07.11.2014 Views

Mark Scheme (Results) Summer 2007 - Edexcel

Mark Scheme (Results) Summer 2007 - Edexcel

Mark Scheme (Results) Summer 2007 - Edexcel

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mark</strong> <strong>Scheme</strong> (<strong>Results</strong>)<br />

<strong>Summer</strong> <strong>2007</strong><br />

GCE<br />

GCE Mathematics<br />

Further Pure Mathematics FP1 (6674)<br />

<strong>Edexcel</strong> Limited. Registered in England and Wales No. 4496750<br />

Registered Office: One90 High Holborn, London WC1V 7BH


June <strong>2007</strong><br />

6674 Further Pure Mathematics FP1<br />

<strong>Mark</strong> <strong>Scheme</strong><br />

Question <strong>Scheme</strong> <strong>Mark</strong>s<br />

number<br />

1.<br />

1<br />

1 and 3 are ‘critical values’, e.g. used in solution, or both seen as asymptotes B1<br />

2<br />

( x + 1)( x − 3) = 2x<br />

− 3 ⇒ x(<br />

x − 4) = 0<br />

x = 4, x = 0 M1: attempt to find at least one other critical value M1 A1, A1<br />

1<br />

1<br />

0 < x < 1 , 3 < x < 4 M1: An inequality using 1 or 3 M1 A1, A1 (7)<br />

2<br />

2<br />

First M mark can be implied by the two correct values, but otherwise a method<br />

must be seen. (The method may be graphical, but either (x = ) 4 or (x =) 0 needs<br />

to be clearly written or used in this case).<br />

Ignore ‘extra values’ which might arise through ‘squaring both sides’ methods.<br />

≤ appearing: maximum one A mark penalty (final mark).<br />

7


Question <strong>Scheme</strong> <strong>Mark</strong>s<br />

number<br />

2. Integrating factor<br />

∫<br />

−tan<br />

x dx<br />

ln(cos x)<br />

−ln(sec<br />

x)<br />

⎛ ⎞<br />

( ) ⎟<br />

⎠<br />

e<br />

⎛ dy<br />

⎜cos<br />

x − y sin x =<br />

⎝ dx<br />

∫<br />

y cos x = 2sec x dx<br />

y cos x = 2 tan x ( + C)<br />

2<br />

2sec<br />

= e<br />

⎞<br />

x⎟<br />

⎠<br />

(or equiv.)<br />

or<br />

e<br />

,<br />

= cos x ⎜or<br />

⎝<br />

2 ⎛<br />

⎞<br />

( ) ⎟<br />

⎠<br />

(or equiv.)<br />

1<br />

sec x<br />

M1, A1<br />

d<br />

2<br />

⎜Or : y cos x = 2sec x<br />

M1 A1(ft)<br />

⎝ dx<br />

y = 3 at x = 0: C = 3 M1<br />

2 tan x + 3<br />

y = (Or equiv. in the form y = f(x)) A1 (7)<br />

cos x<br />

1 st tan d ln(cos ) ln(sec )<br />

M: Also scored for e<br />

∫<br />

x x − x<br />

x<br />

= e ( or e )<br />

, then A0 for sec x .<br />

2 nd M: Attempt to use their integrating factor (requires one side of the equation<br />

‘correct’ for their integrating factor).<br />

2 nd A: The follow-through is allowed only in the case where the integrating<br />

