14.01.2015 Views

T04 mos small signal model_simone.pdf - bSpace

T04 mos small signal model_simone.pdf - bSpace

T04 mos small signal model_simone.pdf - bSpace

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EECS 240<br />

Analog Integrated Circuits<br />

Topic 4:<br />

MOS Models for Analog Design<br />

Bernhard E. Boser and Ali M. Niknejad<br />

Department of Electrical Engineering and Computer Sciences<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


MOSFET Models for Design<br />

• SPICE (BSIM)<br />

– For verification<br />

– Device variations<br />

– Process design ()<br />

• Hand analysis<br />

– Square law <strong>model</strong> (good for intuition only)<br />

– Small-<strong>signal</strong> <strong>model</strong><br />

• Challenge<br />

– Complexity / accuracy tradeoff<br />

– How can we accurately design when large <strong>signal</strong> <strong>model</strong>s<br />

suitable for hand analysis are off by 50% and more<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


More Square Law Model<br />

• In saturation:<br />

• Familiar but inadequate for short channel devices<br />

do not use!<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


µC ox<br />

• Square law:<br />

• Extracted values<br />

strong function of I D<br />

–Low I D <br />

weak inversion<br />

–Large I D <br />

mobility reduction<br />

• Do not use µC ox for<br />

design!<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Threshold Voltage V TH<br />

• Strong function of L<br />

• Use long channel for V TH<br />

matching<br />

• Process variations<br />

– Run-to-run ~100mV<br />

– How characterize<br />

– Slow/nominal/fast<br />

– Both worst-case & optimistic<br />

Good design insensitive to Vth, only depends on mismatch in<br />

Vth (can be


Device Parameters for Design<br />

• Focus on metrics that we can directly use in design<br />

• Region: moderate inversion / saturation<br />

– Most common region of operation in analog circuits<br />

– XTR behaves like transconductor: voltage controlled current<br />

source<br />

• Key design parameters<br />

– Large <strong>signal</strong><br />

• Current I D power dissipation<br />

• Minimum V DS available <strong>signal</strong> swing<br />

– Small <strong>signal</strong><br />

• Transconductance g m speed / voltage gain<br />

• Capacitances C GS , C GD , … speed<br />

• Output impedance r o voltage gain<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Low Frequency Model<br />

• A Taylor series expansion of <strong>small</strong> <strong>signal</strong> current<br />

gives (neglect higher order derivatives)<br />

• How do we determine the values of the derivatives<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Weak Inversion g m<br />

• In weak inversion we have bipolar behavior<br />

• Good <strong>model</strong> if transistor is actually used in<br />

weak inversion<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Transconductance<br />

weak<br />

inversion<br />

strong inversion<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Transconductance (cont)<br />

• The transconductance increases linearly with V gs –<br />

V T but only as the square root of I ds . Compare this to<br />

a BJT that has transconductance proportional to<br />

current.<br />

• In fact, we have very similar forms for g m<br />

• Since V dsat >> V t , the BJT has larger<br />

transconductance for equal current.<br />

• Why canʼt we make V dsat ~ V t <br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Transconductor Efficiency<br />

• A good metric for a transistor is the transconductance<br />

normalized to the DC current. Since the power dissipation is<br />

determined by and large by the DC current, weʼd like to get the<br />

<strong>mos</strong>t “bang” for the “buck”.<br />

• From this perspective, the weak and moderate inversion region<br />

is the optimal place to operate.<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Efficiency g m /I D<br />

• High efficiency is<br />

good for low power<br />

• Higher g m /I D at low<br />

V GS<br />

• Approaches BJT for<br />

V GS < V TH<br />

g m /I C = 1/V t ~ 40 V -1<br />

• NMOS / PMOS<br />

about same<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Efficiency as a Design Parameter<br />

• If g m /I D is such a good metric, why not use it<br />

for design<br />

• We can always determine its precise value<br />

(from I D and g m ), independent of short<br />

channel effects and other complications.<br />

• The units (V -1 ) and physical interpretation are<br />

a little unusual, but we can easily fix this <br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Efficiency g m /I D<br />

• Letʼs define<br />

e.g. V* = 200mV g m /I D = 10 V -1<br />

• Square-law devices: V* = V GS -V TH = V dsat<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Output Resistance r o<br />

