04.11.2014 Views

T09 OTA_sss.pdf - bSpace

T09 OTA_sss.pdf - bSpace

T09 OTA_sss.pdf - bSpace

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EECS 240<br />

Analog Integrated Circuits<br />

Topic 9:<br />

Operational<br />

Transconductance Amplifier<br />

Bernhard E. Boser and Ali M. Niknejad<br />

Department of Electrical Engineering and Computer Sciences<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Logistics<br />

•HW2 Due today<br />

•HW3 posted today (due in two weeks)<br />

•Next week: Tuesday no class (ISSCC)<br />

•Midterm on March 15<br />

•Project assigned around March 15 as well (form groups of 2)<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Operational<br />

Transconductance Amplifiers<br />

• <strong>OTA</strong> versus OpAmp, Applications<br />

• Differential versus Single-Ended Output<br />

• Characteristics<br />

– Frequency response, settling time, stability<br />

– Open-loop gain<br />

– Noise, dynamic range<br />

– PSRR, CMRR<br />

– Common-mode feedback circuit<br />

• Topologies<br />

– Single-stage (telescopic, folded cascode, …)<br />

– Multi-stage, Miller compensation<br />

– Class A, A/B<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


OpAmp versus <strong>OTA</strong><br />

OpAmp<br />

<strong>OTA</strong><br />

• Voltage source output<br />

(low impedance)<br />

• Essential to drive<br />

resistive loads<br />

• Essentially <strong>OTA</strong> + buffer<br />

• Buffer increases power<br />

dissipation, noise<br />

• Current source output<br />

(high impedance)<br />

• Cannot drive resistive<br />

loads<br />

• Use capacitive (SC)<br />

feedback<br />

• Transistors are<br />

transconductors<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Resistive Feedback<br />

OpAmp<br />

• Gain independent of<br />

feedback network<br />

• Feedback network<br />

adds noise<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

<strong>OTA</strong><br />

• Resistive feedback<br />

network lowers loop gain<br />

• Large feedback resistors?<br />

– Large area<br />

– Parasitic poles stability?<br />

• Solution: capacitive<br />

feedback<br />

– Needs initialization<br />

– Needs clock <br />

Linear, time-variant circuit<br />

• kT/C noise<br />

© 2007 B. Boser & A. Niknejad


OpAmp versus <strong>OTA</strong> Noise<br />

Opamp and switch noise add<br />

<strong>OTA</strong> contributes no excess noise<br />

(actual designs can increase noise)<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


• Phase 1:<br />

– sample V i onto C s :<br />

SC Gain Stage<br />

ϕ1<br />

– Q s = V i * C s<br />

– Null charge on C f<br />

• Phase 2:<br />

– Amplifier “moves”<br />

charge from C s to C f :<br />

– Q f = Q s = V i * C s<br />

vi<br />

ϕ2<br />

ϕ1<br />

C f<br />

ϕ1<br />

ϕ2<br />

C i<br />

vx<br />

1mS<br />

C f<br />

C L<br />

vo<br />

– V out = Q f / C f<br />

= V i * C s / C f<br />

• Implement switches with MOSFETs. Drive with “2-phase nonoverlapping<br />

clock”.<br />

• Gain set by capacitor ratio (precise). Output valid only at end<br />

of phase 2 and during phase 1.<br />

• Cannot drive resistive load.<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


SC Gain Stage<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


SC Gain Stage<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


F C L,eff =<br />

FV<br />

i 2 gmR E<br />

on + Ī2 n,R E<br />

|<br />

| 2 Noise<br />

s<br />

2<br />

1+gmRg E m,1 =2πC L,eff N log (2) C L,eff<br />

F<br />

Phase 1:<br />

ī 2 1<br />

on = Ī2 nc |<br />

| 2 +i 2 gmR E<br />

¯V C 2 s<br />

= KT<br />

on +<br />

1+gmR Ī2 n,R E<br />

|<br />

| 2<br />

E 1+gmR E<br />

n F 1 Noise factor of driving amplifier<br />

C s<br />

¯V C 2 f<br />

= KT n F 2<br />

C f<br />

¯V Noise<br />

C 2 s<br />

= KT factor n F 1 of this amplifier<br />

T n F 2<br />

+ KT<br />

C s<br />

1<br />

C f<br />

Phase C L,eff<br />

2: F n F 2<br />

¯V C 2 f<br />

= KT<br />

C f<br />

C f<br />

F =<br />

C<br />

¯V on 2<br />

f +<br />

=( C s<br />

C s C+ )<br />

f<br />

Ci<br />

2 2 ¯V Cs<br />

+ KT + KT 1<br />

C f C L,eff F n F 2<br />

F =<br />

C f<br />

C f + C s + C i<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Common-Source Example<br />

• Openloop gain, A vo , a vo<br />

• Output range, ΔV o<br />

• Bandwidth, f u , f 3dB<br />

• Noise<br />

gmroN=23 (L=150nm)<br />

Rout,P=240K<br />

CL=2pF<br />

V*N~140mV<br />

V*P~280mV<br />

V*cas,P=140mV<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


AC Gain and noise<br />

Av,dc=27.5dB<br />

Virn=8nV/rt(Hz)<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Noise Summary<br />

Cadence: Results-> Print -> Noise Summary....<br />

Input diff pair (why<br />

different?)<br />

PMOS load<br />

(V*P/V*N=0.5)<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Gain, Output Range<br />