=<br />

4<br />

factor used is sec x or − sec x .<br />

⎛<br />

y sec x 2sec x dx<br />

⎞<br />

⎜<br />

∫<br />

⎟<br />

⎝ ⎠<br />

3 rd M: Using y = 3 at x = 0 to find a value for C (dependent on an integration<br />

attempt, however poor, on the RHS).<br />

Alternative<br />

1 st M: Multiply through the given equation by cos x .<br />

1 st dy<br />

2<br />

A: Achieving cos x − y sin x = 2sec x . (Allowing the possibility of<br />

dx<br />

integrating by inspection).<br />

A1<br />

7


Question <strong>Scheme</strong> <strong>Mark</strong>s<br />

number<br />

3<br />

3<br />

2<br />

3. (a) ( r + 1) = r + 3r<br />

+ 3r<br />

+ 1 and ( r −1)<br />

= r − 3r<br />

+ 3r<br />

−1<br />

M1<br />

3<br />

3<br />

2<br />

3<br />

( r + 1) − ( r −1)<br />

= 6r<br />

3<br />

2<br />

+ 2<br />

(*) A1cso (2)<br />

3<br />

(b) r = 1: 2 − 0 = 6(1 ) + 2<br />

3<br />

3<br />

3<br />

2<br />

2<br />

r = 2 : 3 −1<br />

= 6(2 ) + 2<br />

: : : : : : : : : : :<br />

r = n :<br />

3<br />

3<br />

( n + 1) − ( n −1)<br />

2<br />

= 6n<br />

+ 2 M: Differences: at least first, last M1 A1<br />

and one other.<br />

3 3<br />

2<br />

Sum: ( n + 1) + n −1<br />

= 6∑<br />

r + 2n<br />

M: Attempt to sum at least one side. M1 A1<br />

2 3 2<br />

( 6 ∑ r = 2n<br />

+ 3n<br />

+ n)<br />

n<br />

∑<br />

r=<br />

1<br />

r<br />

2<br />

1<br />

= n(<br />

n + 1)(2n<br />

+ 1)<br />

6<br />

(Intermediate steps are not required) (*) A1cso (5)<br />

2n<br />

2n<br />

n−1<br />

2<br />

2<br />

2 1<br />

1<br />

(c) ∑ r = ∑ r −∑<br />

r , = (2n)(2n<br />

+ 1)(4n<br />

+ 1) − ( n −1)<br />

n(2n<br />

−1)<br />

6<br />

6<br />

r=<br />

n<br />

r=<br />

1<br />

r=<br />

1<br />

2<br />

( 16n<br />

+ 12n<br />

+ 2) − ( 2n<br />

− 3 + 1<br />

1 2<br />

= n n )) M1<br />

6<br />

M1, A1<br />

1<br />

= n ( n + 1)(14n<br />

+ 1)<br />

A1 (4)<br />

6<br />

(b) 1 st A: Requires first, last and one other term correct on both LHS and RHS<br />

(but condone ‘omissions’ if following work is convincing).<br />

2n<br />

∑<br />

∑<br />

∑<br />

(c) 1 st M: Allow also for r = r − r .<br />

r=<br />

n<br />

2<br />

2n<br />

r=<br />

1<br />

2<br />

2 nd 1<br />

M: Taking out (at some stage) factor n , and multiplying out brackets to<br />

6<br />

reach an expression involving terms.<br />

n<br />

r=<br />

1<br />

2<br />

n<br />

2<br />

11


20<br />

10<br />

−2 −1 1 2<br />

−10<br />

−20<br />

y<br />

x<br />

3<br />

Question <strong>Scheme</strong> <strong>Mark</strong>s<br />

number<br />

4. (a) f ′(<br />

x ) = 3x<br />

2 + 8 3x 2 + 8 = 0.......<br />

or 3x<br />

2 + 8 > 0.......<br />

M1<br />

Correct derivative and, e.g., ‘no turning points’ or ‘increasing function’. A1<br />

