer.<br />

3 5 6 5<br />

1<br />

eg -- ÷ -- = -- ÷ -- = 6 ÷ 5 = 1--<br />

4 8 8 8<br />

5<br />

To divide by a fraction, invert the<br />

fraction and multiply (ie multiply<br />

by the reciprocal).<br />

3 2 3 5 15 7<br />

eg -- ÷ -- = -- × -- = ----- = 1 --<br />

4 5 4 2 8 8<br />

Mixed numerals should first be changed to improper fractions.<br />

9 1<br />

10 2<br />

9<br />

5 10<br />

9<br />

5<br />

worked examples<br />

1 ----- ÷ --<br />

2 4 ÷ --<br />

3 1 -- ÷ 3<br />

2 1<br />

= ------- × ----<br />

= -- × --<br />

= -- ÷<br />

1<br />

= --<br />

= -----<br />

= ---- ×<br />

4<br />

5<br />

= 1 --<br />

= 6 --<br />

=<br />

4<br />

1<br />

20<br />

3<br />

3<br />

5<br />

2<br />

3<br />

5<br />

3<br />

1<br />

2<br />

3<br />

2<br />

1<br />

3<br />

1 2<br />

2<br />

--<br />

5<br />

3<br />

--<br />

4<br />

15<br />

-----<br />

4<br />

4<br />

-------<br />

2<br />

15 5<br />

APPENDIX A 13


A:03M A Fraction of a Quantity<br />

When finding a fraction of a quantity, it is sometimes wise to change to a smaller unit. To find one<br />

quantity as a fraction of another, make sure the quantities have the same units.<br />

worked examples<br />

1 Find -- of 2 km. 2 What fraction is 40 cm of 2 m?<br />

∴<br />

1<br />

--<br />

5<br />

3<br />

--<br />

5<br />

3<br />

5<br />

1<br />

40 cm<br />

of 2 km = -- of 2000 m Fraction = -----------------<br />

5<br />

200 cm<br />

4<br />

= 2000 ÷ 5m = -----<br />

20<br />

= 400 m =<br />

of 2 km = 3 × 400 m<br />

= 1200 m or 1·2 km<br />

1<br />

--<br />

5<br />

see<br />

1:04<br />

A:04 | Decimals<br />

A:04A Our Number System is Based on Ten<br />

5 hundreds 500·<br />

7 tens 70·<br />

3 units 3·<br />

1 tenth 0·1<br />

9 hundredths 0·09<br />

4 thousandths 0·004<br />

2 ten-thousandths 0·0002<br />

5 7 3·1 9 4 2<br />

573·1942<br />

■ 0·8 0·65<br />

means<br />

means<br />

8 of 10 65 of 100<br />

equal parts. equal parts.<br />

100 10 1<br />

1<br />

-----<br />

10<br />

1<br />

--------<br />

100<br />

1<br />

-----------<br />

1000<br />

1<br />

----------------<br />

10 000<br />

5 7 3 · 1 9 4 2<br />

If the ‘large cube’ represents one whole, the ‘flat’ represents 0·1, the ‘long’ represents 0·01 and the<br />

‘short’ represents 0·001, then the number represented below is 2·152.<br />

14 NEW SIGNPOST MATHEMATICS 8


A:04B Conversions: Fractions and Decimals<br />

The following examples show the connection between fractions and decimals.<br />

7<br />

10<br />

worked examples<br />

13<br />

100<br />

9<br />

1000<br />

1 ----- = 0·7 2 2 -------- = 2·13 3 ----------- = 0·009<br />

1 zero 1 figure 2 zeros 2 figures 3 zeros 3 figures<br />

after the after the after the<br />

point point point<br />

To write a decimal as a fraction, use the method above to write the decimal as a fraction with a<br />

denominator of 10, 100, 1000, etc, then simplify.<br />

worked examples<br />

Change each to a fraction or mixed number in simplest form.<br />

1 0·85 2 0·025 3 1·8 4 9·04<br />

85<br />

= -------- ÷ 5<br />

25<br />

= ----------- ÷ 25<br />

8<br />

= 1 ----- ÷ 2<br />

= 9<br />

100 ÷ 5<br />

17<br />

20<br />

1000 ÷ 25<br />

1<br />

40<br />

10 ÷ 2<br />

= -----<br />

= -----<br />

= 1 --<br />

= 9<br />

4<br />

5<br />

4<br />

-------- ÷ 4<br />

100 ÷ 4<br />

1<br />

-----<br />

25<br />

To write a fraction as a decimal, we may use either of two methods.<br />

1 Express the denominator of the fraction as<br />

a power of ten, then change to a decimal.<br />

or<br />

2 Divide the numerator by the denominator.<br />

If a decimal keeps repeating,<br />

it’s called a repeating<br />

or recurring decimal.<br />

Method 1<br />

worked examples<br />

Change each fraction to a decimal.<br />

3 3 × 2<br />

1 -- = --<br />

5 5 × 3<br />

6<br />

= -----<br />

10<br />

= 0·6<br />

■ 0·3333333333 … = 0·3˙<br />

0·1717171717 … = 0·1˙ 7˙<br />

0·1081081081 … = 0·1˙ 08˙<br />

33<br />

33<br />

-------- × 5<br />

× 5<br />

2 -------- =<br />

200 200<br />

165<br />

= -----------<br />

1000<br />

= 0·165<br />

APPENDIX A 15


Method 2<br />

5<br />

3 -- = 5 ÷ 8<br />

8<br />

= 0 · 6 2 5<br />

= 8 ) 5 · 0 2 0 4 0<br />

= 0·625<br />

3<br />

4 ----- = 3 ÷ 11<br />

11<br />

= 0 · 2 7 2 7 …<br />

= 11 ) 3 · 0 8 0 3 0 8 0 3 0<br />

= 0·2˙ 7˙<br />

When a decimal<br />

does not repeat,<br />

it’s called a<br />

terminating decimal.<br />

■ 0·6, 32·75<br />

8·11, 0·0067<br />

A:04C Comparing Decimals<br />

■ To compare decimals,<br />

give them the same number<br />

of decimal places.<br />

eg<br />

0·3 0·300<br />

0·33 0·330<br />

0·303 0·303<br />

‘Ascending order’ means<br />

‘smallest to largest’.<br />

Whole numbers may be written as decimals by placing<br />

zeros after a decimal point<br />

eg 7 = 7·00, 130 = 130·0, 2 = 2·000<br />

The number line can be used to compare two decimals.<br />

The decimal to the left will be the smaller one. The<br />

decimals 0·5, 2 and 3·1 have been graphed on the<br />

number line.<br />

0<br />

0·5<br />

1<br />

1·5<br />

2<br />

2·5<br />

3<br />

3·5<br />

A:04D Addition and Subtraction<br />

We place tenths under tenths, hundredths under hundredths, and thousandths under thousandths.<br />