Note: plot is for<br />

V out_o = 0V and<br />

V in_o = 0V (unrealistic).<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Differential Output<br />

“Fully differential amplifier”<br />

• Differential versus<br />

common-mode signals<br />

• Balun<br />

• Common-mode feedback<br />

CMFB<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Differential Output<br />

“Fully differential amplifier”<br />

• Differential versus<br />

common-mode signals<br />

• Balun<br />

• Common-mode feedback<br />

CMFB<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


PSRR & CMRR<br />

• Any terminal is an input<br />

• Important “undesired”<br />

inputs:<br />

– Supply<br />

– (Input) common-mode<br />

• Figure-of-merit:<br />

– Desired gain over<br />

undesired gain >> 1<br />

– E.g. PSRR, CMRR<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


PSRR Example<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


PSRR<br />

Fully differential circuit has<br />

excellent PSRR limited<br />

only by matching<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


ī i on = I nc | | +i on + I n,RE | |<br />

on = Īnc | 1+gmRE | +i on + Īn,R 1+gmRE 1+gmRE E<br />

| |<br />

1+gmRE<br />

Fully differential noise<br />

vi<br />

Feedback factor F<br />

¯V<br />

¯V C 2 s<br />

= KT n F 1<br />

C 2 s<br />

= KT n1/F<br />

F 1<br />

C C s s<br />

¯V<br />

¯V C 2 f<br />

= KT<br />

C 2 f<br />

= KT<br />

C<br />

-<br />

Vop<br />

CLeff<br />

+<br />

f<br />

¯V on 2 =( C s<br />

) 2 2 ¯V<br />

C<br />

Cs<br />

+ KT<br />

C f<br />

Von<br />

+ KT 1<br />

¯V 2<br />

f C f C L,eff F n F 2<br />

on =( C s<br />

) 2 2 ¯V<br />

C<br />

Cs<br />

+ KT + KT 1<br />

+ -<br />

f C f C L,eff F n Von<br />

F 2<br />

1/F CLeff<br />

CLeff<br />

C f<br />

C f<br />

F = F =<br />

C C f + C s + C i<br />

f + C s + C i<br />

¯v out 2 =¯v on 2 +¯v op 2 =2 KT n F<br />

¯v out 2 =¯v on 2 +¯v op 2 =2 KT n F<br />

FC Leff<br />

Vop<br />

FC Leff<br />

CLeff<br />

Signal Swing:<br />

V on,0−pk = V dd − V lim,up − V lim,dwn<br />

2<br />

V out,0−pk = V dd − V lim,up − V lim,dwn<br />

(5)<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Fully differential noise<br />

vi<br />

- +<br />

+ -<br />

Vop<br />

Von<br />

CLeff<br />

CLeff<br />

on<br />

C<br />

C s<br />

f C f C L,eff ¯V<br />

F<br />

C 2 C<br />

f<br />

= KT<br />

f<br />

C f<br />

F =<br />

¯V<br />

C f + C s + C i<br />

on 2 =( C s<br />

) 2 2 ¯V<br />

C<br />

Cs<br />

+ KT + KT 1<br />

f<br />

¯v out 2 =¯v on 2 C f<br />

+¯v op 2 C L,eff<br />

=2 KT F n n F 2<br />

F<br />

F =<br />

FC C f Leff<br />

C f + C s + C i<br />

¯v out 2 =¯v on 2 +¯v op 2 =2 KT n F<br />

2X Noise Power!<br />

FC Leff<br />

V on,0−pk = V dd − V lim,up − V lim,dwn<br />

2<br />

V out,0−pk = V dd − V lim,up − V lim,dwn<br />

SNRdiff=SNR,se+3dB<br />

Cost:2x cap, area<br />

4X Signal Power!<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Differential Input<br />

• Differential input:<br />

eliminates systematic offset<br />

• Tail current source:<br />

provides CMRR<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Differential Pair – CMRR<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


Simulation Result<br />

For all cases:<br />

g m = 290 µS<br />

V * = 180 mV<br />

A vo = 5.5<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


CMRR Analysis<br />

No tail current source Tail / No Body Effect Tail / With Body Effect<br />

• Ignoring ΔG m , Δr o<br />

(use superposition)<br />

• E.g.<br />

1/0.01 = 100 = 40dB<br />

• E.g.<br />

2 x 1mS * 1MΩ / 0.01<br />

= 200,000 = 106dB<br />

• E.g.<br />

10/0.01 = 1000 = 60dB<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad


CMRR Summary<br />

No tail current source With tail current source Well tied to source<br />

• CMRR limited by<br />

matching<br />

• Bias current is a<br />

strong function of<br />

input common-mode<br />

• Impractical in most<br />

situations<br />

• CMRR improved by …<br />

• High frequency CMRR<br />

limited by<br />

capacitance at<br />

common-source node<br />

(C SB )<br />

• Eliminates g mb<br />

matching constraint<br />

• CMRR limited by I D<br />

modulation; cascode<br />

helps<br />

• C well sets high<br />

frequency CMRR<br />

• C well < C SB in some<br />

deep sub-micron<br />

processes (with high<br />

S/D doping)<br />

EECS 240 Topic 9: <strong>OTA</strong><br />

© 2007 B. Boser & A. Niknejad

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!