Simple sketch, (increasing, crossing positive x-axis) B1 (3)<br />

(or, if the M1 A1 has been scored, a reason such as ‘crosses<br />

x-axis only once’).<br />

(b) Calculate f (1) and f (2)<br />

( Values must be seen) M1<br />

f (1) = −10,<br />

f (2) = 5 , Sign change, ∴Root A1 (2)<br />

f (2)<br />

5<br />

(c) x 1 = 2 − ,<br />

= 2 − ( = 1. 75) M1, A1<br />

f ′(2)<br />

20<br />

f ( x1)<br />

⎛ 0.359375 ⎞<br />

x<br />

2<br />

= x1<br />

− ,<br />

⎜=<br />

1.75 − ⎟ = 1.729 (ONLY) (α) M1, A1 (4)<br />

f ′(<br />

x )<br />

⎝ 17.1875 ⎠<br />

1<br />

(d) Calculate f ( α − 0.0005)<br />

and f ( α + 0.0005)<br />

M1<br />

(or a ‘tighter’ interval that gives a sign change).<br />

f (1.7285) = −0.0077...<br />

and f (1.7295) = 0.0092...<br />

, ∴Accurate to 3 d.p. A1 (2)<br />

11<br />

(a) M: Differentiate and consider sign of f ′(<br />

x)<br />

, or equate f ′(<br />

x)<br />

to zero.<br />

Alternative:<br />

3<br />

3<br />

M1: Attempt to rearrange as x −19<br />

= −8x<br />

or x = 19 − 8x<br />

(condone sign slips),<br />

and to sketch a cubic graph and a straight line graph.<br />

A1: Correct graphs (shape correct and intercepts ‘in the right place’).<br />

B1: Comment such as “one intersection, therefore one root”).<br />

(c) 1st A1 can be implied by an answer of 1.729, provided N.R. has been used.<br />

Answer only: No marks. The Newton-Raphson method must be seen.<br />

(d) For A1, correct values of f(1.7285) and f(1.7295) must be seen, together with a<br />

conclusion. If only 1 s.f. is given in the values, allow rounded (e.g. − 0.008)<br />

or truncated (e.g. − 0.007 ) values.


Question <strong>Scheme</strong> <strong>Mark</strong>s<br />

number<br />

2<br />

5. C.F. m + 3m<br />

+ 2 = 0 m = −1<br />

and m = −2<br />

M1<br />

y =<br />

Ae<br />

− x<br />

+ Be<br />

−2x<br />

A1 (2)<br />

P.I.<br />

2<br />

y = cx + dx + e<br />

B1<br />

d 2<br />

2<br />

y<br />

d y<br />

2<br />

= 2cx<br />

+ d,<br />

= 2c<br />

2c<br />

+ 3(2cx<br />

+ d)<br />

+ 2( cx + dx + e)<br />

≡ 2x<br />

+ 6x<br />

M1<br />

2<br />

dx<br />

dx<br />

2 c = 2<br />

c = 1<br />

(One correct value) A1<br />

6 c + 2d<br />

= 6<br />

d = 0<br />

2c + 3d<br />

+ 2e<br />

= 0<br />

e = −1<br />

(Other two correct values) A1<br />

− x<br />

−2x<br />

2<br />

General soln: y = Ae<br />

+ Be<br />

+ x −1<br />

(Their C.F. + their P.I.) A1ft (5)<br />

( A + 2)<br />

x = 0 , y = 1: 1 = A + B −1<br />

B =<br />

M1<br />

d −x<br />

− 2 x<br />

y<br />

= −Ae<br />

dx<br />

− 2Be<br />

dy<br />

+ 2x,<br />

x = 0, = 1:<br />

1 = −A<br />

− 2B<br />

M1<br />

dx<br />

Solving simultaneously: A = 5 and B = −3<br />

M1 A1<br />

− x<br />

−2x<br />

2<br />

Solution: y = 5e − 3e + x −1<br />

A1 (5)<br />

1 st M: Attempt to solve auxiliary equation.<br />

12<br />

2 nd 2<br />

dy<br />

d y<br />

M: Substitute their and<br />

2 into the D.E. to form an identity in x with<br />

dx<br />

dx<br />

unknown constants. .<br />

3 rd M: Using y = 1 at x = 0 in their general solution to find an equation in A and B.<br />

4 th M: Differentiating their general solution (condone ‘slips’, but the powers of<br />

d y<br />

each term must be correct) and using = 1 at x = 0 to find an equation<br />

dx<br />

in A and B.<br />

5 th M: Solving simultaneous equations to find both a value of A and a value of B.