To add or subtract decimals, use the rule: Place Points Under Points.<br />

worked examples<br />

1 3·7 + 1·52 2 63·85 − 2·5 3 8 − 1·625<br />

= 3 · 7 0 +<br />

= 63·85 −<br />

= 8·000 −<br />

1 1· 5 2 2·50 1·625<br />

5 · 2 2 61·35 6·375<br />

16 NEW SIGNPOST MATHEMATICS 8


A:04E Multiplication with Decimals<br />

When multiplying, we must have the same number of figures after the decimal point in<br />

the answer as we had altogether after decimal points in the question.<br />

1 0·006 × 0·5 2 38·2 × 0·11<br />

= 0·0030 = 4·202<br />

= 0·003<br />

3 (0·05) 2 4 1·3 × 19·1<br />

= 0·05 × 0·05 = 24·83<br />

= 0·0025<br />

worked examples<br />

■ Multiply as though<br />

there were no decimal<br />

points, then use the<br />

rule to place the point<br />

in your answer.<br />

It helps to estimate<br />

your answer first.<br />

A:04F Multiplying and Dividing by 10, 100, 1000<br />

1 When we multiply a decimal by 10, 100 or 1000, we move the decimal point 1, 2 or<br />

3 places to the right.<br />

2 When we divide a decimal by 10, 100 or 1000, we move the decimal point 1, 2 or<br />

3 places to the left.<br />

worked examples<br />

1 0·60 × 100 2 34·180 × 1000 3 0·075 × 10<br />

= 60 = 34 180 = 0·75<br />

4 81·6 ÷ 100 5 056· ÷ 1000 6 0·045 ÷ 10<br />

= 0·816 = 0·056 = 0·0045<br />

■ Zeros may have to<br />

be put in to fill an<br />

empty space.<br />

A:04G Division of a Decimal by a Whole Number<br />

To divide a decimal by a whole number use the rule: Place Points Under Points.<br />

worked examples<br />

1 48·9 ÷ 3 2 1·5 ÷ 5 3 0·123 ÷ 4<br />

1 6·3 0·3 0·030 7 5<br />

= 3 ) 4 1 8·9 = 5 ) 1·5 = 4 ) 0·123 3 0 2 0<br />

■ In each case we<br />

have kept POINT<br />

UNDER POINT.<br />

A:04H Division of a Decimal by a Decimal<br />

To divide one decimal by another decimal we change the question so that we are<br />

dividing by a whole number. We achieve this by moving the decimal point to the right<br />

in both numbers.<br />

APPENDIX A 17


1 0·8136 ÷ 0·04<br />

0·8136<br />

= -----------------<br />

0·04<br />

0·8136 × 100<br />

= -----------------<br />

0·04 × 100<br />

81·36<br />

= -------------<br />

4<br />

= 20·34<br />

OR<br />

worked examples<br />

1 0·8136 ÷ 0·04 2 875 ÷ 0·05<br />

Move the decimal point = 875·00 ÷ 0·05<br />

two places to the right = 87 500 ÷ 5<br />

in each to make the = 17 500<br />

second number whole.<br />

= 81·36 ÷ 4 3 3·612 ÷ 1·2<br />

= 20·34 = 36·12 ÷ 12<br />

= 3·01<br />

A:04I Decimal Currency<br />

The rules for decimals also apply to amounts of money.<br />

worked examples<br />

1 Dh362 + Dh3.42 2 Dh100 − Dh41.63 3 Dh8.37 × 8 4 Dh90 ÷ 8<br />

Solutions<br />

1 Dh362.00 + 2 Dh100.00 − 3 Dh 8.37 × 4 Dh1 1 . 2 5<br />

Dh 3.42 Dh 41.63 8 8 ) Dh9 1 0 . 2 0 4 0<br />

Dh365.42 Dh 58.37 Dh66.96<br />

■ 25fils = Dh0.25<br />

see<br />

A:01F<br />

A:04J Rounding Off<br />

This is an important skill used in estimation.<br />

To round off (or approximate) a number correct to a given place, we round up if the<br />

next figure is 5 or more, and round down if the next figure is less than 5.<br />

worked examples<br />

Round off: 1 96 700 000 to the nearest million.<br />

2 0·085 to the nearest hundredth.<br />

3 86·249 correct to one decimal place.<br />

Solutions<br />

1 96 700 000 has a 6 in the millions column.<br />

The number after the 6 is ‘5 or more’ (ie 7),<br />

∴ 96 700 000 = 97 000 000, correct to the<br />

nearest million.<br />

2 0·085 has an 8 in the hundredths column.<br />

The number after the 8 is ‘5 or more’ (ie 5),<br />

∴ 0·085 = 0·09, correct to the nearest hundredth.<br />

18 NEW SIGNPOST MATHEMATICS 8


3 86·249 has a 2 in the first decimal place.<br />

The number after the 2 is ‘less than 5’ (ie 4),<br />

∴ 86·249 = 86·2, correct to one decimal place.<br />

A:05 | Percentages<br />

A:05A Changing Percentages to Fractions and Mixed Numerals<br />

A percentage is a convenient way of writing a fraction that has a denominator of 100.<br />

