06.11.2014 Views

Central Force Problem

Central Force Problem

Central Force Problem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mechanics<br />

Physics 151<br />

Lecture 5<br />

<strong>Central</strong> <strong>Force</strong> <strong>Problem</strong><br />

(Chapter 3)


What We Did Last Time<br />

• Introduced Hamilton’s Principle<br />

• Action integral is stationary for the actual path<br />

• Derived Lagrange’s Equations<br />

• Used calculus of variation<br />

• Discussed conservation laws<br />

• Generalized (conjugate) momentum<br />

• Symmetry – Invariance – Momentum conservation<br />

• We are almost done with the basic concepts<br />

• One more thing to cover …


Goals for Today<br />

• Energy conservation<br />

• Define energy function<br />

• Subtle difference from the Newtonian version<br />

• <strong>Central</strong> force problem First application<br />

• Motion of a particle under a central force<br />

• Simplify the problem using angular momentum conservation<br />

• Discuss qualitative behavior of the solution<br />

• Use energy conservation<br />

• Distinguish bounded/unbounded orbits<br />

• Actual solution Thursday


Energy Conservation<br />

• Consider time derivative of Lagrangian<br />

dL( q, q<br />

, t) ∂L dq<br />

j ∂L dq<br />

j ∂L<br />

= ∑ + ∑ +<br />

dt ∂q dt ∂q<br />

dt ∂t<br />

• Using Lagrange’s equation<br />

one can derive<br />

d ⎛ ∂L ⎞ ∂L<br />

qj<br />

− L + =<br />

dt ⎜∑ <br />

j ∂q ⎟<br />

⎝<br />

<br />

j ⎠ ∂t<br />

j<br />

j<br />

• Conserved if Lagrangian does not depend explicitly on t<br />

j<br />

0<br />

j<br />

∂L d ⎛ ∂L<br />

⎞<br />

= ∂qj<br />

dt⎜<br />

q ⎟<br />

⎝∂<br />

j ⎠<br />

Define this as energy function hqqt ( , ,<br />

)


