08.11.2014 Views

High levels of mitochondrial DNA heteroplasmy in single hair roots ...

High levels of mitochondrial DNA heteroplasmy in single hair roots ...

High levels of mitochondrial DNA heteroplasmy in single hair roots ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Electrophoresis 2003, 24, 1159–1165 1159<br />

Tomasz Grzybowski 1<br />

Boris A. Malyarchuk 2<br />

Jakub Czarny 1<br />

Danuta Miścicka-Śliwka 1<br />

Roman Kotzbach 3<br />

1 The Ludwik Rydygier<br />

Medical University,<br />

Forensic Medic<strong>in</strong>e Institute,<br />

Bydgoszcz, Poland<br />

2 Institute <strong>of</strong> Biological<br />

Problems <strong>of</strong> the North,<br />

Genetics Laboratory,<br />

Magadan, Russia<br />

3 The Ludwik Rydygier<br />

Medical University, Department<br />

<strong>of</strong> Obstetrics Nurs<strong>in</strong>g,<br />

Bydgoszcz, Poland<br />

<strong>High</strong> <strong>levels</strong> <strong>of</strong> <strong>mitochondrial</strong> <strong>DNA</strong> <strong>heteroplasmy</strong> <strong>in</strong><br />

s<strong>in</strong>gle <strong>hair</strong> <strong>roots</strong>: Reanalysis and revision<br />

The present study demonstrates a re<strong>in</strong>vestigation <strong>of</strong> the <strong>mitochondrial</strong> <strong>DNA</strong> sequence<br />

<strong>heteroplasmy</strong>, which was previously found by the use <strong>of</strong> nested polymerase cha<strong>in</strong><br />

reaction (PCR) technique <strong>in</strong> s<strong>in</strong>gle <strong>hair</strong>s <strong>of</strong> 13 <strong>in</strong>dividuals. The direct PCR approach<br />

was used for the amplification <strong>of</strong> <strong>mitochondrial</strong> <strong>DNA</strong> and a phylogenetic analysis<br />

was applied to both data sets for the verification <strong>of</strong> the authenticity <strong>of</strong> sequences. The<br />

comparative analysis <strong>of</strong> the sequenc<strong>in</strong>g results obta<strong>in</strong>ed from the same <strong>hair</strong> <strong>DNA</strong><br />

extracts – but us<strong>in</strong>g two different techniques – shows that direct <strong>mitochondrial</strong> <strong>DNA</strong><br />

amplification results <strong>in</strong> a considerably lower number <strong>of</strong> mixed positions. The majority<br />

<strong>of</strong> the confirmed heteroplasmic variants preferentially occurs <strong>in</strong> <strong>mitochondrial</strong> <strong>DNA</strong><br />

hypervariable sites (mutational hotspots). However, the pattern <strong>of</strong> heteroplasmic<br />

mutations observed <strong>in</strong> four extracts after nested PCR significantly differs from the pattern<br />

<strong>of</strong> natural mutations. Some <strong>of</strong> these rare polymorphisms should be revised as<br />

<strong>in</strong>consistent with phylogenetic expectations. The results <strong>of</strong> the present study contribute<br />

to the earlier reports by <strong>in</strong>dicat<strong>in</strong>g that phylogenetic analysis is an effective tool<br />

<strong>in</strong> a posteriori quality check <strong>of</strong> <strong>mitochondrial</strong> <strong>DNA</strong> data.<br />

Nucleic acids<br />

Keywords: Heteroplasmy / Human identification / Mitochondrial <strong>DNA</strong> EL 5326<br />

1 Introduction<br />

The analysis <strong>of</strong> <strong>mitochondrial</strong> <strong>DNA</strong> (mt<strong>DNA</strong>) sequence polymorphism<br />

has been widely used <strong>in</strong> human population and<br />

molecular evolution studies [1–4]. In recent years, mt<strong>DNA</strong><br />

typ<strong>in</strong>g has also become a useful tool <strong>in</strong> forensic applications<br />

[5]. Among several aspects <strong>of</strong> mt<strong>DNA</strong> genetics, the existence<br />

<strong>of</strong> <strong>heteroplasmy</strong> seems to be one <strong>of</strong> the most widely<br />

discussed. There is a considerable evidence that mt<strong>DNA</strong><br />

sequence <strong>heteroplasmy</strong> exists at an appreciable frequency<br />

and segregates differentially <strong>in</strong> different tissues [6–10].<br />

Furthermore, it was demonstrated that <strong>in</strong> some tissues,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>hair</strong>, <strong>heteroplasmy</strong> tends to occur at highly variable<br />

<strong>levels</strong> [11–14]. In a majority <strong>of</strong> cases, new heteroplasmic<br />

mutations are observed preferentially at hypervariable<br />

sites <strong>of</strong> the human mt<strong>DNA</strong> control region [15]. However, a<br />

number <strong>of</strong> studies documented the existence <strong>of</strong> <strong>heteroplasmy</strong><br />

at positions that had a lower-than-average rate <strong>of</strong><br />

evolutionary substitution [9, 16–18]. It is also stressed that<br />

the detection <strong>of</strong> <strong>heteroplasmy</strong> varies with regard to the<br />

employed analytical techniques [14, 16, 19].<br />

Correspondence: Tomasz Grzybowski, The Ludwik Rydygier<br />

Medical University, Forensic Medic<strong>in</strong>e Institute, ul. M. Curie-<br />

Skl / odowskiej 9, PL-85-094 Bydgoszcz, Poland<br />

E-mail: tgrzyb@amb.bydgoszcz.pl<br />

Fax: +48-52-585-3553<br />

Abbreviations: HV1, first hypervariable segment; HV2, second<br />

hypervariable segment; mt<strong>DNA</strong>, <strong>mitochondrial</strong> <strong>DNA</strong><br />

