02.11.2014 Views

BCC-Splines: Generalization of B-Splines for the Body-Centered ...

BCC-Splines: Generalization of B-Splines for the Body-Centered ...

BCC-Splines: Generalization of B-Splines for the Body-Centered ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

( [<br />

∑ δ x − i + 1<br />

i, j,k∈Z<br />

2 , j,k + 1 ] ) T<br />

+<br />

2<br />

(<br />

∑ δ x −<br />

[i + 1<br />

i, j,k∈Z<br />

2 , j + 1 ] ) T<br />

2 ,k .<br />

The Fourier trans<strong>for</strong>m <strong>of</strong> X <strong>BCC</strong> is derived as follows:<br />

X <strong>BCC</strong> (x) ⇐⇒<br />

∑<br />

i, j,k∈Z<br />

δ<br />

( ω<br />

2π − [i, j,k]T ) + (12)<br />

( ω<br />

∑<br />

) δ<br />

i, j,k∈Z<br />

2π − [i, j,k]T · e J [ 1 2 , 2 1 , 1 2]ω<br />

( ω<br />

= ∑<br />

)( δ<br />

i, j,k∈Z<br />

2π − [i, j,k]T 1 +(−1)<br />

(i+ j+k))<br />

In Equation 12 only those terms are non-zero, where i+<br />

j + k is even. This is possible if all <strong>the</strong>se three integers<br />

are even, or two <strong>of</strong> <strong>the</strong>m are odd and one is even. Thus<br />

we can separate <strong>the</strong> sum into four terms:<br />

X <strong>BCC</strong> (x) ⇐⇒<br />

∑<br />

l,m,n∈Z<br />

δ<br />

( ω<br />

2π − [2l,2m,2n]T ) · 2+<br />

( ω<br />

∑<br />

) δ<br />

l,m,n∈Z<br />

2π − [2l,2m + 1,2n + 1]T · 2+<br />

( ω<br />

∑<br />

) δ<br />

l,m,n∈Z<br />

2π − [2l + 1,2m,2n + 1]T · 2+<br />

( ω<br />

∑<br />

) δ<br />

l,m,n∈Z<br />

2π − [2l + 1,2m + 1,2n]T · 2<br />

Exploiting that δ(Aω)=δ(ω)/det(A), we obtain:<br />

X <strong>BCC</strong> (x) ⇐⇒<br />

∑<br />

l,m,n∈Z<br />

(13)<br />

( ω ) δ<br />

4π − [l,m,n]T · 1<br />

4 + (14)<br />

(<br />

ω<br />

∑ δ<br />

[l,m<br />

l,m,n∈Z<br />

4π − + 1 2 ,n + 1 ] ) T<br />

2<br />

(<br />

ω<br />

∑ δ<br />

[l<br />

l,m,n∈Z<br />

4π − + 1 2 ,m,n + 1 ] ) T<br />

2<br />

( [<br />

ω<br />

∑ δ<br />

l,m,n∈Z<br />

4π − l + 1 2 ,m + 1 ] ) T<br />

2 ,n · 1<br />

4<br />

REFERENCES<br />

[BTU99]<br />

[CH06]<br />

= 1 4 X FCC<br />

( ω<br />

4π<br />

)<br />

.<br />

· 1<br />

4 +<br />

· 1<br />

4 +<br />

T. Blu, P. Thévenaz, and M. Unser. Generalized interpolation:<br />

Higher quality at no additional cost. In Proceedings<br />

<strong>of</strong> IEEE International Conference on Image<br />

Processing, pages 667–671, 1999.<br />

B. Csébfalvi and M. Hadwiger. Prefiltered B-spline reconstruction<br />

<strong>for</strong> hardware-accelerated rendering <strong>of</strong> optimally<br />

sampled volumetric data. In Proceedings <strong>of</strong><br />

Vision, Modeling, and Visualization, pages 325–332,<br />

2006.<br />

[CSB87] J. H. Conway, N. J. A. Sloane, and E. Bannai. Spherepackings,<br />

lattices, and groups. Springer-Verlag New<br />

York, Inc., 1987.<br />

[Csé05] B. Csébfalvi. Prefiltered Gaussian reconstruction <strong>for</strong><br />

high-quality rendering <strong>of</strong> volumetric data sampled on<br />

a body-centered cubic grid. In Proceedings <strong>of</strong> IEEE<br />

Visualization, pages 311–318, 2005.<br />

[EDM04] A. Entezari, R. Dyer, and T. Möller. Linear and cubic<br />

box splines <strong>for</strong> <strong>the</strong> body centered cubic lattice. In Proceedings<br />