‘Per cent’, written %, means ‘per 100’ or ‘for every 100’.<br />

worked examples<br />

see<br />

1:05<br />

9<br />

100<br />

1 9% = --------<br />

2 64% =<br />

(9 for every 100) =<br />

125<br />

64<br />

-------- ÷ 4<br />

100 ÷ 4<br />

16<br />

-----<br />

25<br />

3 125% = --------<br />

4 14 -- % = --------<br />

100<br />

2 100 × 2<br />

25<br />

= 1-------- ÷ 25<br />

100 ÷ 25<br />

29<br />

= --------<br />

1<br />

200<br />

= 1--<br />

4<br />

1<br />

14 1 2 --<br />

× 2<br />

Write the percentage<br />

as a fraction and<br />

simplify.<br />

100% = 1<br />

200% = 2<br />

A:05B Changing Fractions to Percentages<br />

100<br />

To express a fraction as a percentage, multiply by -------- %.<br />

1<br />

worked examples<br />

3 3<br />

1 -- = --<br />

3 11<br />

× 1<br />

2 1 -- = ----- × 1<br />

4 4<br />

8 8<br />

3 100<br />

11<br />

= -- × --------%<br />

= -----<br />

4 1<br />

8<br />

25<br />

3 100<br />

11<br />

= -- × --------%<br />

= -----<br />

14<br />

1<br />

28<br />

275<br />

= 75% = --------%<br />

2<br />

= 137·5%<br />

100<br />

× --------%<br />

1<br />

25<br />

100<br />

× --------%<br />

1<br />

1<br />

20<br />

37 37 100<br />

3 -------- = --------<br />

3 23 100<br />

× --------% 4 4 -- % = ----- × --------%<br />

300 3300<br />

1<br />

5 15<br />

1<br />

37<br />

460<br />

= -----%<br />

= --------%<br />

3<br />

1<br />

1<br />

= 12 -- % = 460%<br />

3<br />

That is the<br />

same as<br />

multiplying by 1.<br />

■ We could also have changed<br />

the denominator to 100,<br />

3 30<br />

eg ----- = --------<br />

10 100<br />

= 30%<br />

APPENDIX A 19


A:05C Changing Percentages to Decimals<br />

To change 93% to a decimal, divide 93 by 100. eg 93· ÷ 100 = 0·93<br />

worked examples<br />

1 47% = 47· ÷ 100 2 30% = 30· ÷ 100<br />

= 0·47 = 0·30 or 0·3<br />

3 325% = 325· ÷ 100 4 300% = 300· ÷ 100<br />

= 3·25 = 3<br />

5 12·7% = 12·7 ÷ 100 6 0·3% = 00·3 ÷ 100<br />

= 0·127 = 0·003<br />

A:05D Changing Decimals to Percentages<br />

■<br />

Hundredths column<br />

13% = 0·13 13 ÷ 100 = 0·13<br />

150% = 1·50 150 ÷ 100 = 1·50<br />

4% = 0·04 4 ÷ 100 = 0·04<br />

To express a decimal as a percentage, multiply by 100%.<br />

worked examples<br />

1 0·87 = 0·87 × 100% 2 1·30 = 1·30 × 100%<br />

= 87% = 130%<br />

3 5 = 5·00 × 100% 4 0·825 = 0·825 × 100%<br />

= 500% = 82·5%<br />

■ Add zeros when they are<br />

needed. eg 0·8 = 0·80<br />

A:05E Conversions You Should Know<br />

Percentage 1% 5% 10% 12 -- % 20% 25% 33 -- % 50% 100%<br />

Decimal 0·01 0·05 0·1 0·125 0·2 0·25 0·3˙ 0·5 1<br />

1<br />

100<br />

5<br />

100<br />

Fraction -------- -------- ----- -- -- -- -- -- 1<br />

A:05F Using Percentages<br />

1<br />

10<br />

1<br />

2<br />

1<br />

8<br />

To find a percentage of a quantity, write the percentage as a decimal (or fraction) and<br />

multiply by the quantity.<br />

1<br />

5<br />

worked examples<br />

1 8% of 560 L 2 70% of 680 g 3 5% of Dh800<br />

8 ■ 24 out of 32<br />

= 0·08 × 560 = 0·70 × 680 =<br />

5 800<br />

-------- × --------<br />

is the same as<br />

= 44·80 = 476·00<br />

1100<br />

1<br />

75 out of 100.<br />

= 44·8 L = 476 g = Dh40<br />

1<br />

4<br />

1<br />

3<br />

1<br />

3<br />

1<br />

2<br />

20 NEW SIGNPOST MATHEMATICS 8


0<br />

0<br />

4 Rashid scored 24 marks out of 32. What is this as a percentage?<br />

24<br />

Fraction of marks obtained = -----<br />

32<br />

3<br />

24 100<br />

Percentage of marks obtained = ----- × --------%<br />

324<br />

1<br />

300<br />

= --------%<br />

4<br />

= 75%<br />

75%<br />

24<br />

32<br />

A:06 | Angles<br />

A:06A Naming Angles<br />

An angle can be named in several ways. Two ways are shown here.<br />

B<br />

Angle Method 1 Method 2<br />

A<br />

C<br />

∠ABC<br />

or<br />

∠CBA<br />

∠B<br />

or<br />

Bˆ<br />

• In Method 1, we go from the letter on<br />

one arm to the vertex and then to the<br />

letter on the other arm.<br />

• Method 2 can only be used when there<br />

is no chance of confusion.<br />

see<br />

1:06<br />

A:06B Measuring Angles with a Protractor<br />

Place the protractor as shown below and read off the angle.<br />

You need to choose the correct reading from the two on the arm of the angle.<br />

20<br />

10<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

180170160150140130120110100<br />

90<br />

100<br />

80<br />

110<br />

70<br />

120<br />

60<br />

130<br />

50<br />

140<br />

40<br />

150<br />

30<br />

160<br />

20<br />

10<br />

170<br />

180<br />

0<br />

This angle measures 110°, as<br />

it is bigger than a right angle.<br />

This angle measures 40°, as it<br />

is smaller than a right angle.<br />

20<br />

10<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

180170160150140130120110100<br />

90<br />

100<br />

80<br />

110<br />

70<br />

120<br />

60<br />

130<br />

50<br />

140<br />

40<br />

150<br />

30<br />

160<br />

20<br />

10<br />

170<br />

180<br />

0<br />

APPENDIX A 21


A:06C Types of Angles<br />

Angles may be classified into different types depending on their size.<br />

Type acute right obtuse straight reflex revolution<br />

Size<br />

less than<br />

90°<br />

90° between 90°<br />

and 180°<br />

180° between<br />

180° and<br />

360°<br />

360°<br />

Diagram<br />

A:06D Special Angles<br />

Adjacent<br />

Name Diagram Explanation<br />

Vertex<br />

Common<br />

arm<br />

Adjacent angles:<br />

1 have a common arm<br />

2 have a common vertex<br />

3 and lie on opposite sides of the<br />

common arm.<br />

Complementary<br />

46°<br />

44°<br />

Any two angles whose sum is 90° are<br />

complementary angles.<br />

eg 46° + 44° = 90°<br />

Supplementary<br />

Any two angles whose sum is 180° are<br />

supplementary angles.<br />

eg 128° + 52° = 180°<br />

128° 52°<br />

Adjacent<br />

complementary<br />

These are formed when a right angle is<br />

cut into two parts. The angles add up<br />

to 90°.<br />

Adjacent<br />

supplementary<br />

These are formed when a straight angle<br />

is cut into two parts. The angles add<br />

up to 180°.<br />

22 NEW SIGNPOST MATHEMATICS 8


Angles at a<br />

point<br />

Name Diagram Explanation<br />

92°<br />

125°<br />

143°<br />

If angles meet at a point, then their<br />

sum is 360° or one revolution.<br />

eg 92° + 125° + 143° = 360°<br />

Vertically<br />

opposite<br />

33° 147°<br />

147° 33°<br />

When two straight lines intersect, the<br />

vertically opposite angles are equal.<br />

A<br />

A transversal is a line that cuts two or more other lines.<br />

In the diagram AB is a transversal.<br />

B<br />

Corresponding<br />

x<br />

x<br />

There are four pairs of corresponding<br />

angles.<br />

These are equal when the lines crossed<br />

by the transversal are parallel.<br />

Alternate<br />

There are two pairs of alternate angles.<br />

These are equal when the lines crossed<br />

by the transversal are parallel.<br />

Co-interior<br />

x<br />

x<br />

There are two pairs of co-interior<br />

angles.<br />

These are supplementary when the<br />

lines crossed by the transversal are<br />

parallel. (They add up to 180°.)<br />

APPENDIX A 23


see<br />

1:07<br />

A:07 | Plane Shapes<br />

A:07A Naming Plane Shapes<br />

Plane shapes are shapes that lie in one plane, or flat surface. They have area but not volume.<br />

Below are some of the common plane shapes.<br />

This is the family of quadrilaterals.<br />

rectangle<br />

quadrilateral<br />

trapezium<br />

parallelogram<br />

rhombus<br />

square<br />

kite<br />

Each member of this family is a special kind of each of the shapes on its left,<br />

eg a rhombus is a special parallelogram, trapezium, kite and quadrilateral.<br />

Other plane shapes include:<br />

triangle pentagon hexagon octagon circle oval (ellipse)<br />

Shapes that have only straight sides are called polygons.<br />

The ID cards at the front of this book (pages xv to xx) should be used often to help you remember<br />

the language of Mathematics.<br />

A:07B Constructing Triangles<br />

When we construct triangles, we make use of a ruler, compasses and protractor.<br />

Example 1<br />

worked examples<br />

Construct a triangle that has sides of length 6 cm, 5 cm and 4 cm.<br />

24 NEW SIGNPOST MATHEMATICS 8


Solution 1<br />

1 2 3 4<br />

5 cm<br />

4 cm<br />

Step 1 Draw an interval 6 cm long.<br />

Step 2 Set the compasses to 5 cm and from one end of the interval draw an arc.<br />