Heteroplasmy <strong>in</strong> the mt<strong>DNA</strong> control region is one <strong>of</strong> the<br />

chief issues <strong>in</strong> forensic <strong>DNA</strong> community. It appears to be<br />

particularly important for forensic test<strong>in</strong>g, where mt<strong>DNA</strong><br />

types are compared between unknown evidence and<br />

reference samples. If <strong>heteroplasmy</strong> <strong>in</strong>deed affects multiple<br />

bases with<strong>in</strong> the mt<strong>DNA</strong> control region <strong>of</strong> an <strong>in</strong>dividual<br />

and segregates variably among different tissues, then an<br />

effective <strong>in</strong>terpretation <strong>of</strong> cases where <strong>heteroplasmy</strong> is<br />

encountered becomes more complicated [5, 20, 21].<br />

However, it is also possible that some detectable heteroplasmic<br />

events constitute a f<strong>in</strong>gerpr<strong>in</strong>t <strong>of</strong> artificial “phantom”<br />

mutations, i.e., mutations generated <strong>in</strong> the mt<strong>DNA</strong><br />

typ<strong>in</strong>g process itself. Latest observations <strong>of</strong> Bandelt et<br />

al. [22, 23] and Röhl et al. [4] suggest that phantom mutations<br />

are widespread and affect mt<strong>DNA</strong> data presented <strong>in</strong><br />

both evolutionary and forensic studies.<br />

A recent report on the very high <strong>levels</strong> <strong>of</strong> mt<strong>DNA</strong> <strong>heteroplasmy</strong><br />

<strong>in</strong> the human <strong>mitochondrial</strong> <strong>DNA</strong> hypervariable<br />

region I (HV1) from s<strong>in</strong>gle <strong>hair</strong>s [24] has been one <strong>of</strong> the<br />

most frequently debated. That report presents a list <strong>of</strong><br />

24 heteroplasmic positions found <strong>in</strong> <strong>hair</strong>s <strong>of</strong> 13 <strong>in</strong>dividuals,<br />

employ<strong>in</strong>g a nested PCR strategy (here<strong>in</strong>after<br />

called “nested PCR”, 30132 cycles). This protocol was<br />

orig<strong>in</strong>ally proposed and widely used by members <strong>of</strong> the<br />

forensic <strong>DNA</strong> community [25–28]. It was suggested that<br />

the very high <strong>levels</strong> <strong>of</strong> the observed <strong>heteroplasmy</strong> might<br />

had been caused by contam<strong>in</strong>ation and/or possibly by<br />

the amplification <strong>of</strong> nuclear pseudogenes [20, 21, 29]. It<br />

was also stressed that the <strong>in</strong>terpretation <strong>of</strong> <strong>in</strong>stances <strong>of</strong><br />

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 0173-0835/03/07-0804–1159 $17.501.50/0


1160 T. Grzybowski et al. Electrophoresis 2003, 24, 1159–1165<br />

the observed <strong>heteroplasmy</strong> depended on the models <strong>of</strong><br />

mt<strong>DNA</strong> mutation and <strong>of</strong> human population genetics [29,<br />

30]. In reply to recent studies concern<strong>in</strong>g the high level<br />

<strong>of</strong> <strong>heteroplasmy</strong>, the authors have re<strong>in</strong>vestigated the earlier<br />

data [24]. Heteroplasmic samples have been retested<br />

and phylogenetic analysis has been applied to both data<br />

sets <strong>in</strong> order to verify the authenticity <strong>of</strong> sequences.<br />

2 Materials and methods<br />

2.1 Amplification and sequenc<strong>in</strong>g conditions<br />

Thirteen samples previously reported as heteroplasmic<br />

were reanalyzed. For the amplification <strong>of</strong> the <strong>hair</strong> <strong>DNA</strong><br />

extracts, prepared <strong>in</strong> the previous study [24, 41], a direct<br />

PCR approach was used, amplify<strong>in</strong>g the HV1 <strong>in</strong> two overlapp<strong>in</strong>g<br />

fragments (here<strong>in</strong>after called “direct PCR”). This<br />

technique is widely employed by forensic mt<strong>DNA</strong> laboratories<br />

[14, 28, 31–33]. The follow<strong>in</strong>g two sets <strong>of</strong> primers<br />

were used for reanalysis: L15990 (5’ TTA ACT CCA CCA<br />

TTA GCA CC 3’); H16239 (5’ TGG CTT TGG AGT TGC<br />

AGT TG 3’); L16209 (5’ CCC CAT GCT TAC AAG CAA GT<br />

3’); H16391 (5’ GAG GAT GGT GGT CAA GGG AC 3’). In<br />

order to generate templates for sequenc<strong>in</strong>g both strands<br />

<strong>of</strong> the PCR products, the primers were “tailed” with a<br />

221M13 universal primer sequence, as described previously<br />

[24]. Amplification was performed <strong>in</strong> 50 mL reactions<br />

us<strong>in</strong>g a GeneAmp System 9600 thermal cycler (Perk<strong>in</strong><br />

Elmer, Norwalk, CT, USA). Each amplification reaction<br />

comprised 16Promega buffer, 1.5 mM MgCl 2 , 200 mM <strong>of</strong><br />

each <strong>of</strong> the dNTPs (Promega, Madison, WI, USA), 0.4 mM<br />

<strong>of</strong> each primer, 2.5 U <strong>of</strong> Taq Polymerase (Promega) and<br />