Question <strong>Scheme</strong> <strong>Mark</strong>s<br />

number<br />

*<br />

6. (a) z = 3 + i<br />

B1<br />

z<br />

z<br />

*<br />

=<br />

( 3 − i)( 3 − i)<br />

( 3 + i)( 3 − i)<br />

3 − 2 3i −1<br />

=<br />

,<br />

3 + 1<br />

2<br />

z ⎛ 1 ⎞ ⎛ ± 3 ⎞<br />

(b) = ⎜ ⎟ , = 1<br />

*<br />

⎜ ⎟ +<br />

z ⎝ 2 ⎠<br />

2<br />

⎝ ⎠<br />

2<br />

=<br />

1<br />

2<br />

−<br />

3<br />

2<br />

⎡<br />

⎢Or<br />

:<br />

⎢<br />

⎣<br />

i<br />

z<br />

*<br />

z<br />

z 3 + 1 ⎤<br />

= = , = 1⎥<br />

*<br />

z 3 + 1 ⎥<br />

⎦<br />

(c) arg ( w ) = arctan⎜<br />

real( w)<br />

⎟ or arg ( ) = arctan⎜<br />

⎠<br />

imag( w)<br />

⎟ ⎠<br />

(*) M1, A1cso (3)<br />

M1, A1 (2)<br />

⎛ imag ( w)<br />

⎞<br />

⎜ ±<br />

w<br />

⎛<br />

⎜ ±<br />

real ( w)<br />

⎞<br />

, M1<br />

⎝<br />

⎝<br />

where w is z or<br />

* z<br />

z or<br />

*<br />

z<br />

⎛ − 3 ⎞<br />

⎛ z ⎞ ⎜ ⎟<br />

⎜ ⎟ =<br />

2<br />

π<br />

arg arctan⎜<br />

⎟<br />

= −<br />

*<br />

⎝ z ⎠ ⎜<br />

1<br />

⎟<br />

3<br />

⎝ 2 ⎠<br />

A1<br />

⎛ −1<br />

⎞ π<br />

⎛ 1 ⎞ π<br />

*<br />

arctan⎜<br />

⎟ = − and arctan⎜<br />

⎟ = (Ignore interchanged z and z ) A1<br />

⎝ 3 ⎠ 6<br />

⎝ 3 ⎠ 6<br />

* π π π ⎛ z ⎞<br />

arg z − arg z = − − = − = arg⎜<br />

*<br />

⎟<br />

6 6 3 ⎝ z ⎠<br />

A1 (4)<br />

(d)<br />

2 y<br />

1<br />

*<br />

z<br />

z and<br />

*<br />

z<br />

(Correct quadrants, approx. symmetrical) B1<br />

− 1 2 3<br />

−<br />

(e) ( − ( 3 − i<br />

)( x − ( 3 + i<br />

)<br />

−<br />

x<br />

z<br />

*<br />

z z<br />

(Strictly inside the triangle shown here) B1 (2)<br />

x M1<br />

⎛ − b ⎞<br />

⎞<br />

Or: Use sum of roots ⎜= ⎟ and product of roots ⎜<br />

⎟ ⎝ a ⎠ ⎝ ⎠<br />

2<br />

x − 2 3x + 4<br />

A1 (2)<br />

13<br />

(a) M: Multiplying both numerator and denominator by 3 − i , and multiplying<br />

out brackets with some use of i 2 = −1.<br />

(b) Answer 1 with no working scores both marks.<br />

(c) Allow work in degrees: −60°, −30° and 30°<br />

5π 11π π<br />

Allow arg between 0 and 2π : , and (or 300°, 330° and 30°).<br />

3 6 6<br />

Decimals: Allow marks for awrt −1.05 (A1), −0.524 and 0.524 (A1), but then<br />

A0 for final mark. (Similarly for 5.24 (A1), 5.76 and 0.524 (A1)).<br />

(d) Condone wrong labelling (or lack of labelling), if the intention is clear.