“Energy” Function?<br />

• Does energy function represent the total energy?<br />

• Let’s try an easy example first<br />

• Single particle moving along x axis<br />

2<br />

2<br />

mx<br />

L= −V( x)<br />

h= mx<br />

−L<br />

2<br />

2<br />

mx<br />

= + V( x)<br />

= T + V<br />

2<br />

• How general is this?<br />

∂L<br />

hqqt ( , , ) ≡ ∑ qj<br />

− L<br />

∂q<br />

j<br />

Total<br />

energy<br />

j


Energy Function<br />

• Suppose L can be written as<br />

L( q, q, t) = L ( q, t) + L ( q, q, t) + L ( q, q, t)<br />

• True in most cases<br />

of interest<br />

• Derivatives satisfy<br />

∂L<br />

∂q<br />

0<br />

0<br />

j<br />

=<br />

∑ q <br />

j<br />

0 1 2<br />

j<br />

∂L<br />

∂q<br />

1<br />

j<br />

=<br />

L<br />

1<br />

1 st order in q<br />

∑ q <br />

j<br />

j<br />

∂L<br />

∂q<br />

2<br />

j<br />

2 nd order in q<br />

= 2L<br />

∂L<br />

hqqt ( , , ) ≡ ∑ qj<br />

− L= L −L<br />

j ∂q<br />

j<br />

2 0<br />

∂L<br />

hqqt ( , , ) ≡ ∑ qj<br />

− L<br />

∂q<br />

2<br />

j<br />

Euler’s<br />

theorem<br />

j


Energy Function<br />

hqqt ( , , ) = L − L L= T −V<br />

2 0<br />

• Energy function equals to the total energy T + V if<br />

T L 2<br />

and<br />

= V = −L0<br />

• 1 st condition is satisfied if transformation from r i to q j is<br />

time-independent<br />

• 2 nd condition holds if the potential is velocity-independent<br />

• No frictions Friction would dissipate energy<br />

• Let’s look into the 1 st condition


Kinetic Energy<br />

mi<br />

T = ∑<br />

2<br />

i<br />

2<br />

i<br />

• Using the chain rule<br />

r<br />

• This wouldn’t work if r = r( q ,..., q , t)<br />

because<br />

dr<br />

i<br />

dt<br />

r<br />

= r(<br />

q ,..., q )<br />

i i 1 n<br />

dr<br />

∂<br />

= ∑ ∂ q<br />

j<br />

dt<br />

i<br />

∂<br />

= ∑ ∂ q<br />

i i 1 n<br />

ri<br />

q <br />

j<br />

j<br />

ri<br />

q <br />

j<br />

j<br />

∂ri<br />

+ ∂ t<br />

Time-independent<br />

m m m<br />

r = ∂r ⋅ ∂r qq = qq <br />

∂r ⋅<br />

∂r<br />

∑ ∑ ∑ ∑ ∑<br />

j<br />

i 2<br />

i i i i i i<br />

i j k j k<br />

i 2 i 2 jk , ∂qj ∂qk jk , i 2 ∂qj ∂qk<br />

2 nd order homogeneous No q


Energy Conservation<br />

∂L<br />

hqqt ( , , ) ≡ ∑ qj<br />

− L<br />

j ∂q<br />

j<br />

• Energy function equals to the total energy if<br />

• Constraints are time-independent<br />

Kinetic energy T is 2 nd order homogeneous function of<br />

the velocities<br />

• Potential V is velocity-independent<br />

• Energy function is conserved if<br />

• Lagrangian does not depend explicitly on time<br />

• These are restatement of the energy conservation<br />

theorem in a more general framework<br />

• Conditions are clearly defined


<strong>Central</strong> <strong>Force</strong> <strong>Problem</strong><br />

• Consider a particle under a central force<br />

• <strong>Force</strong> F parallel to r<br />

• Assume F is conservative<br />

• V is function of |r| if F is central<br />

• Such systems are quite common<br />

• Planet around the Sun<br />

• Satellite around the Earth<br />

• Electron around a nucleus<br />

F = −∇V()<br />

r<br />

• These examples assume the body at the center is heavy<br />

and does not move<br />

O<br />

F<br />

r<br />

m


Two-Body <strong>Problem</strong><br />

• Consider two particles without external force<br />

• r 1 and r 2 relative to center of mass<br />

• Lagrangian is<br />

L<br />

Motion of CoM<br />

( m + m ) R<br />

m<br />

∑ r <br />

2 2 2<br />

1 2<br />

i i<br />

= + −<br />

2 i=<br />

1 2<br />

Motion of particles<br />

around CoM<br />

V()<br />

r<br />

m 1<br />

O<br />

R<br />

r 1<br />

CoM<br />

r 2<br />

m 2<br />

Potential is function of<br />

|r| = |r 2 – r 1 |<br />

Strong law of action and reaction<br />

m<br />

m<br />

( )<br />

2<br />

1<br />

r1<br />

=− r r2<br />

=<br />

( m1+<br />

m2)<br />

m1+<br />

m2<br />

r<br />

<br />

2 2<br />

mi i<br />

1 mm<br />

∑ r<br />

1 2<br />

=<br />

i=<br />

1 m1+<br />

m2<br />

2 2 ( )<br />

r<br />

2


Two-Body <strong>Central</strong> <strong>Force</strong><br />