1 ng <strong>of</strong> the <strong>hair</strong> <strong>DNA</strong> extract. Thermal cycl<strong>in</strong>g conditions<br />

for primer pair L15990/H16239 were 2 m<strong>in</strong> at 947C,<br />

followed by 38 cycles at 947C for 20 s, 627C for 20 s,<br />

and 727C for 30 s. The amplification with the primer pair<br />

L16209/H16391 was carried out under the cycl<strong>in</strong>g conditions<br />

given above, except for the anneal<strong>in</strong>g temperature<br />

and time, which <strong>in</strong> this case was 567C for 10 s. Negative<br />

PCR controls and reagent blank controls were always<br />

used. The amplification products were purified, sequenced<br />

and analyzed as described previously [24].<br />

2.2 Phylogenetic classification <strong>of</strong> the HV1<br />

sequences<br />

The sequenc<strong>in</strong>g results obta<strong>in</strong>ed by a direct PCR were<br />

compared with those obta<strong>in</strong>ed by nested PCR (presented<br />

earlier) [24]. The phylogenetic analysis was applied to<br />

both data sets <strong>in</strong> order to verify the authenticity <strong>of</strong> mt<strong>DNA</strong><br />

sequences. HV1 sequences were classified <strong>in</strong>to haplogroups,<br />

accord<strong>in</strong>g to the nomenclature suggested by<br />

Richards et al. [1, 3] and Macaulay et al. [34] for West Eurasian<br />

mt<strong>DNA</strong>s. All available data published on HV1-RFLP<br />

[3] or HV1 variability alone (summarized by Röhl et al. [4])<br />

<strong>in</strong> West Eurasian populations were used for a comparative<br />

analysis. Data on the HV1/HV2 sequence variability<br />

<strong>in</strong> Poles were taken from an earlier study [35]. Variability<br />

patterns observed for <strong>hair</strong> samples <strong>in</strong> the orig<strong>in</strong>al experiments<br />

and <strong>in</strong> the reanalysis were compared with data on<br />

molecular stability for each site <strong>in</strong> the HV1 region <strong>of</strong> West<br />

Eurasian populations [36]. A list <strong>of</strong> the HV1 mutational hotspots<br />

was used <strong>in</strong> accordance with Malyarchuk et al. [36].<br />

2.3 Amplification <strong>of</strong> nuclear pseudogenes<br />

In order to further verify experimentally the suggestion<br />

that coamplification <strong>of</strong> nuclear pseudogenes may be a<br />

possible explanation <strong>of</strong> the high <strong>levels</strong> <strong>of</strong> <strong>heteroplasmy</strong><br />

observed when us<strong>in</strong>g nested PCR, that amplification<br />

technique was applied to semen samples enriched <strong>in</strong><br />

nuclear <strong>DNA</strong>. Semen samples were obta<strong>in</strong>ed from seventeen<br />

healthy donors and a differential lysis <strong>of</strong> sperm cells<br />

was performed accord<strong>in</strong>g to Zischler et al. [37]. This resulted<br />

<strong>in</strong> obta<strong>in</strong><strong>in</strong>g a pelleted fraction <strong>of</strong> sperm nuclei<br />

and the rema<strong>in</strong><strong>in</strong>g fraction enriched <strong>in</strong> mt<strong>DNA</strong>. <strong>DNA</strong> was<br />

isolated from both fractions by way <strong>of</strong> a standard organic<br />

extraction protocol. Both <strong>DNA</strong> extracts were amplified for<br />

HV1 and HV2, us<strong>in</strong>g the nested PCR strategy. Next, the<br />

amplification products were purified, sequenced and analyzed<br />

as described earlier [24]. The obta<strong>in</strong>ed sequences<br />

were <strong>in</strong>spected for possible unusual polymorphisms and<br />

subjected to a phylogenetic classification as described<br />

above.<br />

3 Results and discussion<br />

3.1 Comparative analysis <strong>of</strong> <strong>heteroplasmy</strong><br />

<strong>levels</strong> obta<strong>in</strong>ed by two operational<br />

approaches<br />

A comparative analysis <strong>of</strong> mt<strong>DNA</strong> sequenc<strong>in</strong>g results,<br />

which were obta<strong>in</strong>ed from the same <strong>hair</strong> extracts by us<strong>in</strong>g<br />

the nested and direct PCR, shows a considerably lower<br />

number <strong>of</strong> mixed positions found after direct mt<strong>DNA</strong><br />

amplification (Table 1). Out <strong>of</strong> the 13 samples reported previously<br />

as heteroplasmic, 5 were confirmed as such by a<br />

direct PCR (samples No. 2, 3, 4, 7, 11; see Table 1). Out<br />

<strong>of</strong> these, four sequence types have been found mostly<br />

<strong>in</strong> different West Eurasian populations, <strong>in</strong>clud<strong>in</strong>g Poles.<br />

Sample No. 11 reveals the sequence type which appears<br />

to be extremely rare among human populations, although<br />

homologous sequence types (e.g., pr<strong>of</strong>ile 16063C-<br />

16069T-16126C) have been traced <strong>in</strong> Poles, Germans, Russians<br />

and Karelians [35, 38, 39]. The confirmation <strong>of</strong> the<br />

sequences by two <strong>in</strong>dependent techniques and the phylo-


Electrophoresis 2003, 24, 1159–1165 Reanalysis <strong>of</strong> <strong>mitochondrial</strong> <strong>DNA</strong> <strong>heteroplasmy</strong> 1161<br />

Table 1. Comparative analysis <strong>of</strong> mt<strong>DNA</strong> sequenc<strong>in</strong>g results obta<strong>in</strong>ed from the same <strong>hair</strong> extracts by the use <strong>of</strong> nested<br />