Hopeless to <strong>model</strong> this with a simple equation<br />

(e.g. g ds = λ I D )<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Open-loop Gain a v0<br />

• More useful than r o<br />

• Represents maximum attainable<br />

gain from a transistor<br />

• Simulation Notes:<br />

• Bias current i dc sets V*<br />

• Use feedback to find the correct<br />

V GS while sweeping V ds<br />

• Use relatively <strong>small</strong> gain (100)<br />

for fast DC convergence<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Gain, a v0 = g m r o<br />

L = 0.18µm<br />

• Strong tradeoff:<br />

a v0 versus V DS range<br />

• Create such plots for<br />

several device<br />

lengthʼ for design<br />

reference<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Long Channel Gain<br />

L = 0.35µm<br />

L a v0 <br />

like long channel device<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Technology Trend<br />

Short channel devices suffer from reduced per transistor gain<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Transistor Gain Detail<br />

45.000<br />

33.775<br />

gm×ro<br />

22.550<br />

11.325<br />

0.100<br />

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42 0.46 0.5<br />

VDS [V]<br />

For practical V DS the effect the “short-channel” gain penalty is less severe<br />

(remember: worst case V DS is what matters!)<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Saturation Voltage vs V*<br />

• Saturation voltage V sat<br />

– V DS for which channel pinches off at drain<br />

– Cannot be measured<br />

– Complex equations<br />

• V* = 2I D /g m<br />

– Measure (or simulate) easily<br />

– Complex equations<br />

• “Long channel” (square law) devices:<br />

– V GS – V TH = V dsat = V ov = V*<br />

– Significance:<br />

• Channel pinch-off<br />

• I D ~ V* 2<br />

• r o “large” for V DS > V*<br />

• C GS , C GD change<br />

• V* = 2 I D / g m<br />

• “Short channel” devices:<br />

– All interpretations of V* are approximations<br />

– Except V* = 2 I D / g m (but V* ≠ V dsat )<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


NMOS/PMOS Small-Signal<br />

AC Model<br />

gmb vbs<br />

Bulk usually connected to substrate for NMOS<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


SPICE Charge Model<br />

• Charge conservation<br />

• MOSFET:<br />

– 4 terminals: S, G, D, B<br />

– 4 charges: Q S + Q G + Q D + Q B = 0 (3 free variables)<br />

– 3 independent voltages: V GS , V DS , V SB<br />

– 9 derivatives: C ij = dQ i / dV j , e.g. C G,GS ~ C GS<br />

– C ij != C ji<br />

Ref: HSPICE manual, “Introduction to Transcapacitance”, pp. 15:42, Metasoft, 1996.<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Small Signal Capacitances<br />

Weak inversion<br />

Strong inversion<br />

linear<br />

Strong inversion<br />

saturation<br />

C GS C ol C GC /2 + C ol 2/3 C GC + C ol<br />

C GD C ol C GC /2 + C ol C ol<br />

C GB C GC // C CB 0 0<br />

C SB C jSB C jsB + C CB /2 C jsB + 2/3 C CB<br />

C DB C jDB C jDB + C CB /2 C jDB<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


MOS Capacitance Example<br />

W/L=100/0.5<br />

Cox=ε0εox/tox=15fF/µm 2<br />

Col=0.5fF/µm->Covlap=50fF<br />

Cgs,si=2/3CoxWL+Col=550fF<br />

Cgd,si=Covlap=50fF<br />

Cgs,triode=1/2CoxWL+Co=425fF<br />

Cgd,triode=1/2CoxWL+Co=425fF<br />

Cgs,wi=Covlap=50fF<br />

Cgd,wi=Covlap=50fF<br />

Inaccurate, residual Cgs left<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Layout<br />

HSPICE geo = 0 (default)<br />

HSPICE geo = 3<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Extrinsic MOS Capacitances<br />

• Source/drain diffusion junction capacitance:<br />

• Example: W/L = 100/0.5, V SB = V DB = 0V, L diff = 1µm<br />

AS = AD = 100µm 2 , PS = PD = 102µm<br />

C jn = 85fF C jswn = 50fF C bc = 58fF<br />

Strong Inversion –<br />

Saturation: C sb = 173fF C db = 135fF<br />

Linear region: C sb = 164fF C db = 164fF<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