L<br />

( m + m ) R<br />

1 mm<br />

r<br />

2 2 ( m + m )<br />

2<br />

1 2 1 2 2<br />

= + −<br />

• R is cyclic<br />

1 2<br />

V()<br />

r<br />

• CoM moves at a constant velocity<br />

• Move O to CoM and forget about it<br />

m 1<br />

O<br />

R<br />

r<br />

CoM<br />

m 2<br />

L<br />

1 mm<br />

r<br />

2( m + m )<br />

= 1 2 2<br />

−<br />

1 2<br />

V()<br />

r<br />

Relative motion of two particles is identical to the motion of<br />

one particle in a central-force potential<br />

mm<br />

1 2<br />

• Reduced mass µ = or<br />

( m m )<br />

1 1 1<br />

µ = m<br />

+ m<br />

1+ 2<br />

1 2


Hydrogen and Positronium<br />

• Positronium is a bound state of a positron<br />

and an electron<br />

• Similar to hydrogen except m(p) >> m(e + )<br />

• Potential V(r) is identical<br />

• Turn them into central force problem<br />

µ = mm<br />

e e<br />

me<br />

positronium<br />

( me<br />

+ me) = 2<br />

µ = mm<br />

p e<br />

hydrogen<br />

me<br />

( m + m )<br />

≈<br />

p<br />

• Spectrum of positronium identical to<br />

hydrogen with m e m e /2<br />

e<br />

e −<br />

e +<br />

e −<br />

p<br />

q<br />

V()<br />

r = −<br />

r<br />

2


Spherical Symmetry<br />

• <strong>Central</strong>-force system is spherically symmetric<br />

• It can be rotated around any axis through the origin<br />

2<br />

• Lagrangian L= T( r ) −V( r)<br />

doesn’t depend on the<br />

direction<br />

L= r× p=const<br />

• Direction of L is fixed<br />

• r ⊥ L by definition r is always in a plane<br />

• Angular momentum is conserved<br />

• Choose polar coordinates<br />

• Polar axis = direction of L<br />

r = r(, r θ , ψ) = r(, r θ)<br />

Azimuth Zenith = 1/2π<br />

L<br />

O<br />

r


More Formally<br />

• Lagrangian in polar coordinates<br />

• θ is cyclic, but ψ is not<br />

• We can choose the polar axis so that the initial condition is<br />

• Now ψ is constant. We can forget about it<br />

r<br />

=<br />

r<br />

(, r θ , ψ )<br />

m<br />

L= T − V = r<br />

+ r + r −V r<br />

2<br />

d ⎛ ∂L ⎞ ∂L<br />

dt ⎝∂ψ<br />

⎠ ∂ψ<br />

2 2 2 2 2 2<br />

( sin ψθ ψ ) ( )<br />

( sin cos ) 0<br />

2 2<br />

⎜ ⎟ − = mr ψ − ψ ψθ =<br />

ψ = π , ψ<br />

= 0<br />

2<br />

2 nd term vanishes<br />

ψ = 0


Angular Momentum<br />

m<br />

L= T − V = r<br />

+ r −V r<br />

2<br />

• θ is cyclic. Conjugate momentum p θ conserves<br />

• Alternatively<br />

2 2 2<br />

( θ ) ( )<br />

∂L<br />

= = = ≡<br />

∂ θ<br />

2<br />

pθ<br />

mr θ const l<br />

Areal velocity<br />

• Kepler’s 2 nd law<br />

dA<br />

dt<br />

1<br />

r<br />

2<br />

2<br />

= θ =<br />

• True for any central force<br />

<br />

const<br />

Magnitude of<br />

angular momentum<br />

dr<br />

dA


Radial Motion<br />

m<br />

L = T − V = r<br />

+ r −V r<br />

2<br />

2 2 2<br />

( θ ) ( )<br />

• Lagrange’s equation for r <br />

• Derivative of V is the force<br />

2<br />

mr = mr θ + f () r<br />

Centrifugal force<br />

• Using the angular momentum l<br />

2<br />

l<br />

mr = + f () r<br />

3<br />

mr<br />

d<br />

dt<br />

2 ∂V()<br />

r<br />

( mr<br />

) − mr θ + = 0<br />

∂r<br />

<strong>Central</strong> force<br />

∂V()<br />

r<br />

f()<br />

r =− ∂ r<br />

l<br />

= <br />

We know how to integrate this.<br />

But we also know what we’ll<br />

get by integrating this<br />

2<br />

mr θ


Energy Conservation<br />

1<br />

E = T + V = m r + r + V r = m r + l + V r =<br />

2 2 2 mr<br />

2<br />

2 2 2 2<br />

( θ ) ( ) <br />

( ) const<br />

2<br />

2<br />

2 ⎛<br />

l<br />

r<br />

= ⎜E−V()<br />

r −<br />

m⎝<br />

2mr<br />

• One can solve this (in principle) by<br />

t r dr<br />

t = ∫ dt = ∫<br />

= t()<br />

r<br />

0 r0<br />

2<br />

2 ⎛<br />

l ⎞<br />

⎜E−V()<br />

r −<br />

2 ⎟<br />

m⎝<br />

2mr<br />

⎠<br />

• Then invert t(r) r(t)<br />

• Then calculate θ(t) by integrating<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

1 st order differential<br />

equation of r<br />

θ =<br />

l<br />

mr<br />

2<br />

NB: This never<br />

goes negative<br />

Done! (?)