Step 3 Set the compasses to 4 cm and from the other end of the interval draw an arc to cut the<br />

arc that has already been drawn.<br />

Step 4 Join the point where the arcs meet to both ends of the interval to obtain the triangle.<br />

Example 2<br />

Construct a triangle that has sides of 4 cm and 5 cm which form an angle of 60°.<br />

Solution 2<br />

6 cm 6 cm 6 cm 6 cm<br />

1 2 3 4<br />

60° 60° 60°<br />

5 cm 5 cm<br />

4 cm<br />

4 cm<br />

60°<br />

5 cm<br />

Step 1 Use the protractor to draw a 60° angle.<br />

Step 2 Measure 5 cm along one arm of the angle.<br />

Step 3 Measure 4 cm along the other arm of the angle.<br />

Step 4 Join the ends of the arms to form the triangle.<br />

A:07C The Angle Sum of a Triangle<br />

The sum of the angles of any triangle is 180° (or one straight angle).<br />

A:07D Types of Triangles and Their Properties<br />

Equilateral<br />

triangle<br />

Name Diagram Properties<br />

• All sides are equal.<br />

• All angles are equal at 60°.<br />

Isosceles<br />

triangle<br />

• Two sides are equal.<br />

• Angles opposite equal sides are<br />

equal. (These are called base<br />

angles.)<br />

APPENDIX A 25


Name Diagram Properties<br />

Scalene<br />

triangle<br />

• No sides are equal.<br />

• All angles are different.<br />

Acute-angled<br />

triangle<br />

• All angles are acute (less than 90°).<br />

Right-angled<br />

triangle<br />

• One angle is a right angle (90°).<br />

Obtuse-angled<br />

triangle<br />

• One angle is an obtuse angle<br />

(greater than 90°).<br />

• The longest side is opposite the<br />

largest angle.<br />

A:07E Constructing Quadrilaterals<br />

Often you can construct a quadrilateral in several different ways.<br />

worked examples<br />

To construct this quadrilateral, use the following steps.<br />

Step 1 Draw a 60° angle with your protractor.<br />

Step 2 Mark off the sides AB (5 cm) and AD (3·2 cm).<br />

Step 3 Draw an 80° angle with its vertex at B.<br />

Step 4 Mark off the side BC (3·8 cm).<br />

Step 5 Join CD.<br />

A<br />

3·2 cm<br />

60°<br />

D<br />

5 cm<br />

C<br />

80°<br />

3·8 cm<br />

B<br />

1 2 3 4 5<br />

C<br />

D D D<br />

60° 60°<br />

80°<br />

A A 5 cm B A<br />

B A<br />

B A<br />

3·2 cm<br />

3·8 cm<br />

D<br />

C<br />

B<br />

26 NEW SIGNPOST MATHEMATICS 8


A:07F Properties of Quadrilaterals<br />

Name Diagram Properties<br />

1 Trapezium • One pair of opposite sides are<br />

parallel.<br />

2 Parallelogram • Two pairs of sides are parallel.<br />

• Opposite sides are equal.<br />

• Opposite angles are equal.<br />

• Diagonals bisect one another.<br />

3 Rhombus A rhombus has all the properties of a<br />

x x<br />

parallelogram and …<br />

• All sides are equal.<br />

• Diagonals bisect each other at right<br />

x x<br />

angles.<br />

• Diagonals bisect the angles through<br />

which they pass.<br />

4 Rectangle A rectangle has all the properties of a<br />

parallelogram and …<br />

• All angles are right angles.<br />

• Diagonals are equal.<br />

5 Square A square has all the properties of a<br />

rhombus and a rectangle.<br />

6 Kite • Two pairs of adjacent sides equal.<br />

• Diagonals are perpendicular.<br />

• One diagonal is an axis of symmetry.<br />

APPENDIX A 27


A:07G Finding the Size of an Angle<br />

Diagram Rule Example<br />

b°<br />

a° c°<br />

triangle<br />

a° + b° + c° = 180°<br />

50°<br />

70°<br />

a°<br />

Find the value of a.<br />

a + 50 + 70 = 180<br />

a + 120 = 180<br />

∴ a = 60<br />

b°<br />

a°<br />

c°<br />

d°<br />

quadrilateral<br />

a° + b° + c° + d° = 360°<br />

55°<br />

b°<br />

110° 115°<br />

Find the value of b.<br />

b + 55 + 115 + 110 = 360<br />

b + 280 = 360<br />

∴ b = 80<br />

a°<br />

b°<br />

isosceles triangle<br />

a° = b°<br />

x°<br />

3 cm<br />

72° 3 cm<br />

Find the value of x.<br />

This is an isosceles<br />

triangle since two<br />

sides are equal.<br />

∴ x = 72<br />

a°<br />

b°<br />

c°<br />

equilateral triangle<br />

a° = b° = c°<br />

y°<br />

Find the value of y.<br />

This is an equilateral<br />

triangle as all sides<br />

are equal.<br />

∴ All angles are equal.<br />

3y = 180<br />

y = 60<br />

a° b°<br />

straight angle<br />

a° + b° = 180°<br />

135°<br />

y°<br />

Find the value of y.<br />

135 + y = 180<br />

∴ y = 45<br />

a° b°<br />

c°<br />

angles at a point<br />

a° + b° + c° = 360°<br />

m°<br />

70°<br />

30°<br />

40°<br />

Find the value of m.<br />

m + 70 + 30 + 40 = 360<br />

m + 140 = 360<br />

∴ m = 220<br />

A:07H The Angle Sum of a Quadrilateral<br />

The sum of the angles of any quadrilateral is 360° (or one revolution).<br />

The angle sums of other polygons can be found by multiplying the number that is two less than the<br />

number of sides by 180°:<br />

angle sum = (n − 2) × 180°, where n is the number of sides,<br />

eg angle sum of a hexagon = (6 − 2) × 180°<br />

= 720°<br />

28 NEW SIGNPOST MATHEMATICS 8


A:08 | Solid Shapes<br />

A:08A Know the Names of Solids<br />

The ID cards at the front of this book (pages xv to xx) should be used often to help you remember<br />

the language of Mathematics.<br />

A:08B Prisms<br />

see<br />

1:08<br />

(1) (2) (3) (4)<br />

Prisms<br />

All prisms have a special pair of parallel faces. These faces are the only two faces that need not be<br />

rectangular in shape. If the prism is ‘sliced’ parallel to these faces, the same shape always results.<br />

This shape is called the cross-section.<br />

A prism is named according to the shape of its cross-section.<br />

worked example<br />

Name this solid.<br />

Solution<br />

The shape of the crosssection<br />

of this solid is a<br />

hexagon so it is called a<br />

hexagonal prism.<br />

■ The prisms above are:<br />

1 cube<br />

2 triangular<br />

3 hexagonal<br />

4 pentagonal.<br />

APPENDIX A 29


A:08C Pyramids<br />

(1) (2) (3) (4)<br />

Pyramids<br />

All pyramids have one face that need not be triangular. This face is used to name the pyramid.<br />