or direct PCR<br />

Sample<br />

Methods<br />

(PCR)<br />

HV1 sequence Haplogroup Frequency a)<br />

Heteroplasmy revealed <strong>in</strong> both direct and<br />

nested PCR<br />

Poland West Eurasia<br />

(n = 436) b) (n = 4072) c)<br />

2 Both 16183C, 16189C, 16223T, 16278C/T X 1 (0.2) 25 (0.6)<br />

3 Both 16129A, 16172C, 16223C/T, 16311C/T I 2 (0.5) 12 (0.3)<br />

4 Both 16129A/G, 16316A/G H 0 5 (0.1)<br />

7 Both 16129A, 16172C, 16223C/T, 16311C/T I 2 (0.5) 12 (0.3)<br />

11 Both 16063C, 16069T, 16126C/T, 16303A J* 0 N.A.<br />

Heteroplasmy revealed only after nested PCR<br />

9 Direct 16311C H or HV* 7 (1.6) 75 (1.8)<br />

Nested 16311C/T<br />

cont. Cambridge Reference Sequence (CRS) H or HV* 69 (15.8) 539 (13.2)<br />

5 Direct 16192T, 16256T, 16270T U5a 1 (0.2) 31 (0.8)<br />

Nested 16192C/T, 16256T, 16270T<br />

cont. 16256T, 16270T U5a 2 (0.5) 24 (0.6)<br />

8 Direct 16168T, 16343G U3 1 (0.2) 5 (0.1)<br />

Nested 16051A/G, 16168T, 16343G<br />

cont. 16051G, 16168T, 16343G U3 0 N.A.<br />

1 Direct 16311C H or HV* 7 (1.6) 75 (1.8)<br />

Nested 16024C/T, 16105C/T, 16243C/T, 16311C<br />

cont. 16024C, 16105C, 16243C, 16311C ? 0 0<br />

6 Direct 16311C H or HV* 7 (1.6) 75 (1.8)<br />

Nested 16126C/T (T .. C), 16311C<br />

cont. 16126C, 16311C ? 0 0<br />

10 Direct 16311C, 16354T H 0 2 (0.05)<br />

Nested 16088C/T, 16090C/T, 16140C/T, 16311C, 16354T<br />

cont. 16088C, 16090C, 16140C, 16311C, 16354T ? 0 0<br />

12 Direct 16111T, 16167C/T (T .. C), 16288C, 16362C H 0 0<br />

Nested 16111C/T, 16167C/T, 16288C/T, 16294C/T,<br />

16296C/T, 16362C/T<br />

cont. 16294T, 16296T ? 0 0<br />

13 Direct 16126C, 16163G, 16186C, 16189C, 16294C T1 6 (1.4) 65 (1.6)<br />

Nested 16125A/G, 16126C, 16163A/G, 16186C/T,<br />

16189C/T, 16294C/T, 16296C/T<br />

cont. 16125A, 16126C, 16296T ? 0 0<br />

Sample nomenclature is ma<strong>in</strong>ta<strong>in</strong>ed accord<strong>in</strong>g to the previous study [24]. HV1 sequences are given together with their<br />

haplogroup assignment and frequencies determ<strong>in</strong>ed <strong>in</strong> human populations. Wherever discrepancies are observed between<br />

the results obta<strong>in</strong>ed by the use <strong>of</strong> both protocols, the supposedly contam<strong>in</strong>at<strong>in</strong>g sequence type (denoted as<br />

“cont.” ) is given with its frequency <strong>in</strong> the databases. This type is supposed to be the sequence <strong>of</strong> a hypothetical second<br />

homoplasmic <strong>DNA</strong> that would account for the <strong>heteroplasmy</strong> if it were present as a contam<strong>in</strong>ant.<br />

a) The number <strong>of</strong> observations and frequency (<strong>in</strong> %) <strong>of</strong> the HV1 type revealed by direct PCR. “?” denotes that the phylogenetic<br />

affiliation <strong>of</strong> the HV1 sequence cannot be determ<strong>in</strong>ed without additional data. “N.A.” denotes a sequence type<br />

which is not available <strong>in</strong> the West Eurasian database ow<strong>in</strong>g to the different sequenc<strong>in</strong>g range (16090–16365).<br />

b) Data are from Malyarchuk et al. [35]<br />

c) Data are from Richards et al. [3]<br />

genetic plausibility <strong>of</strong> the mt<strong>DNA</strong> pr<strong>of</strong>iles obta<strong>in</strong>ed, lead<br />

to the conclusion that the mixed positions revealed for<br />

the <strong>hair</strong> samples described are authentic and appear to<br />

be truly heteroplasmic <strong>in</strong> mitochondria. It should be<br />

emphasized that the maximum number <strong>of</strong> heteroplasmic<br />

sites with<strong>in</strong> s<strong>in</strong>gle <strong>in</strong>dividual for HV1 was two positions,<br />

which is <strong>in</strong> complete agreement with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> other<br />

authors who used similar analytical methods [14].


1162 T. Grzybowski et al. Electrophoresis 2003, 24, 1159–1165<br />

The second group <strong>of</strong> HV1 sequences <strong>in</strong>cludes those<br />

sequence types which are characterized by <strong>heteroplasmy</strong><br />

revealed only after nested PCR analysis (Table 1). In the<br />

case <strong>of</strong> four <strong>of</strong> such samples (No. 9, 6, 5 and 8), phylogenetically<br />

related HV1 sequences were identified after the<br />

direct and nested PCR. The limited additional variability,<br />

appear<strong>in</strong>g here after nested PCR, occurs aga<strong>in</strong>st the<br />

background <strong>of</strong> def<strong>in</strong>ed haplogroups. Hence, it does not<br />

change the haplogroup assignment <strong>of</strong> sequences. Therefore,<br />

the results obta<strong>in</strong>ed after nested PCR are plausible<br />

and can be attributed to a unique sensitivity <strong>of</strong> the technique.<br />

It is generally accepted that even the <strong>hair</strong> <strong>of</strong> an <strong>in</strong>dividual<br />

with normally undetectable <strong>levels</strong> <strong>of</strong> <strong>heteroplasmy</strong><br />

may show different mt<strong>DNA</strong> sequences [12, 40].<br />

Due to the high number <strong>of</strong> cycles employed <strong>in</strong> nested<br />

PCR, it is likely that the exist<strong>in</strong>g m<strong>in</strong>ority variant has been<br />

amplified to a degree which made its detection possible<br />

by direct sequenc<strong>in</strong>g. It is noteworthy that similar observations<br />

(i.e., detection <strong>of</strong> additional heteroplasmic<br />

sites <strong>in</strong> sequences belong<strong>in</strong>g to H or HV haplogroups)<br />

have recently been made by other forensic mt<strong>DNA</strong> laboratories<br />

[14].<br />

The four rema<strong>in</strong><strong>in</strong>g samples (No. 1, 10, 12 and 13) were<br />

characterized by patterns <strong>of</strong> heteroplasmic positions<br />

observable only after nested PCR. While correspond<strong>in</strong>g<br />

sequences derived from direct PCR show no <strong>heteroplasmy</strong><br />

and can be easily affiliated <strong>in</strong>to mt<strong>DNA</strong> haplogroups<br />