Degrees of Freedom<br />

• A particle has 3 degrees of freedom<br />

• Eqn of motion is 2 nd order differential 6 constants<br />

• Each conservation law reduces one differentiation<br />

• By saying “time-derivative equals zero”<br />

• We used L and E 4 conserved quantities<br />

• Left with 2 constants of integration = r 0 and θ 0<br />

• We don’t have to use conservation laws<br />

• It’s just easier than solving all of Lagrange’s equations


Qualitative Behavior<br />

• Integrating the radial motion<br />

isn’t always easy<br />

• More often impossible…<br />

• You can still tell general behavior by looking at<br />

E<br />

V′ () r ≡ V()<br />

r +<br />

2<br />

l<br />

2mr<br />

2<br />

• Energy E is conserved, and E – V’ must be positive<br />

2<br />

mr<br />

= + V′<br />

() r<br />

2<br />

mr<br />

2<br />

• Plot V’(r) and see how it intersects with E<br />

2<br />

2<br />

2 ⎛<br />

l<br />

r<br />

= ⎜E−V()<br />

r −<br />

m⎝<br />

2mr<br />

Quasi potential including<br />

the centrifugal force<br />

= E− V′<br />

() r > 0<br />

E<br />

2<br />

> V′<br />

() r<br />

⎞<br />

⎟<br />


Inverse-Square <strong>Force</strong><br />

• Consider an attractive 1/r 2 force<br />

k<br />

k<br />

f()<br />

r =− V()<br />

r = −<br />

2<br />

r<br />

r<br />

• Gravity or electrostatic force<br />

2<br />

k l<br />

V′ () r =− +<br />

2<br />

r 2mr<br />

• 1/r 2 force dominates at large r<br />

• Centrifugal force dominates at<br />

small r<br />

• A dip forms in the middle<br />

V′<br />

() r<br />

2<br />

l<br />

2mr<br />

−<br />

2<br />

k<br />

r<br />

r


Unbounded Motion<br />

• Take V’ similar to 1/r 2 case<br />

• Only general features are relevant<br />

• E = E 1 r > r min<br />

E<br />

= V′<br />

( r )<br />

1 min<br />

• Particle can go infinitely far<br />

E 1<br />

V′<br />

() r<br />

1<br />

2 mr<br />

2<br />

Arrive from r = ∞<br />

E 2<br />

r<br />

Turning point<br />

E = V ′ r = 0<br />

Go toward r = ∞<br />

E 3<br />

A 1/r 2 force would<br />

make a hyperbola


Bounded Motion<br />

• E = E 2 r min < r < r max<br />

• Particle is confined between two<br />

circles<br />

E 1<br />

V′<br />

() r<br />

Goes back and<br />

forth between<br />

two radii<br />

E 2<br />

1<br />

2 mr<br />

2<br />

r<br />

E 3<br />

Orbit may or may not be<br />

closed. (This one isn’t)<br />

A 1/r 2 force would<br />

make an ellipse


Circular Motion<br />

• E = E 3 r = r 0 (fixed)<br />

• Only one radius is allowed<br />

Stays on a circle<br />

• Classification into unbounded, bounded and circular motion<br />

depends on the general shape of V’<br />

• Not on the details (1/r 2 or otherwise)<br />

E<br />

= V′<br />

( r )<br />

r = 0<br />

0<br />

r = const = r<br />

0<br />

E 1<br />

E 2<br />

E 3<br />

V′<br />

() r<br />

r 0<br />

r


Another Example<br />

V<br />

a<br />

r<br />

=− f = −<br />

3<br />

4<br />

• Attractive r -4 force<br />

• V’ has a bump<br />

3a<br />

r<br />

• Particle with energy E may be<br />

either bounded or unbounded,<br />

depending on the initial r<br />

a<br />

V ′ =− +<br />

r<br />

2<br />

l<br />

2mr<br />

3 2<br />

E<br />

V ′<br />

2<br />

l<br />

2mr<br />

V<br />

2<br />

r


Stable Circular Orbit<br />

• Circular orbit occurs at the bottom of a dip of V’<br />

mr<br />

2<br />

2<br />

= E− V′ =<br />

• Top of a bump works in theory,<br />

but it is unstable<br />

• Initial condition must be exactly<br />

r<br />

= 0 and r = r<br />

0<br />

r = const<br />

Stable circular orbit requires<br />

dV ′<br />

mr = − =<br />

dr<br />

0<br />

0<br />

2<br />

dV<br />

0<br />

2<br />

dr<br />

′ ><br />

E<br />

E<br />

r 0<br />

r<br />

stable<br />

unstable<br />

r


Power Law <strong>Force</strong><br />

V′ () r ≡ V()<br />

r +<br />

2<br />

l<br />

2mr<br />

2<br />

dV ′<br />

dr<br />

r=<br />

r<br />

0<br />

2<br />

l<br />

=−f( r ) − = 0<br />

0 3<br />

mr0<br />

2 2<br />

dV′<br />

df 3l<br />

= − + ><br />

dr dr mr<br />

2 4<br />

r=<br />

r<br />

r=<br />

r0<br />

0<br />

0<br />

0<br />

df<br />

dr<br />

r=<br />

r<br />

0<br />

0 for attractive force<br />

• Condition for stable circular orbit is<br />

n−1 n−1<br />

− knr < 3kr<br />

n >−3<br />

0 0<br />

f<br />

=−kr<br />

Power-law forces with n > –3 can make stable circular orbit<br />

n


Summary<br />

• Started discussing <strong>Central</strong> <strong>Force</strong> <strong>Problem</strong>s<br />

• Reduced 2-body problem into central force problem<br />

2<br />

l<br />

mr = + f () r<br />

3<br />

mr<br />

• <strong>Problem</strong> is reduced to one equation<br />

• Used angular momentum conservation<br />

2<br />

l<br />

V′ () r ≡ V()<br />

r +<br />

2mr<br />

• Unbounded, bounded, and circular orbits<br />

• Condition for stable circular orbits<br />

• Qualitative behavior depends on<br />

• Next step: Can we actually solve for the orbit?<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!