A right pyramid has its point above the centre of its base.<br />

A pyramid is named according to the shape of its non-triangular face. If all of its faces<br />

are triangles the pyramid is a triangular pyramid.<br />

worked example<br />

Name this solid.<br />

Solution<br />

The solid is a pyramid.<br />

The non-triangular face<br />

is a square. Hence the<br />

solid is a square pyramid.<br />

■ An oblique<br />

pyramid does<br />

not have its<br />

point above<br />

the centre of<br />

its base.<br />

■ The pyramids<br />

above are:<br />

1 square<br />

2 triangular<br />

3 hexagonal<br />

4 pentagonal.<br />

Euler’s theorem: For any convex polyhedra, F + V = E + 2 where<br />

F = number of faces, V = number of vertices and E = number of edges.<br />

A:08D Nets of Solids<br />

Solid shapes can be made from plane shapes. This can be done by drawing the net of the solid on a<br />

piece of paper. The net shows how the faces of the solid are joined to each other. When these faces<br />

are folded along their edges, the solid is formed.<br />

worked example<br />

Draw the net of a square pyramid on a sheet of<br />

square grid paper.<br />

Solution<br />

A square pyramid has four<br />

identical triangular faces<br />

joined to a square base, so:<br />

Step 1 Draw a square base.<br />

Step 2 Add the four adjoining<br />

triangles.<br />

F = 5, V = 6, E = 9<br />

30 NEW SIGNPOST MATHEMATICS 8


A:08E Drawing Pictures of Solids<br />

Below, a rectangular prism has been drawn using two different projections.<br />

Rectangular prism<br />

Use grids like these<br />

to practise drawing solids.<br />

1 Using square grid<br />

2 Using triangular grid<br />

worked example<br />

Draw the front view, top view and right<br />

side view of the solid pictured below.<br />

Solution<br />

top<br />

front<br />

front<br />

right side<br />

A:09 | Measurement<br />

A:09A Metric Units and Equivalents<br />

The Metric Units ID card on page xv and the Metric Equivalents table on page xiv should be used<br />

to help you remember this essential information.<br />

A:09B Measuring Lengths<br />

worked example<br />

Write down each measurement in centimetres, giving your<br />

answers correct to the nearest millimetre.<br />

a b c d<br />

An interval is<br />

part of a line. It<br />

has a definite length.<br />

see<br />

1:09<br />

cm 1 2 3 4 5 6 7 8 9<br />

Solution<br />

a 1·5 cm (ie 15 mm) b 3·8 cm (ie 38 mm)<br />

c 6·1 cm (ie 61 mm) d 8·4 cm (ie 84 mm)<br />

APPENDIX A 31


A:09C Conversions in the Metric System<br />

When converting a measurement from one unit to another, you need to know the meanings of<br />

metric prefixes.<br />

kilo … hecto … deca … deci … centi … milli …<br />

1<br />

1000 100 10 1 -----<br />

10<br />

The value of each column is ten times the value of the column on its right.<br />

1<br />

--------<br />

100<br />

1<br />

-----------<br />

1000<br />

To convert a unit into a larger unit you divide.<br />

To convert a unit into a smaller unit you multiply.<br />

worked examples<br />

1 3000 mm = 3000 ÷ 10 cm 2 2500 mL = 2500 ÷ 1000 L 3 630 mg = 630 ÷ 1000 g<br />

= 300 cm = 2·5 L = 0·63 g<br />

4 7 km = 7 × 1000 m 5 7·8 kg = 7·8 × 1000 g 6 2·5 m = 2·5 × 100 cm<br />

= 7000 m = 7800 g = 250 cm<br />

7 An interval is 8·4 cm long. The interval must be divided into twelve equal parts. How many<br />

millimetres would be in each part?<br />

The length 8·4 cm = 8·4 × 10 mm<br />

= 84 mm<br />

∴ the length of each part = 84 ÷ 12<br />

= 7mm<br />

A:09D Perimeter<br />

The perimeter of a figure is the sum of the side lengths.<br />

It is the distance around the figure.<br />

worked examples<br />

Solutions<br />

Find the perimeter<br />

of each figure<br />

1 9 m<br />

P = (5 + 10 + 8 + 9) m<br />

= 32 m<br />

8 m The perimeter is 32 metres.<br />

5 m<br />

■ Perimeter of a square:<br />

P = 4 × s (or P = 4s)<br />

s<br />

10 m<br />

32 NEW SIGNPOST MATHEMATICS 8


2 For a square, all sides are equal.<br />

P = (5·2 + 5·2 + 5·2 + 5·2) m<br />

5·2 m<br />

= (4 × 5·2) m<br />

= 20·8 m<br />

The perimeter is 20·8 metres.<br />

3 For a rectangle, opposite sides<br />

are equal.<br />

P = (2 × 1·2 + 2 × 2·6) cm<br />

2·6 cm<br />

= (2·4 + 5·2) cm<br />

= 7·6 cm<br />

The perimeter is 7·6 centimetres.<br />

1·2 cm<br />

■ Perimeter of a<br />

rectangle:<br />

P = 2 × l + 2 × b<br />

(or P = 2l + 2b)<br />

l<br />

The formulae<br />

make the working<br />

easier.<br />

b<br />

A:09E Time<br />

You should be familiar with both conventional and digital time.<br />

worked examples<br />

1 a b c d<br />

12<br />

12<br />

12<br />

12<br />

9<br />

3<br />

9<br />

3<br />

9<br />

3<br />

3<br />

6<br />

6<br />

6<br />

25 minutes Half past 10 10 minutes to 7 A quarter to 5<br />

past 1<br />

2 a b c d<br />

AM PM AM PM<br />

15 minutes 36 minutes past 20 minutes 55 minutes<br />

past 10 8 (after noon) past 11 past 7<br />

(before noon) (before noon) (after noon)<br />

APPENDIX A 33


3<br />

A 24-hour clock uses a 4-digit number, the first two digits indicating<br />

the hour past midnight and the second two indicating the minutes.<br />

a b c d<br />

20 minutes past 30 minutes past 12 noon 57 minutes past<br />

5 (before noon) 5 (after noon) 11 (after noon)<br />

■ The Days in a Month<br />

To work out how many days are in each month,<br />

we can use the knuckles on two hands.<br />

The knuckle stands for a month of 31 days;<br />

the lower skin joining two knuckles stands for a<br />

month of 30 days, with the exception of February<br />

which has 28 days, and 29 days each leap year.<br />

Jan<br />

Feb<br />

31<br />

28<br />

or<br />

29<br />

Mar<br />

Apr<br />

May<br />

31<br />

31<br />

30 30<br />

June<br />

July<br />

31<br />

Aug<br />

Oct<br />

Nov<br />

Dec<br />

31<br />

31<br />

31<br />

30 30<br />

Sep<br />

A:09F Distance, Speed and Time<br />

If speed does not change (or we are referring to average speed), the following formulae can be used.<br />