(Table 1), the specific mutation patterns revealed<br />

after nested PCR make it impossible to localize the<br />

respective sequences as a part <strong>of</strong> phylogeny. Thus, this<br />

<strong>in</strong>compatibility would suggest that the mixed positions<br />

revealed <strong>in</strong> those samples after nested PCR could be artificial.<br />

3.2 Analysis <strong>of</strong> the HV1 mutational spectrum<br />

revealed <strong>in</strong> heteroplasmic samples<br />

Further <strong>in</strong>sight <strong>in</strong>to mutational spectra detected <strong>in</strong> heteroplasmic<br />

samples may be helpful <strong>in</strong> evaluat<strong>in</strong>g some <strong>of</strong><br />

the results obta<strong>in</strong>ed by the use <strong>of</strong> nested PCR. A recent<br />

report by Malyarchuk et al. [36] provides a list <strong>of</strong> the<br />

HV1 mutational hotspots, which is <strong>in</strong> concordance with<br />

nucleotide positions that were described as rapidly evolv<strong>in</strong>g<br />

<strong>in</strong> the previous studies. If one assumes that <strong>heteroplasmy</strong><br />

<strong>in</strong> somatic tissues has the same root cause as<br />

population-level polymorphism, then heteroplasmic po<strong>in</strong>t<br />

mutations should occur preferentially at mt<strong>DNA</strong> hypervariable<br />

sites (mutational hotspots).<br />

Table 2 shows heteroplasmic sites revealed both <strong>in</strong> the<br />

previous <strong>hair</strong> study and <strong>in</strong> this reanalysis, accompanied<br />

by their estimated variability. These positions can be subdivided<br />

<strong>in</strong>to three groups. The first group <strong>in</strong>cludes posi-<br />

Table 2. Heteroplasmic sites revealed <strong>in</strong> the previous <strong>hair</strong><br />

study [24] and the reanalysis presented, accompanied<br />

by their estimated variability<br />

Position<br />

Classification <strong>of</strong><br />

<strong>heteroplasmy</strong> a) Population variability b)<br />

I II III Poland<br />

(n = 436) c) West<br />

Eurasia<br />

(n = 4072) d)<br />

16024 1 0 –<br />

16051 8 9.4 13.3 e)<br />

16088 10 0 0 e)<br />

16090 10 0 0 e)<br />

16105 1 0 0 e)<br />

16111 12 3.1 26.5<br />

16125 13 0 2.9<br />

16126 f) 11 6 3.1 41.2<br />

16129 f) 4 21.9 64.7<br />

16140 10 9.4 5.9<br />

16163 13 3.1 8.8<br />

16167 12 12 3.1 17.6<br />

16186 13 3.1 23.5<br />

16189 f) 13 40.6 94.1<br />

16192 f) 5 18.8 35.3<br />

16223 3, 7 6.3 29.4<br />

16243 1 3.1 14.7<br />

16278 f) 2 18.8 50.0<br />

16288 12 6.3 17.6<br />

16294 f) 13 12 12.5 32.4<br />

16296 12, 13 3.1 11.8<br />

16311 f) 3, 7 9 34.4 64.7<br />

16316 4 0 5.9<br />

16362 f) 12 28.1 64.7<br />

Heteroplasmy is classified <strong>in</strong>to three groups, depend<strong>in</strong>g<br />

on the analytical technique by which it was revealed.<br />

a) Group I, <strong>heteroplasmy</strong> revealed after nested PCR and<br />

confirmed by direct PCR; Group II, nucleotide positions<br />

<strong>of</strong> sequence types revealed by direct PCR which<br />

were found to be heteroplasmic after nested PCR;<br />

Group III, new heteroplasmic variants revealed only<br />

after nested PCR. Sample numbers accord<strong>in</strong>g to<br />

Table 1 <strong>in</strong>dicate the presence <strong>of</strong> heteroplasmic position<br />

<strong>in</strong> the respective group.<br />

b) Frequency (<strong>in</strong> %) <strong>of</strong> parallel mutations which arose<br />

<strong>in</strong>dependently <strong>in</strong> different haplogroups <strong>of</strong> the previously<br />

reconstructed mt<strong>DNA</strong> phylogenetic tree.<br />

c) Data from Malyarchuk et al. [35]<br />

d Data from Richards et al. [3]<br />

e) Data from Malyarchuk and Derenko [50]<br />

f) Mutational hotspots<br />

tions observed after both direct and nested PCR. The<br />

second group <strong>in</strong>cludes nucleotide positions <strong>of</strong> sequence<br />

types revealed by direct PCR, which were found to be<br />

heteroplasmic after nested PCR. The third group <strong>in</strong>cludes<br />

newly arisen mutations revealed exclusively after nested


Electrophoresis 2003, 24, 1159–1165 Reanalysis <strong>of</strong> <strong>mitochondrial</strong> <strong>DNA</strong> <strong>heteroplasmy</strong> 1163<br />

PCR. As shown <strong>in</strong> Table 2, the revealed heteroplasmic<br />

positions are characterized by a different molecular stability.<br />

Sites 16126, 16129, 16189, 16192, 16278, 16294,<br />

16311, 16362, <strong>in</strong>dicated by Malyarchuk et al. as mutational<br />

hotspots [36], were found to be heteroplasmic<br />

mostly <strong>in</strong> the first and the second groups <strong>of</strong> positions.<br />

Additionally, sites 16051, 16111, 16140, 16163, 16186,<br />

16223, 16288, 16296, 16316 were detected as heteroplasmic<br />

and occurr<strong>in</strong>g <strong>in</strong>dependently <strong>in</strong> all three groups<br />

<strong>of</strong> nucleotide positions. Accord<strong>in</strong>g to Bandelt et al. [23],<br />

transitions for these sites were estimated to occur at a<br />

rate as high as the average HV1 transitional rate. Yet, the<br />

third group <strong>of</strong> mutations, newly arisen after nested PCR,<br />

<strong>in</strong>cludes a whole list <strong>of</strong> rare positions 16024, 16088,<br />

