28.10.2014 Views

Lesson XIII - Hydrogen (production, distribution and storage) - TPG

Lesson XIII - Hydrogen (production, distribution and storage) - TPG

Lesson XIII - Hydrogen (production, distribution and storage) - TPG

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sustainable Energy<br />

Mod.1: Fuel Cells & Distributed<br />

Generation Systems<br />

Dr. Ing. Mario L. Ferrari<br />

Thermochemical Power Group (<strong>TPG</strong>) - DiMSET – University of Genoa, Italy<br />

A.A. 2011-2012


<strong>Lesson</strong> <strong>XIII</strong><br />

<strong>Lesson</strong> <strong>XIII</strong>: hydrogen (<strong>production</strong>,<br />

<strong>distribution</strong> <strong>and</strong> <strong>storage</strong>)<br />

A.A. 2011-2012


The <strong>Hydrogen</strong> Economy (1/2)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

October 2002<br />

Very senior representatives<br />

from major European<br />

automotive <strong>and</strong> energy<br />

companies, SME, research<br />

centres, utilities, policy<br />

makers, <strong>and</strong> users<br />

associations advise on<br />

prospects for economic<br />

impact of moving towards a<br />

sustainable energy economy<br />

based on hydrogen <strong>and</strong><br />

electricity as carriers, using<br />

fuel cells as efficient energy<br />

converters.<br />

A.A. 2011-2012


The <strong>Hydrogen</strong> Economy (2/2)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

A.A. 2011-2012


<strong>Hydrogen</strong> LHV<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Production (1/7)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

Fossil<br />

Renewable<br />

Sources<br />

Oil<br />

Natural gas<br />

Coal<br />

Nuclear<br />

Wind, PV<br />

Solar<br />

Biomass<br />

ZERO EMISSION<br />

CONVERSION<br />

Gasification<br />

Thermochemical<br />

processes<br />

Electrolysis<br />

Thermochemical<br />

processes<br />

Gasification<br />

<strong>Hydrogen</strong><br />

H 2 pipes<br />

H 2 <strong>storage</strong><br />

<strong>and</strong> delivery<br />

UTILIZATION<br />

Distributed<br />

power<br />

generation<br />

Residential<br />

Industry<br />

Transport<br />

Other<br />

CO 2 sequestration<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Production (2/7)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

A.A. 2011-2012


<strong>Lesson</strong> <strong>XIII</strong><br />

<strong>Hydrogen</strong> Production (3/7)<br />

<strong>Hydrogen</strong> from coal<br />

Reactions for hydrogen generation from coal:<br />

gasification<br />

Different types of gasifiers: moving bed (450-500°C), fluidized bed (800-<br />

1000°C) <strong>and</strong> entrained bed (1200-1400°C).<br />

Downstream of the gasifier: cleaning units.<br />

A.A. 2011-2012


<strong>Lesson</strong> <strong>XIII</strong><br />

<strong>Hydrogen</strong> Production (4/7)<br />

<strong>Hydrogen</strong> form hydrocarbons (1/2)<br />

Reactions for hydrogen generation through steam reforming from light<br />

hydrocarbons:<br />

Typical catalysts: Ni based composites or Mg oxides.<br />

Typical temperature: 800°C.<br />

A.A. 2011-2012


<strong>Lesson</strong> <strong>XIII</strong><br />

<strong>Hydrogen</strong> Production (5/7)<br />

<strong>Hydrogen</strong> form hydrocarbons (2/2)<br />

Reactions for hydrogen generation through partial oxidation:<br />

Methanol<br />

Petrol<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Production (6/7)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

A.A. 2011-2012


<strong>Hydrogen</strong> Production (7/7)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

<strong>Hydrogen</strong> form Electrolysis<br />

Current technology: Low<br />

temperature electrolyers<br />

(efficiency: 65%)<br />

Technology under<br />

development: High temperature<br />

electrolyers - SOEC (efficiency:<br />

80%-85%)<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (1/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

• Existing technologies<br />

– compressed H 2 (p>700 bar)<br />

– liquid (or gel) H 2<br />

– glass microspheres filled with H 2<br />

– physical adsorption (carbon nanostructures, zeolithes,<br />

nanoporous materials)<br />

– metallic hydrides (simple <strong>and</strong> complex)<br />

– chemical <strong>storage</strong> (hydrides of ammonium, lithium, sodium,<br />

magnesium)<br />

Chemical reaction for H 2 <strong>production</strong>:<br />

» MgH 2 + 2 H 2 O = Mg (OH) 2 + 2H 2<br />

– reformable fuels (methane, methanol, ethanol, oil F76)<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (2/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (3/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (4/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

High pressure bottles:<br />

200-250 bar<br />

•As soon as possible 350 bar bottles will be available.<br />

•R&D activities regards 700 bar bottles.<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (5/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

