07.11.2014 Views

Stokes Equation - Solution in Spherical Polar Coordinates

Stokes Equation - Solution in Spherical Polar Coordinates

Stokes Equation - Solution in Spherical Polar Coordinates

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Notes on the <strong>Solution</strong> of <strong>Stokes</strong>’s <strong>Equation</strong> for Axisymmetric<br />

Flow <strong>in</strong> <strong>Spherical</strong> <strong>Polar</strong> Coord<strong>in</strong>ates<br />

R. Shankar Subramanian<br />

Department of Chemical and Biomolecular Eng<strong>in</strong>eer<strong>in</strong>g<br />

Clarkson University<br />

The details of the solution of <strong>Stokes</strong>’s <strong>Equation</strong> for the streamfunction<br />

4<br />

E ψ = 0 <strong>in</strong> spherical polar coord<strong>in</strong>ates ( r, θφ , ) by the method of separation<br />

of variables are given <strong>in</strong> the book “Low Reynolds Number Hydrodynamics”<br />

by J. Happel and H. Brenner. The solution is obta<strong>in</strong>ed as the sum<br />

1<br />

, 2<br />

( 1)<br />

ψ r θ + ψ r,<br />

θ where ψ satisfies<br />

( ) ( )<br />

( 2)<br />

( ) ( )<br />

and ψ is the particular solution of<br />

( 1)<br />

2<br />

E ψ = 0<br />

(1)<br />

2<br />

E ψ<br />

( 2) ( 1)<br />

= ψ<br />

(2)<br />

The solution, <strong>in</strong> the form of <strong>in</strong>f<strong>in</strong>ite series, is specialized to typical problems<br />

<strong>in</strong> the spherical geometry <strong>in</strong> a doma<strong>in</strong> that <strong>in</strong>cludes at least a portion of the<br />

symmetry axis by requir<strong>in</strong>g that the velocity field be bounded along that<br />

axis, which corresponds to θ = 0, π . The result is given below.<br />

∞<br />

∑ n n n n<br />

C<br />

n<br />

(3)<br />

n=<br />

2<br />

−1/2<br />

C<br />

n<br />

η are the Gegenbauer Polynomials of order n<br />

n − n+ 1 n+ 2 − n+ 3 −1/2<br />

( r,<br />

) = ( Ar + Br + Cr + Dr ) ( )<br />

ψ θ η<br />

Here, η cosθ<br />

and degree − 1/2. Their properties are discussed <strong>in</strong> Sampson (1891), and <strong>in</strong><br />

Abramowitz and Stegun (1965). The Gegenbauer Polynomials are solutions<br />

of the second order ord<strong>in</strong>ary differential equation<br />

= , and ( )<br />

2<br />

2 d Φ<br />

( 1− η ) + n<br />

2<br />

( n−1)<br />

Φ= 0<br />

(4)<br />

dη<br />

where n is an <strong>in</strong>teger. The second l<strong>in</strong>early <strong>in</strong>dependent solution of this<br />

equation is a function that becomes unbounded along the symmetry axis.<br />

The Gegenbauer Polynomials are closely related to the Legendre<br />

Polynomials ( ) n<br />

P η , which satisfy Legendre’s equation.<br />

1


d ⎡ 2 dΦ<br />

⎤<br />

( 1 η ) n( n 1)<br />

0<br />

dη<br />

⎢ − + + Φ=<br />

dη<br />

⎥<br />

(5)<br />

⎣ ⎦<br />

Many important properties of the Legendre Polynomials can be found <strong>in</strong><br />

MacRobert (1967) and <strong>in</strong> Abramowitz and Stegun (1965).<br />

Some useful relationships <strong>in</strong>volv<strong>in</strong>g the Gegenbauer Polynomials are given<br />

below.<br />

( η) − P ( η)<br />

P<br />

2n<br />

−1<br />

η<br />

−1/2<br />

C<br />

n ( η ) = − ∫ P<br />

1 ( )<br />

1<br />

n−<br />

s ds<br />

(7)<br />

−<br />

−1/2<br />

n−2<br />

n<br />

C<br />

n ( η ) =<br />

(6)<br />

The first few Gegenbauer and Legendre Polynomials are<br />

C<br />

C<br />

C<br />

P<br />

P<br />

P<br />

−<br />

( ) 1 C ( )<br />

η = η = η<br />

−1/2 1/2<br />

0 1<br />

1 1<br />

2 2<br />

1 1<br />

8 5 1<br />

−<br />

( η) = ( 1− η ) C ( η) = η ( 1−η<br />

)<br />

−1/2 2 1/2 2<br />

2 3<br />

( η) = ( −η )( η − )<br />

−1/2 2 2<br />

4<br />

( ) 1<br />

P ( )<br />

0 1<br />

2 2<br />

( η) = ( 3η − 1) P ( η) = η( 5η<br />

−3)<br />

2 3<br />

4<br />

η = η = η<br />

1 1<br />

2 2<br />

1 35<br />

8 30 3<br />

4 2<br />

( η) = ( η − η + )<br />

The Gegenbauer Polynomials satisfy the orthogonality property<br />

for values of mn≥ , 2.<br />

−1/2 −1/2<br />

+ 1<br />

m ( η) n ( η)<br />

2<br />

∫ C C dη<br />

=<br />

δ<br />

1<br />

2<br />

mn<br />

(8)<br />

−<br />

1−η<br />

n( n−1)( 2n−1)<br />

2


The function Qn<br />

( )<br />

−1/2<br />

Gegenbauer Polynomials through Q ( η) = −C ( η)<br />

.<br />

η used by Leal <strong>in</strong> the textbook is related to the<br />

n<br />

n+<br />

1<br />

References<br />

M.A. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions,”<br />

Dover Publications (1965).<br />

J. Happel, and H. Brenner, “Low Reynolds Number Hydrodynamics,”<br />

Prentice-Hall (1965); republished by Noordhoff International (1973).<br />

L.G. Leal, “Lam<strong>in</strong>ar Flow and Convective Transport Processes,”<br />

Butterworth-He<strong>in</strong>emann (1992).<br />

T.M. MacRobert, “<strong>Spherical</strong> Harmonics,” Pergamon Press (1967).<br />

R.A. Sampson, “On <strong>Stokes</strong>’s Current Function,” Phil. Trans. Royal Soc. A<br />

182, 449-518 (1891).<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!