16090, 16105, 16125, which essentially differ from the<br />

mutational spectra reconstructed phylogenetically on the<br />

basis <strong>of</strong> population data (Table 2). As presented above,<br />

these observations on molecular stability <strong>of</strong> particular<br />

heteroplasmic sites are consistent with the evaluation <strong>of</strong><br />

entire HV1 sequences. The pattern <strong>of</strong> heteroplasmic<br />

mutations, observed <strong>in</strong> samples No. 1, 10, 12 and 13 by<br />

the use <strong>of</strong> nested PCR, significantly differs from that <strong>of</strong><br />

natural mutations. It is noteworthy that a number <strong>of</strong> previous<br />

studies [9, 16–18] documented also the existence <strong>of</strong><br />

<strong>heteroplasmy</strong> at rare positions (e.g., 16104, 16205,<br />

16222, 16257, 16262, 16301). Therefore, <strong>in</strong> the light <strong>of</strong><br />

the current data, the relative lack <strong>of</strong> population variability<br />

at particular mt<strong>DNA</strong> positions should not be raised as an<br />

argument to question any s<strong>in</strong>gle heteroplasmic site.<br />

Unexpectedly, the comb<strong>in</strong>ation <strong>of</strong> rare heteroplasmic<br />

sites was revealed <strong>in</strong> the mutation patterns <strong>of</strong> four samples<br />

tested by way <strong>of</strong> nested PCR. Together with the nonreproducibility<br />

<strong>of</strong> the results, this would suggest that<br />

some <strong>of</strong> those mutations might be artifacts result<strong>in</strong>g from<br />

specific conditions <strong>of</strong> nested PCR.<br />

3.3. Consideration <strong>of</strong> sample contam<strong>in</strong>ation<br />

There are several potential explanations <strong>of</strong> the apparent<br />

differences between the results obta<strong>in</strong>ed when us<strong>in</strong>g<br />

nested or direct PCR. First, contam<strong>in</strong>ation must be taken<br />

<strong>in</strong>to consideration as a possible explanation <strong>of</strong> the nested<br />

PCR results. Although appropriate safety and control<br />

measures were taken <strong>in</strong> the previous <strong>hair</strong> study [41],<br />

nested PCR is known to be highly sensitive to contam<strong>in</strong>ation<br />

problems due to the large number <strong>of</strong> amplification<br />

cycles. However, Table 1 shows that all HV1 sequences,<br />

revealed after direct PCR, can be affiliated to certa<strong>in</strong> <strong>mitochondrial</strong><br />

haplogroups and almost all <strong>of</strong> these sequences<br />

are spread among human populations. If one suggests<br />

that it is due to mt<strong>DNA</strong> contam<strong>in</strong>ation that <strong>heteroplasmy</strong><br />

after nested PCR appeared, then the contam<strong>in</strong>at<strong>in</strong>g<br />

sequence types should be observed <strong>in</strong> human populations.<br />

However, for a great majority <strong>of</strong> samples, the supposedly<br />

contam<strong>in</strong>at<strong>in</strong>g sequences do not match any population<br />

HV1 sequence types (Table 1). The only exception<br />

is the type correspond<strong>in</strong>g to the most frequent European<br />

Cambridge Reference Sequence [42]. This may expla<strong>in</strong><br />

the appearance <strong>of</strong> <strong>heteroplasmy</strong> at position 16311 <strong>in</strong><br />

sample No. 9 (Table 1). Therefore, given the comb<strong>in</strong>ations<br />

<strong>of</strong> rare positions occurr<strong>in</strong>g <strong>in</strong> the supposedly contam<strong>in</strong>ated<br />

sequences, sample contam<strong>in</strong>ation does not seem<br />

to be a sufficient explanation <strong>of</strong> the obta<strong>in</strong>ed nested PCR<br />

results.<br />

3.4 Possibility <strong>of</strong> <strong>in</strong>advertent pseudogene<br />

amplification<br />

Coamplification <strong>of</strong> nuclear pseudogenes can be another<br />

possible explanation <strong>of</strong> discrepancies observed between<br />

the results <strong>of</strong> nested and direct PCR. A recent analysis by<br />

Woischnik and Moraes [43] shows the presence <strong>of</strong> 612<br />

<strong>in</strong>dependent <strong>in</strong>tegrations <strong>of</strong> mt<strong>DNA</strong> fragments <strong>in</strong>to the<br />

human genome. As it is reported, the amplification <strong>of</strong><br />

nuclear <strong>DNA</strong> correspond<strong>in</strong>g to the mt<strong>DNA</strong> HV1 region<br />

occurs under specific conditions [16, 44].<br />

S<strong>in</strong>ce the efficiency <strong>of</strong> the possible pseudogene amplification<br />

may vary between <strong>in</strong>dividual primer pairs, an<br />

attempt to verify experimentally the potential <strong>of</strong> pseudogene<br />

amplification was made us<strong>in</strong>g primer pairs from the<br />

previous <strong>hair</strong> study [24]. To accomplish this, nuclear <strong>DNA</strong>enriched<br />

sperm nuclei fractions and mt<strong>DNA</strong>-enriched<br />

fractions were prepared by a preferential lysis <strong>of</strong> semen<br />

obta<strong>in</strong>ed from 17 subjects. Real-time <strong>DNA</strong> quantitation<br />

revealed that the quantity <strong>of</strong> mt<strong>DNA</strong> <strong>in</strong> the nuclear <strong>DNA</strong>enriched<br />

fraction was more than three times lower than<br />

that observed <strong>in</strong> the mt<strong>DNA</strong>-enriched fraction (data not<br />

shown). However, irrespective <strong>of</strong> the specific conditions<br />

favor<strong>in</strong>g pseudogene amplification, mt<strong>DNA</strong> amplified efficiently<br />