Liquid <strong>storage</strong> at -253°C<br />

It is possible to store higher hydrogen quantities (at equal<br />

volume) in comparison with gas high pressure <strong>storage</strong><br />

(pressures are low: 2-3 bar). Thermal insulation problems<br />

are completely solved.<br />

An example comes from BMW 750h <strong>storage</strong> tank built in<br />

collaboration with LINDE.<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (6/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (7/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

<strong>Hydrogen</strong> can be chemically alloyed to different metals or metal alloys<br />

generating hydride. These composites are able to trap hydrogen at<br />

relatively low pressure.<br />

<strong>Hydrogen</strong> enters into metal grid <strong>and</strong> goes to hold interstice spaces. A<br />

widespread hydride is LiH.<br />

A typical R&D issue for these systems is weight.<br />

On the other h<strong>and</strong> these systems are the best <strong>storage</strong> systems for safety.<br />

Now several R&D activities are under development for several kind of<br />

hydrides.<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (8/10)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

Size comparison for a tank necessary for 400 km range (4 kg of<br />

hydrogen) with the state-of-the-art <strong>storage</strong> technology:<br />

magnesium hydrides (Mg 2 NiH 4 ), lantanium hydrides (LaNi 5 H 6 ),<br />

cryogenic liquid of H 2 , H 2 at 200 bar (Source: C. Filiou, “An<br />

overview of the hydrogen solid <strong>storage</strong> solution”, European<br />

Commission, Joint Research Centre, Training Workshop<br />

Presentation, 2003).<br />

A.A. 2011-2012


<strong>Lesson</strong> <strong>XIII</strong><br />

<strong>Hydrogen</strong> Storage (9/10)<br />

Chemical <strong>storage</strong> as NaBH 4<br />

Catalitic reactor (packed bed)<br />

Johnson Matthey catalyst<br />

(3% 2 mm Ru on extrused graphite)<br />

NaBH4 + 2 H2O NaBO2 + 4 H2 + calore<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage (10/10)<br />

Storage<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

User<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Distribution (1/3)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

COAL<br />

CARBONE<br />

H 2 O<br />

idrogeno H 2<br />

Heat<br />

acqua<br />

LH 2<br />

LH 2<br />

-252 °C<br />

1.3 bar<br />

LH 2<br />

LH 2<br />

calore<br />

CO 2<br />

Electricity elettricità<br />

60 bar<br />

-252 °C<br />

1.3 bar<br />

-252 °C<br />

CGH 2<br />

fino a 800 bar<br />

COAL<br />

CARBONE<br />

H 2 O<br />

acqua<br />

idrogeno H 2<br />

Heat calore<br />

LH 2<br />

LH 2<br />

-252 °C<br />

1.3 bar<br />

CO 2<br />

elettricità Electricity<br />

60 bar<br />

-252 °C<br />

1.3 bar<br />

LH 2<br />

LH 2<br />

-252 °C<br />

230 bar<br />

CGH 2 200 bar<br />

CGH 2<br />

400<br />

bar<br />

850 bar<br />

CGH 2<br />

CGH 2<br />

30 bar<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Distribution (2/3)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

CARBONE<br />

CO 2<br />

COAL<br />

H 2 O<br />

acqua<br />

idrogeno H 2<br />

calore Heat<br />

Electricity elettricità<br />

60 bar<br />

LH 2<br />

LH 2<br />

-252 °C<br />

1.3 bar<br />

-252 °C<br />

1.3 bar<br />

LH 2<br />

LH 2<br />

-252 °C<br />

Idrogenodotto AP (75 bar)<br />

1.5 bar<br />

Idrogenodotto MP (20<br />

bar)<br />

Idrogenodotto BP<br />

(1.5 bar)<br />

400 bar 850 bar<br />

30 bar<br />

CGH 2<br />

CGH 2<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Distribution (3/3)<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

CRYOCOOLER<br />

LH 2<br />

-252<br />

°C<br />

+ _ CGH 2 a 30 bar<br />

CGH<br />

Water<br />

2<br />

ELECTROLIZER<br />

400<br />

bar<br />

850<br />

bar<br />

CGH<br />

2<br />

COAL<br />

CARB ONE<br />

H 2 O<br />

acqua<br />

idrogeno H 2<br />

calore<br />

Heat<br />

LH 2<br />

LH 2<br />

-252 °C<br />

1.3 bar<br />

LH 2<br />

LH 2<br />

CO 2<br />

Electricity<br />

elettricità<br />

60 bar<br />

-252 °C<br />

1.3 bar<br />

GAS NATURALE<br />

ACQUA<br />

SMR<br />

CGH 2 a 15 bar<br />

CGH 2<br />

400<br />

bar<br />

850 bar<br />

CGH 2<br />

A.A. 2011-2012


<strong>Hydrogen</strong> Storage <strong>and</strong> Distribution<br />

<strong>Lesson</strong> <strong>XIII</strong><br />

A.A. 2011-2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!