• Distance = Speed × Time<br />

• Speed = Distance ÷ Time<br />

• Time = Distance ÷ Speed<br />

We can write these formulae using letters instead of words:<br />

D = S × T, S = D ÷ T, T = D ÷ S<br />

worked examples<br />

1 Yousif ran at a speed of 5 metres per second for 20 seconds. How far did he run?<br />

2 Sara walked at a constant speed for 50 seconds. During this time she travelled 150 metres.<br />

What was her speed?<br />

3 A train travelling with a speed of 30 kilometres per hour travelled a distance of<br />

120 kilometres. How long did it take?<br />

Solutions<br />

1 Speed = 5 m/s. Time = 20 s. 2 Time = 50 s. Distance = 150 m.<br />

Find the distance.<br />

Find the speed.<br />

Distance = Speed × Time<br />

Speed = Distance ÷ Time<br />

D = S × T<br />

S = D ÷ T<br />

∴ D = 5 × 20 m<br />

∴ S = 150 ÷ 50 m/s<br />

= 100 m = 3 m/s<br />

∴ Yousif ran 100 metres.<br />

∴ Sara’s speed was 3 m/s.<br />

34 NEW SIGNPOST MATHEMATICS 8


3 Speed = 30 km/h. Distance = 120 km.<br />

Find the time.<br />

Time = Distance ÷ Speed<br />

T = D ÷ S<br />

= 120 ÷ 30<br />

= 4h<br />

∴ the train took 4 hours.<br />

km/h means<br />

kilometres<br />

per hour.<br />

A:09G Area<br />

When we measure the area of a shape, we are measuring<br />

the amount of space there is inside that shape. We try to<br />

work out how many square units would cover the shape.<br />

Area of a rectangle<br />

1 cm<br />

One square<br />

centimetre<br />

(1 cm 2 ).<br />

• Area = length × breadth<br />

A = l × b<br />

l<br />

b<br />

100 cm<br />

One square<br />

100 cm 1 m 2<br />

metre<br />

(1 m 2 ).<br />

1 m 2 = 10 000 cm 2<br />

1 Find the area of the rectangle below.<br />

3 m<br />

7·5 m<br />

worked examples<br />

Solution<br />

A = l × b<br />

= 7·5 × 3<br />

= 22·5 m 2<br />

The area is 22·5 m 2 .<br />

100 m<br />

100 m 1 ha<br />

1 ha = 10 000 cm 2<br />

One<br />

hectare.<br />

2 Find the area of the figure below.<br />

30 cm<br />

1 m (100 cm) Note: i We must make all units the same,<br />

so 1 m = 100 cm.<br />

1<br />

ii We divide the figure into two rectangles.<br />

50 cm<br />

2<br />

30 cm<br />

Solution<br />

A = Area 1 + Area 2<br />

= (100 × 30) + (50 × 30)<br />

= 3000 + 1500<br />

= 4500 cm 2<br />

The area of the figure is 4500 cm 2 .<br />

APPENDIX A 35


Area of a square<br />

A square is, of course, a rectangle<br />

with its length equal to its breadth,<br />

so if a square has sides of s cm, then<br />

the area is equal to s × s = s 2 cm 2 .<br />

• Area of a square<br />

s<br />

A = s 2<br />

s<br />

worked example<br />

Find the area of a square that has sides of length 7 mm.<br />

7 mm A = s 2<br />

= 7 × 7<br />

= 49 mm 2<br />

The area of the square is 49 mm 2 .<br />

Area of a triangle<br />

1<br />

Area of a triangle = -- (base × height)<br />

2<br />

b×<br />

h<br />

1<br />

A = ----------- or A = -- bh<br />

2<br />

2<br />

b<br />

h<br />

h<br />

b<br />

b<br />

h<br />

worked examples<br />

Find the area of each triangle.<br />

1 2 3<br />

5 cm<br />

8 m<br />

5 cm<br />

12 cm<br />

6 m<br />

7 cm<br />

b×<br />

h<br />

b×<br />

h<br />

b×<br />

h<br />

A = -----------<br />

A = -----------<br />

A = -----------<br />

2<br />

2<br />

2<br />

12 × 5<br />

6×<br />

8<br />

7×<br />

5<br />

= --------------<br />

= -----------<br />

= -----------<br />

2<br />

2<br />

2<br />

= 30 cm 2 = 24 m 2 = 17·5 cm 2<br />

36 NEW SIGNPOST MATHEMATICS 8


A:09H Volume<br />

When we measure the space an object occupies, we are<br />

measuring its volume. We try to work out how many<br />

cubic units it would take to fill the object.<br />

Irregular solids<br />

We may be able to find the volume by counting cubes.<br />

One cubic<br />

centimetre (1 cm 3 ).<br />

1 cm<br />

1 cm 1 cm<br />

worked example<br />

Find the volume of the solid below.<br />

3 cm<br />

3 cm<br />

3 cm There are 5 cm 3 in each layer.<br />

There are 3 layers.<br />

∴ volume = 5 × 3<br />

= 15 cm 3<br />

∴ the volume of the solid is<br />

15 cm 3 .<br />

One cubic<br />

metre<br />

100 cm 100 cm<br />

1 m 3 = 100 100 100<br />

= 1 000 000 cm 3<br />

100 cm<br />

Rectangular prisms<br />

To find the volume of a rectangular prism, use the following rule:<br />

V = l × b × h or simply V = lbh<br />

h<br />

l<br />

b<br />

Find the volume of each rectangular prism.<br />

1 2<br />

7 cm<br />

2 cm<br />

3 cm<br />

worked examples<br />

6 cm<br />

V = lbh<br />

V = lbh<br />

= 7 × 3 × 2 = 6 × 2 × 3<br />

= 42 cm 3 = 36 cm 3<br />

∴ volume is 42 cm 3 . ∴ volume is 36 cm 3 .<br />

3 cm<br />

2 cm<br />

■ Notice:<br />

The number of cubes<br />

in each layer is the<br />

same as the area of<br />

the base rectangle in<br />

square units.<br />

APPENDIX A 37


3<br />

9 m<br />

11 m<br />

20 m<br />

V = lbh<br />

= 11 × 9 × 20<br />

= 1980 cm 3<br />

∴ volume is 1980 cm 3 .<br />

Summary: Perimeter, area and volume<br />

1 Perimeter: distance around 8<br />

P = 24 units<br />

4<br />

4<br />

2 Area: number of squares inside 4<br />

A = 12 units 2<br />

8<br />

3<br />

3 Volume: number of cubes inside V = 48 units 3<br />

A:09I Capacity<br />

3<br />

When we measure the amount of a liquid that a container can hold, we are measuring its capacity.<br />

We might say that an amount of a liquid<br />

is so many cupfuls or spoonfuls, but as<br />

with the volume of solids, we need some<br />

standard units.<br />

4<br />

4<br />

The basic unit in the metric system for capacity is the litre (L).<br />

This means that:<br />

1000 millilitres (mL) = 1 litre (L)<br />

1000 litres (L) = 1 kilolitre (kL)<br />

There is a link between the capacity of a liquid and the volume of a solid.<br />

A container with a volume of 1 cube centimetre would hold 1 millilitre of liquid.<br />

∴ 1mL = 1cm 3 1L = 1dm 3 1L = 1000 cm 3<br />

38 NEW SIGNPOST MATHEMATICS 8


A:09J Mass<br />

Mass is the amount of matter that makes up an object. We can measure the mass of an object by<br />

measuring its weight at sea level or by comparing it with a known mass.<br />

To get a measure of an object’s mass, we need some standard units. The metric units for mass are:<br />