<strong>of</strong> IEEE Visualization, pages 11–18, 2004.<br />

[EM06] A. Entezari and T. Möller. Extensions <strong>of</strong> <strong>the</strong> Zwart-<br />

Powell box spline <strong>for</strong> volumetric data reconstruction on<br />

<strong>the</strong> Cartesian lattice. IEEE Transactions on Visualization<br />

and Computer Graphics (Proceedings <strong>of</strong> IEEE Visualization),<br />

12(5):1337–1344, 2006.<br />

[EMBM06] A. Entezari, T. Meng, S. Bergner, and T. Möller. A<br />

granular three dimensional multiresolution trans<strong>for</strong>m.<br />

In Proceedings <strong>of</strong> Joint EUROGRAPHICS-IEEE VGTC<br />

Symposium on Visualization, pages 267–274, 2006.<br />

[EVM08] A. Entezari, D. Van De Ville, and T. Möller. Practical<br />

box splines <strong>for</strong> reconstruction on <strong>the</strong> body centered<br />

cubic lattice. to appear in IEEE Transactions on Visualization<br />

and Computer Graphics, 2008.<br />

[Hal98] T. C. Hales. Cannonballs and honeycombs. AMS,<br />

47(4):440–449, 1998.<br />

[Mat03] O. Mattausch. Practical reconstruction schemes and<br />

hardware-accelerated direct volume rendering on bodycentered<br />

cubic grids. Master’s Thesis, Vienna University<br />

<strong>of</strong> Technology, 2003.<br />

[ML94] S. Marschner and R. Lobb. An evaluation <strong>of</strong> reconstruction<br />

filters <strong>for</strong> volume rendering. In Proceedings<br />

<strong>of</strong> IEEE Visualization, pages 100–107, 1994.<br />

[MMK + 98] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and<br />

R. Yagel. Design <strong>of</strong> accurate and smooth filters <strong>for</strong><br />

function and derivative reconstruction. In Proceedings<br />

<strong>of</strong> IEEE Symposium on Volume Visualization, pages<br />

143–151, 1998.<br />

[OS89] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal<br />

Processing. Prentice Hall Inc., Englewood Cliffs,<br />

2nd edition, 1989.<br />

[QEE + 05] W. Quiao, D. S. Ebert, A. Entezari, M. Korkusinski, and<br />

G. Klimeck. VolQD: Direct volume rendering <strong>of</strong> multimillion<br />

atom quantum dot simulations. In Proceedings<br />

<strong>of</strong> IEEE Visualization, pages 319–326, 2005.<br />

[SF71] G. Strang and G. Fix. A Fourier analysis <strong>of</strong> <strong>the</strong> finite<br />

element variational method. In Constructive Aspects <strong>of</strong><br />

Functional Analysis, pages 796–830, 1971.<br />

[Slo98] N. J. A. Sloane. The sphere packing problem. In Proceedings<br />

<strong>of</strong> International Congress <strong>of</strong> Ma<strong>the</strong>maticians,<br />

pages 387–396, 1998.<br />

[TMG01] T. Theußl, T. Möller, and M. E. Gröller. Optimal regular<br />

volume sampling. In Proceedings <strong>of</strong> IEEE Visualization,<br />

pages 91–98, 2001.<br />

[TMMG02] T. Theußl, O. Mattausch, T. Möller, and M. E. Gröller.<br />

Reconstruction schemes <strong>for</strong> high quality raycasting <strong>of</strong><br />

<strong>the</strong> body-centered cubic grid. TR-186-2-02-11, Institute<br />

<strong>of</strong> Computer Graphics and Algorithms, Vienna University<br />

<strong>of</strong> Technology, 2002.<br />

[VBU04] D. Van De Ville, T. Blu, and M. Unser. Hex-splines: A<br />

novel spline family <strong>for</strong> hexagonal lattices. IEEE Transactions<br />

on Image Processing, 13(6):758–772, 2004.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!