from all nuclear <strong>DNA</strong>-enriched fractions. There<br />

were no differences found between sequences obta<strong>in</strong>ed<br />

from nuclear- and mt<strong>DNA</strong>-enriched preparations. It is<br />

important that no unique, unusual polymorphisms were<br />

revealed and the mt<strong>DNA</strong> sequences can be easily<br />

assigned to specific mt<strong>DNA</strong> haplogropups. This aga<strong>in</strong><br />

demonstrates an extremely high sensitivity but also specificity<br />

<strong>of</strong> the nested PCR technique. To conclude, these<br />

results do not support the hypothesis that nuclear pseudogene<br />

amplification contributed to rare heteroplasmic<br />

positions observed after nested PCR.<br />

3.5 A possible PCR amplification error<br />

The accumulation <strong>of</strong> errors by Taq <strong>DNA</strong> polymerase dur<strong>in</strong>g<br />

the template synthesis constitutes another possible<br />

mechanism which may expla<strong>in</strong> some <strong>of</strong> the rare hetero-


1164 T. Grzybowski et al. Electrophoresis 2003, 24, 1159–1165<br />

plasmic positions revealed after nested PCR. This mechanism<br />

was previously considered by other authors report<strong>in</strong>g<br />

mt<strong>DNA</strong> <strong>heteroplasmy</strong> data [10, 16]. There are three<br />

reasons for which enzyme errors might contribute to<br />

some <strong>of</strong> the nested PCR results. The first reason is the<br />

lack <strong>of</strong> reproducibility <strong>of</strong> results for samples No. 1, 10, 12<br />

and 13 <strong>in</strong> which the group III mutations occurred (Table 2).<br />

The second reason is that specific conditions <strong>of</strong> nested<br />

PCR favor the occurrence <strong>of</strong> PCR replication errors. One<br />

cannot exclude these mechanisms where errors <strong>in</strong>troduced<br />

by low-fidelity Taq polymerase <strong>in</strong> the first round<br />

<strong>of</strong> PCR and normally undetectable by direct sequenc<strong>in</strong>g,<br />

are eventually made visible due to the subsequent<br />

amplification for additional 32 cycles. One must also take<br />

<strong>in</strong>to consideration the length <strong>of</strong> the first D-loop amplicon<br />

(1333 bp), which may not represent the most abundant<br />

size class <strong>of</strong> mt<strong>DNA</strong> available for amplification from the<br />

<strong>hair</strong> extracts. As it was demonstrated earlier, small amounts<br />

<strong>of</strong> template <strong>DNA</strong>, longer amplicons, additional amplification<br />

cycles and high enzyme concentrations may contribute<br />

to the <strong>in</strong>crease <strong>of</strong> the error rate <strong>of</strong> a conventional<br />

PCR [45–47]. The third reason is that group III mutations<br />

do not respect phylogenetic hierarchy <strong>of</strong> the data (see<br />

Table 2). Moreover, Table 3 shows that the spectrum <strong>of</strong><br />

group III mutations is biased toward transitions T–C, one<br />

<strong>of</strong> the most frequent errors made by the wild-type Taq<br />

polymerase I [48]. F<strong>in</strong>ally, the majority <strong>of</strong> T–C transitions<br />

occurred on the 5’-GTand 5’-CTcontext, which may <strong>in</strong>fluence<br />

the rate <strong>of</strong> substitutions made by wild-type and<br />

mutants <strong>of</strong> Taq <strong>DNA</strong> polymerase [47–49] (Table 3).<br />

It must be stressed, however, that mis<strong>in</strong>corporation dur<strong>in</strong>g<br />

PCR is not proposed as a general explanation <strong>of</strong><br />

all rare heteroplasmic events. This mechanism may contribute<br />

to a limited number <strong>of</strong> observations. On the other<br />

hand, <strong>heteroplasmy</strong> at rare positions does occur, as<br />

demonstrated by this study and other reports. In the face<br />

Table 3. Spectra <strong>of</strong> three groups <strong>of</strong> mutations revealed <strong>in</strong><br />

the HV1 sequences from <strong>hair</strong> and the effect <strong>of</strong><br />

5’-sequence context <strong>in</strong> T–C transitions<br />

Transitions Group I Group II Group III<br />

T–C 2 4 7<br />

C–T 3 5 2<br />

G–A 1 0 1<br />

A–G 1 1 1<br />

% <strong>of</strong> T–C out <strong>of</strong> 28.6 40.0 63.6<br />

all transitions<br />

5’-Sequence context <strong>in</strong> T–C transitions<br />

CT 0 2 2<br />

GT 2 2 3<br />

AT 0 0 2<br />

<strong>of</strong> these uncerta<strong>in</strong>ties, the exclusion <strong>of</strong> nested PCR from<br />

the techniques employed <strong>in</strong> forensic casework would<br />

be a more conservative approach. The <strong>in</strong>terpretation <strong>of</strong><br />

sequence data obta<strong>in</strong>ed by direct PCR (i.e., lower number<br />

<strong>of</strong> cycles) appears to be more straightforward and leads<br />

to unambiguous conclusions even <strong>in</strong> the presence <strong>of</strong> <strong>heteroplasmy</strong>.<br />

4 Conclud<strong>in</strong>g remarks<br />

While the general conclusions <strong>of</strong> the previous study on<br />

highly variable <strong>levels</strong> <strong>of</strong> <strong>heteroplasmy</strong> <strong>in</strong> <strong>hair</strong> are still warranted,<br />

this reanalysis strongly emphasizes a different<br />

ability <strong>of</strong> current protocols to reveal mixed sequences.<br />

The uniquely sensitive nested PCR technique leads to<br />

the detection <strong>of</strong> an additional variability, which may be difficult<br />

to <strong>in</strong>terpret or <strong>in</strong> some <strong>in</strong>stances, may appear to be<br />

an artifact. At the same time, this re<strong>in</strong>vestigation <strong>in</strong>to the<br />

widely discussed data shows that phylogenetic analysis<br />

may be <strong>of</strong> a considerable value <strong>in</strong> a posteriori evaluation<br />