High Frequency Figures of Merit<br />

• Unity current-gain bandwidth<br />

(Long channel <strong>model</strong>, C gd =0)<br />

• For degenerate short channel device<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Efficiency g m /I D versus f T<br />

Speed-Efficiency<br />

Tradeoff<br />

NMOS > PMOS<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Weak Inversion Frequency Response<br />

• The gate channel capacitance capacitance in<br />

weak inversion ~0:Cgs ~ Cgsol<br />

• fT~25Id/Cgsol<br />

• Expression for channel capacitance and fT<br />

• I M is the maximum achievable current in weak<br />

inversion so the factor ( ) < 1<br />

Ref: Tsividis, Operation and Modeling of the MOS Transistor<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Device Scaling<br />

Short channel devices are significantly faster!<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Device Figure-of-Merit<br />

400.00<br />

300.05<br />

fT×gm/ID [GHz/V]<br />

200.10<br />

100.15<br />

0.20<br />

-0.1 -0.06-0.02 0.02 0.06 0.10.13 0.170.20.23 0.270.30.33 0.430000000000001<br />

VGS-VTH [V]<br />

Peak performance for low V GS -V TH (implies low V*)<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Design Example<br />

Example: Common-source amp<br />

a v0 > 70, f u = 100MHz for C L = 5pF<br />

• a v0<br />


>
70



L
=0.5µm<br />



<br />

• High
gmeff:
V*
=
100mV<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Device Sizing<br />

• Pick L<br />

• Pick V* <br />

• Determine g m<br />

0.5µm<br />

100mV<br />

3.14mS<br />

• I D = 0.5 g m V* 157µA<br />

• W from graph<br />

(generate with SPICE)<br />

Current Density=0.8uA/square<br />

– Corresponds to W/<br />

L=157/0.8=196.25<br />

– W=W/L*L=98um<br />

– Cgs=600fF,Cgd=50fF<br />

• Create such graphs for<br />

several device lengths for<br />

design reference<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Common Source Verification<br />

• Amplifier gain > 70<br />

• Amplifier unity gain frequency is “dead on”<br />

• Output range limited to 0.12 V – 1.2 V to maintain gain<br />

(about 1V swing, due to NMOS not limiting gain on high side)<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Common Source Verification<br />

Vmin=0.12V<br />

• Amplifier gain > 70<br />

• Amplifier unity gain frequency is “dead on”<br />

• Output range limited to 0.12 V – 1.2 V to maintain gain<br />

(about 1V swing, due to NMOS not limiting gain on high side)<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Small Signal Design Summary<br />

• Determine g m (from design objectives)<br />

• Pick L<br />

– Short channel high f T<br />

– Long channel high r o , a v0 , better matching<br />

• Pick V* = 2I D /g m based on qualitative interpretation of V*<br />

– Small V* large <strong>signal</strong> swing, high current efficiency<br />

– High V* high f T<br />

– Also affects noise (see later)<br />

• Determine I D (from g m and V*)<br />

• Determine W (SPICE / plot) this takes care of short channel effects, etc.<br />

• Accurate for short channel devices key for design<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Device Sizing Chart<br />

Generate these curves for a variety of Lʼs and device flavors<br />

(HW1)(NMOS, PMOS, thin oxide, thick oxide, different V TH )<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Device Parameter Summary<br />

Device Parameter<br />

Circuit Implications<br />

V* • Current efficiency, g m /I D<br />

• Power dissipation (I D )<br />

• Speed (g m )<br />

• Cutoff frequency, f T phase margin, noise<br />

• Headroom, V DS,min<br />

L<br />

W<br />

• Cutoff frequency, f T phase margin, noise<br />

• Intrinsic transistor gain (a v0 )<br />

• Obtain from L, I D (complicated equations!)<br />

• Self loading (C GS , C DB , …)<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


Device Variations<br />

• Run-to-run parameter variations:<br />

– E.g. implant doses, layer thickness, dimensions<br />

– Affect V TH , µ, C ox , R, …<br />

– How <strong>model</strong> in SPICE<br />

• Nominal / slow / fast parameters (tt, ss, ff)<br />

– E.g. fast: low V TH , high µ, high C ox , low R<br />

– Combine with supply & temperature extremes<br />

– Pessimistic but numerically tractable<br />

improves chances for working Silicon<br />

EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad


EECS 240 Topic 4: MOS Models for Design<br />

© 2007 B. Boser & A. Niknejad

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!