100 milligrams (mg) = 1 gram (g)<br />

1000 grams (g) = 1 kilogram (kg)<br />

1000 kilograms (kg) = 1 tonne (t)<br />

The base unit<br />

is the kilogram.<br />

The combined mass of a container and its contents is its gross mass.<br />

The mass of the contents only is its net mass.<br />

worked examples<br />

Calculate the missing mass.<br />

1 Gross mass = 500 g 2 Gross mass = 1·2 kg 3 Net mass = 800 g<br />

Net mass = 400 g Container’s mass = 250 g Container’s mass = 170 g<br />

Container’s mass = g Net mass = g Gross mass = g<br />

Container’s mass Net mass Gross mass<br />

= Gross − Net = Gross − Container = Net + Container<br />

= 500 g − 400 g = 1200 g − 250 g = 800 g + 170 g<br />

= 100 g = 950 g = 970 g<br />

A:10 | Directed Numbers<br />

A:10A Directed Numbers<br />

Directed numbers have both size and direction.<br />

−20 is read as ‘negative 20’ or ‘minus 20’.<br />

+20 is read as ‘positive 20’ or just ‘20’.<br />

Note: +20 can be written more simply as 20.<br />

... –4, –3, –2, –1, 0,<br />

1, 2, 3, 4, ...<br />

see<br />

1:10<br />

■ If a directed number is a whole<br />

number, it is called an integer.<br />

APPENDIX A 39


A:10B Addition and Subtraction<br />

When adding or subtracting, a negative can be thought of as a loss and a positive can be thought<br />

of as a gain.<br />

worked examples<br />

1 −7 + 11 A loss of 7 and 2 −9 + 2 A loss of 9 and<br />

= 4 a gain of 11. = −7 a gain of 2.<br />

3 2 − 13 A gain of 2 and 4 −7 − 5 A loss of 7 and<br />

= −11 a loss of 13. = −12 a loss of 5.<br />

A:10C Signs Side by Side<br />

When two signs occur side by side (with no numeral between them):<br />

• two like signs give a plus<br />

• two unlike signs give a minus.<br />

worked examples<br />

1 6 − −10 2 3 + (+7) 3 10 − (3 − 9) 4 3 + (−7 + 11)<br />

= 6 + 10 = 3 + 7 = 10 − −6 = 3 + (+4)<br />

= 16 = 10 = 10 + 6 = 3 + 4<br />

= 16 = 7<br />

A:10D Multiplication and Division<br />

For multiplication and division:<br />

• two like signs give a plus<br />

• two unlike signs give a minus.<br />

worked examples<br />

1 −4 × −3 2 −0·2 × −3 3 −4 × 14 4 7 × (−1·1)<br />

= 12 = 0·6 = −56 = −7·7<br />

5 −35 ÷ (−5) 6 60 ÷ −6 7 –21<br />

8 –1·8<br />

--------<br />

----------<br />

= 7 = −10<br />

–3<br />

2<br />

= 7 = −0·9<br />

9 −8 + 6 × −3 10 (2 − 20) ÷ 3<br />

= −8 + −18 = −18 ÷ 3<br />

= −8 − 18 = −6<br />

= −26<br />

40 NEW SIGNPOST MATHEMATICS 8


A:11 | The Number Plane<br />

A:11A The Number Line Extended<br />

To graph a number on the number line, place a large dot at that position on the number line.<br />

see<br />

worked examples<br />

1 Graph the set of numbers {−2, 0, 1·5, 4}.<br />

–3 –2 –1 0 1 2 3 4 5<br />

2 List the set of numbers graphed below.<br />

■ A set of numbers is a<br />

collection of numbers.<br />

1:11<br />

0 0·5 1 1·5<br />

The set is {−0·3, 0·2, 0·6, 1}.<br />

A:11B The Number Plane<br />

(2, 5) is called an ordered pair or the coordinates of a point.<br />

The first number is the reading on the x-axis (how far right or left).<br />

The second number is the reading on the y-axis (how far up or down).<br />

(–3, 1) is 3 to<br />

the left and 1 up.<br />

y<br />

4<br />

3<br />

2<br />

1<br />

(4, 3) is above<br />

‘4’ on the x-axis<br />

and across from<br />

‘3’ on the y-axis.<br />

–5 –4 –3 –2 –1 0 1 2 3 4<br />

x<br />

(–5, –4) is<br />

5 to the<br />

left and 4<br />

down.<br />

(0, 0) is called<br />

the origin. It is<br />

0 to the right and<br />

0 up.<br />

–1<br />

–2<br />

–3<br />

–4<br />

(3, 0) is<br />

3 to the right<br />

and 0 up.<br />

(2, –3) is<br />

2 to the right<br />

and 3 down.<br />

APPENDIX A 41


A:11C Mastery Test<br />

Do this test again and again until you get all the questions right.<br />

C<br />

E<br />

8<br />

F<br />

How long<br />

is CD?<br />

D<br />

y<br />

4<br />

3<br />

2<br />

2<br />

4<br />

Name this axis .<br />

Give coordinates<br />

9<br />

What letter<br />

is at (4, –4)?<br />

Answers<br />

8 3 units<br />

9 A<br />

10 F<br />

5 (−5, −2)<br />

4 (1, 3)<br />

3 origin,<br />

(0, 0)<br />

B<br />

1<br />

–4<br />

1<br />

A<br />

Name this axis .<br />

–5 –4 –3 –2 –1 1 2 3 4 5 x<br />

6<br />

Give name<br />

Give coords. –1 3<br />

and coords.<br />

–2 7 Give coords.<br />

5 Give coords.<br />

10 What letter<br />

–3<br />

is at (–2, 4)?<br />

7 (0, −2)<br />

6 (−4, 0)<br />

Check your<br />

answers when<br />

you finish the<br />

test.<br />

2 y-axis<br />

1 x-axis<br />

see<br />

1:12<br />

A:12 | Algebra<br />

A:12A Describing Number Patterns<br />

A symbol can be used to describe the rule used to obtain a number pattern. Symbols that represent<br />

numbers are called pronumerals. The most commonly used pronumerals are the letters of the<br />

alphabet.<br />

A pronumeral takes the place of a numeral.<br />

worked examples<br />

1 In each example below, t represents the number of triangles, and m the number of matches<br />

used. Find the rule to describe each pattern and use it to complete the table of values given.<br />

a<br />

3<br />

, , , ...<br />

6 9<br />

42 NEW SIGNPOST MATHEMATICS 8


The number of matches used is always three times the number of triangles.<br />

m = 3 × t<br />

t 1 2 3 4 5 6 7 8<br />

m 3 6 9 12 15 18 21 24<br />

b<br />

, , , , ...<br />

3 5 7 9<br />

The number of matches used is always two times the number of triangles plus one.<br />

m = (2 × t) + 1<br />

t 1 2 3 4 5 6 7 8<br />

m 3 5 7 9 11 13 15 17<br />

2 At Ali’s fruit shop, apples cost 25 fils each. If C stands for the cost in fils and n stands for the<br />

number of apples, write down a rule to give the cost of each lot of apples bought, and use it<br />

to complete the table of values.<br />

Cost of apples = (number of apples) × (25 fils)<br />

C = n × 25<br />

n 1 2 3 4 5 10 30 100<br />

C 25 50 75 100 125 250 750 2500<br />

A:12B Algebraic Expressions<br />

If an expression contains one or more pronumerals, it is an algebraic expression.<br />

