07.11.2014 Views

Stokes Equation - Solution in Spherical Polar Coordinates

Stokes Equation - Solution in Spherical Polar Coordinates

Stokes Equation - Solution in Spherical Polar Coordinates

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

d ⎡ 2 dΦ<br />

⎤<br />

( 1 η ) n( n 1)<br />

0<br />

dη<br />

⎢ − + + Φ=<br />

dη<br />

⎥<br />

(5)<br />

⎣ ⎦<br />

Many important properties of the Legendre Polynomials can be found <strong>in</strong><br />

MacRobert (1967) and <strong>in</strong> Abramowitz and Stegun (1965).<br />

Some useful relationships <strong>in</strong>volv<strong>in</strong>g the Gegenbauer Polynomials are given<br />

below.<br />

( η) − P ( η)<br />

P<br />

2n<br />

−1<br />

η<br />

−1/2<br />

C<br />

n ( η ) = − ∫ P<br />

1 ( )<br />

1<br />

n−<br />

s ds<br />

(7)<br />

−<br />

−1/2<br />

n−2<br />

n<br />

C<br />

n ( η ) =<br />

(6)<br />

The first few Gegenbauer and Legendre Polynomials are<br />

C<br />

C<br />

C<br />

P<br />

P<br />

P<br />

−<br />

( ) 1 C ( )<br />

η = η = η<br />

−1/2 1/2<br />

0 1<br />

1 1<br />

2 2<br />

1 1<br />

8 5 1<br />

−<br />

( η) = ( 1− η ) C ( η) = η ( 1−η<br />

)<br />

−1/2 2 1/2 2<br />

2 3<br />

( η) = ( −η )( η − )<br />

−1/2 2 2<br />

4<br />

( ) 1<br />

P ( )<br />

0 1<br />

2 2<br />

( η) = ( 3η − 1) P ( η) = η( 5η<br />

−3)<br />

2 3<br />

4<br />

η = η = η<br />

1 1<br />

2 2<br />

1 35<br />

8 30 3<br />

4 2<br />

( η) = ( η − η + )<br />

The Gegenbauer Polynomials satisfy the orthogonality property<br />

for values of mn≥ , 2.<br />

−1/2 −1/2<br />

+ 1<br />

m ( η) n ( η)<br />

2<br />

∫ C C dη<br />

=<br />

δ<br />

1<br />

2<br />

mn<br />

(8)<br />

−<br />

1−η<br />

n( n−1)( 2n−1)<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!