6<br />

4<br />

2<br />

Question <strong>Scheme</strong> <strong>Mark</strong>s<br />

number<br />

7. (a) 5<br />

(b)<br />

2 4 6<br />

Shape (closed curve, approx. symmetrical about<br />

the initial line, in all ‘quadrants’ and<br />

x<br />

−4<br />

5 − √3 5 + √3 ‘centred’ to the right of the pole/origin). B1<br />

−2<br />

5 Scale (at least one correct ‘intercept’ r value…<br />

−6<br />

shown on sketch or perhaps seen in a table). B1 (2)<br />

(Also allow awrt 3.27 or awrt 6.73).<br />

y = r sinθ<br />

= 5sinθ<br />

+ √ 3sinθ<br />

cosθ<br />

M1<br />

d y<br />

2<br />

= 5cosθ<br />

− √ 3sin θ + √ 3cos<br />

θ<br />

dθ<br />

( = 5cosθ<br />

+ √ 3cos 2θ<br />

)<br />

A1<br />

2<br />

2<br />

5cosθ − √ 31−<br />

cos θ + √ 3cos θ =<br />

M1<br />

2<br />

−2<br />

−4<br />

y<br />

( ) 0<br />

2√<br />

3cos θ + 5cosθ<br />

− √ 3 = 0<br />

2 √ 3cosθ<br />

−1<br />

cosθ<br />

+ √ 3 = 0 cosθ<br />

=<br />

( )( ) ...<br />

(0.288…)<br />

⎛<br />

1 ⎞<br />

θ = 1.28 and 5.01 (awrt) (Allow ±1.28 awrt) ⎜Also allow ± arccos ⎟ A1<br />

⎝<br />

2√<br />

3 ⎠<br />

⎛ 1 ⎞ 11<br />

r = 5 + √ 3⎜<br />

⎟ = (Allow awrt 5.50) A1 (6)<br />

⎝ 2√<br />

3 ⎠ 2<br />

2<br />

2<br />

(c) r = 25 + 10√<br />

3cosθ<br />

+ 3cos θ<br />

B1<br />

2 53θ<br />

⎛ sin 2θ<br />

⎞<br />

25 + 10√<br />

3cosθ + 3cos θ dθ<br />

= + 10√<br />

3sinθ<br />

+ 3<br />

∫<br />

⎜ ⎟<br />

M1 A1ft A1ft<br />

2<br />

⎝ 4 ⎠<br />

(ft for integration of ( ) bcosθ<br />

a + and c cos2θ<br />

respectively)<br />

2π<br />

1 ⎡<br />

3sin 2θ<br />

3θ<br />

⎤<br />

25 10 3sin<br />

2 ⎢ θ + √ θ + +<br />

4 2 ⎥<br />

⎣<br />

⎦ 0<br />

= ......<br />

M1<br />

53<br />

= 1 ( 50π + 3π<br />

) =<br />

π or equiv. in terms of π.<br />

2<br />

2<br />

A1 (6)<br />

14<br />

(b) 2 nd M: Forming a quadratic in cos θ .<br />

3 rd M: Solving a 3 term quadratic to find a value of cos θ (even if called θ ).<br />

Special case: Working with r cosθ<br />

instead of r sinθ<br />

:<br />

1 st 2<br />

M1 for r cosθ<br />

= 5cosθ<br />

+ √ 3cos θ<br />

1 st A1 for derivative − 5sinθ<br />

− 2√<br />

3sinθ<br />

cosθ<br />

, then no further marks.<br />

(c) 1 st M: Attempt to integrate at least one term.<br />

2 nd M: Requires use of the 2<br />

1 , correct limits (which could be 0 to 2π, or<br />

−π to π, or ‘double’ 0 to π), and subtraction (which could be implied).<br />

M1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!