eg 4 + a, 9 × y, p ÷ q, 5 + x × y<br />

Note:<br />

• 1 × m = 1m = m<br />

The numeral 1 does not have to be written in front of a pronumeral.<br />

• 4 × y = 4y<br />

This means ‘4 times y’ or ‘4 lots of y’ or ‘y + y + y + y’.<br />

• f × 5 is written as 5f, not f5.<br />

• a × b = ab = ba<br />

Since 5 × 11 = 11 × 5, a × b = b × a<br />

x a<br />

• x ÷ 5 = -- , a ÷ 12 = ----- .<br />

5 12<br />

The fraction is usually used instead of the division sign.<br />

APPENDIX A 43


worked examples<br />

Simplify:<br />

1 5 × k + 2 2 a + 3 × y 3 6 × (a + 7) 4 5 × a ÷ 7<br />

= 5k + 2 = a + 3y = 6(a + 7)<br />

5a<br />

= -----<br />

7<br />

Rewrite these expressions showing all multiplication and division signs.<br />

a + 7<br />

5 3a + 8 6 5p − 6q 7 4(x + 2) 8 -----------<br />

3<br />

= 3 × a + 8 = 5 × p − 6 × q = 4 × (x + 2)<br />

= (a + 7) ÷ 3<br />

A:12C Substitution<br />

You will often be asked to evaluate an expression using values given for the pronumerals.<br />

worked examples<br />

1 Given x = 3:<br />

a 6x = 6 × 3 b 2(x + 5) = 2 × (3 + 5) c 5x 2 = 5 × 3 2<br />

= 18 = 2 × 8 = 5 × 9<br />

= 16 = 45<br />

Note: The multiplication signs must be written in after the values have been substituted for<br />

pronumerals.<br />

2 If a = 2 and b = 5 then:<br />

10a 10 × 2<br />

a 3a + 7b = 3 × 2 + 7 × 5 b -------- = -------------- c 4a(b − a) = 4 × 2 × (5 − 2)<br />

b 5<br />

= 6 + 35 = 4 × 2 × 3<br />

= 41<br />

= 20 ÷ 5<br />

= 24<br />

= 4<br />

3 If the number of matches, m, needed to make t triangles is given by m = 2t + 1, how many<br />

matches would be needed to make 100 triangles?<br />

m = 2t + 1<br />

= 2 × 100 + 1 (when t = 100)<br />

= 200 + 1<br />

= 201<br />

So 201 matches would be needed to make 100 triangles.<br />

A:12D Finding the Rule<br />

Rules like y = 3x + 4 have a difference of 3 between<br />

successive values of y as x increases by 1 each time.<br />

Rules like y = 7x + 4 have a difference of 7 between<br />

successive values of y as x increases by 1 each time.<br />

x<br />

y<br />

1<br />

7<br />

y 3x 4<br />

2 3<br />

10 13<br />

4<br />

16<br />

5<br />

19<br />

3 3 3 3<br />

44 NEW SIGNPOST MATHEMATICS 8


worked example<br />

Discover the rule connecting x and y. If the differences<br />

( ) are the same, the rule will be like: y = x +<br />

As the differences are all 4,<br />

y = 4x +<br />

From the table we see that when x = 1, y = 11.<br />

So 11 = 4 × 1 +<br />

∴ = 7<br />

So the rule is y = 4x + 7.<br />

x<br />

y<br />

1 2 3 4 5<br />

11 15 19 23 27<br />

4 4 4 4<br />

A:12E Simplifying Algebraic Expressions<br />

If terms have identical pronumeral parts, then they are called like terms.<br />

Like terms may be added or subtracted.<br />

worked examples<br />

1 7a + 5a = 12a 2 3pq − 10pq = −7pq 3 8x − x = 7x<br />

4 5m + 7m − 10m = 2m 5 5x + 2y + 7y = 5x + 9y 6 7p + 2q + 3p + q<br />

= 10p + 3q<br />

7 6a + 7b − 2a + 5b 8 7a 2 − 4a + 2a<br />

■ The plus or minus<br />

2<br />

= 9a 2 − 4a<br />

= 6a −2a +7b +5b sign always belongs to<br />

= 4a + 12b<br />

the term after it!<br />

When multiplying algebraic terms, multiply numbers first and then pronumerals. When dividing,<br />

write the division as a fraction and reduce the fraction to its lowest terms.<br />

worked examples<br />

1 3 × 5a 2 7m × 3p 3 a × 4b 4 −3k × −5<br />

= 15a = 21mp = 4ab = 15k<br />

5 12t ÷ 3 6 6m ÷ 2a 7 15r ÷ 10 8 3ab × 7a<br />

4<br />

3<br />

12t<br />

6m<br />

15r<br />

= 21aba<br />

= -------<br />

= -------<br />

= --------<br />

= 21aab<br />

1 3<br />

12a<br />

210<br />

= 21a 2 b<br />

3m<br />

3r<br />

= 4t = -------<br />

= -----<br />

a<br />

2<br />

A:12F Grouping Symbols<br />

To ‘expand’ an expression, we write it without grouping symbols.<br />

• a(b + c) = ab + ac<br />

■ • Parentheses: ( )<br />

• a(b − c) = ab − ac<br />

• Brackets: [ ]<br />

APPENDIX A 45


A:12G Index Notation<br />

In a 4 , ‘a’ is called the base, ‘4’ is called the index.<br />

A:12H Algebraic Sentences or Equations<br />

worked examples<br />

1 5(x + 2) 2 9(2a − 3) 3 m(m + 7)<br />

= 5 × x + 5 × 2 = 9 × 2a − 9 × 3 = m × m + m × 7<br />

= 5x + 10 = 18a − 27 = m 2 + 7m<br />

worked examples<br />

4<br />

1 a × a × a × a = a 2 5 3 = 5 × 5 × 5<br />

3 p × p × p × p × p × p × p = p 7 (since the p is used as a factor 7 times).<br />

4 m × m × m × b × b × b × b × b = m 3 b 5 5 5 × t × t × 7 × t = 35t 3<br />

■ The plural of ‘index’ is<br />

‘indices’.<br />

To ‘solve’ an equation, we must find the value of the pronumeral that will make the equation true.<br />

worked examples<br />

1 x + 5 = 9 2 12 − a = 5 3 6m = 42<br />

Ask: ‘What number Ask: ‘12 minus what Ask: ‘6 times what<br />

plus 5 is equal to 4?’ number is equal to 5?’ number is equal to 42?’<br />

x = 4 a = 7 m = 7<br />

x<br />

4 -- = 21<br />

5 m + 7 = 2 6 2x + 5 = 13<br />

3<br />

Ask: ‘What number Ask: ‘What number ‘What plus 5 gives 13?’<br />

divided by 3 is equal plus 7 is equal to 2?’ 2x = 8<br />

to 21?’ m = −5 ‘What times 2 gives 8?’<br />

x = 63 x = 4<br />

A:12I Problem Solving Using Algebra<br />

We can use equations to solve problems.<br />

The sum of two consecutive numbers is 91.<br />

What are the numbers?<br />

Solution<br />

Let the numbers be x and x + 1.<br />

Then x + (x + 1) = 91<br />

2x + 1 = 91<br />

2x = 90<br />

x = 45<br />

∴ x + 1 = 46<br />

worked example<br />

■ Using algebra is a<br />

problem-solving strategy.<br />

Consecutive numbers<br />

follow one after the other,<br />

eg 29, 30, 31, ...<br />

46 NEW SIGNPOST MATHEMATICS 8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!