<strong>of</strong> authenticity and plausibility <strong>of</strong> the newly obta<strong>in</strong>ed<br />

mt<strong>DNA</strong> sequences. Phylogenetic rules, which are similar<br />

to those recently demonstrated as the effective tools <strong>in</strong> a<br />

quality control <strong>of</strong> mt<strong>DNA</strong> population data, can also be<br />

helpful <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g the difficult forensic cases <strong>in</strong> which<br />

<strong>heteroplasmy</strong> is encountered.<br />

Supplementary <strong>in</strong>formation. The electropherograms illustrat<strong>in</strong>g<br />

the differences between the detection <strong>of</strong> heteroplasmic<br />

positions with nested and direct PCR strategies<br />

are available onl<strong>in</strong>e, http://www.zms-bydgoszcz.<br />

w.pl. This site also <strong>in</strong>cludes control region sequences<br />

found <strong>in</strong> nuclear- and mt<strong>DNA</strong>-enriched fractions <strong>of</strong> the<br />

semen samples.<br />

We would like to thank <strong>in</strong> particular Dr. Miroslava V.<br />

Derenko who has <strong>of</strong>fered her valuable critical comments<br />

and constructive suggestions dur<strong>in</strong>g the numerous discussions<br />

we have had together.<br />

Received October 26, 2002<br />

5 References<br />

[1] Richards, M., Côrte-Real, H., Forster, P., Macaulay, V., Wilk<strong>in</strong>son-Herbots,<br />

H., Dema<strong>in</strong>e, A., Papiha, S., Hedges, R., Bandelt,<br />

H.-J., Am. J. Hum. Genet. 1996, 59, 185–203.<br />

[2] Richards, M. B., Macaulay, V. A., Bandelt, H.-J., Sykes, B. C.,<br />

Ann. Hum. Genet. 1998, 62, 241–260.<br />

[3] Richards, M., Macaulay, V., Hickey, E., Vega, E., Sykes, B.,<br />

Guida, V., Rengo, C., Sellito, D., Cruciani, F., Kivisild, T., Villems,<br />

R., Thomas, M., Rychkov, S., Rychkov, O., Rychkov,<br />

Y., Gölge, M., Dimitrov, D., Hill, E., Bradley, D., Romano, V.,<br />

Calì, F., Vona, G., Dema<strong>in</strong>e, A., Papiha, S., Triantaphyllidis,<br />

C., Stefanescu, G., Hat<strong>in</strong>a, J., Belledi, M., Di Rienzo, A.,


Electrophoresis 2003, 24, 1159–1165 Reanalysis <strong>of</strong> <strong>mitochondrial</strong> <strong>DNA</strong> <strong>heteroplasmy</strong> 1165<br />

Novelletto, A., Oppenheim, A., Norby, S., Al-Zaheri, N., Santachiara-Benerecetti,<br />

S., Scozzari, R., Torroni, A., Bandelt,<br />

H.-J., Am. J. Hum. Genet. 2000, 67, 1251–1276.<br />

[4] Röhl, A., Br<strong>in</strong>kmann, B., Forster, L., Forster, P., Int. J. Legal<br />

Med. 2001, 115, 29–39.<br />

[5] Holland, M. M., Parsons T. J., Forensic Sci. Rev. 1999, 11,<br />

21–50.<br />

[6] Comas, D., Pääbo, S., Bertranpetit, J., Genome Res. 1995,<br />

5, 89–90.<br />

[7] Jaz<strong>in</strong>, E., Cavelier, L., Eriksson, I., Oreland, L., Gyllensten,<br />

U., Proc. Natl. Acad. Sci. USA 1996, 93, 12382–12387.<br />

[8] Wilson, M. R., Polanskey, D., Replogle, J., DiZ<strong>in</strong>no, J. A.,<br />

Budowle, B., Hum. Genet. 1997, 100, 167–171.<br />

[9] Hühne, J., Pfeiffer, H., Br<strong>in</strong>kmann, B., Int. J. Legal Med.<br />

1998, 112, 27–30.<br />

[10] Calloway, C. D., Reynolds, R. L., Herr<strong>in</strong> Jr., G. L., Anderson<br />

W. W., Am. J. Hum. Genet. 2000, 66, 1384–1397.<br />

[11] Sullivan, K. M., Alliston-Gre<strong>in</strong>er, F. I. A., Archampong, R.,<br />

Piercy, G., Tully, P., Gill, P., Lloyd-Davies, C., Proceed<strong>in</strong>gs<br />

from the Seventh International Symposium on Human Identification<br />

1996, Promega Corporation, Madison, WI, USA<br />

1996, pp. 126–130.<br />

[12] Bendall, K. E., Macaulay, V. A., Sykes, B. C., Am. J. Hum.<br />

Genet. 1997, 61, 1303–1308.<br />

[13] Salas, A., Lareu, M. V., Carracedo, A., Int. J. Legal Med.<br />

2001, 114, 186–190.<br />

[14] Alonso, A., Salas, A., Albarrán, C., Arroyo, E., Castro, A.,<br />

Crespillo, M., di Lonardo, A. M., Lareu, M. V., Cubría, C. L.,<br />

Soto, M. L., Lorente, J. A., Semper, M. M., Palacio, A., Paredes,<br />

M., Pereira, L., Lezaun, A. P., Brito, J. P., Sala, A., Vide,<br />

M. C., Whittle, M., Yunis, J. J., Gómez, J., Forensic Sci. Int.<br />

2002, 125, 1–7.<br />

[15] Stonek<strong>in</strong>g, M., Am. J. Hum. Genet. 2000, 67, 1029–1032.<br />

[16] Tully, L. A., Parsons, T. J., Steighner, R. J., Holland, M. M.,<br />

Mar<strong>in</strong>o, M. A., Prenger, V. L., Am. J. Hum. Genet. 2000, 67,<br />

432–443.<br />

[17] Bendall, K. E., Macaulay, V. A., Baker, J. R., Sykes, B. C.,<br />

Am. J. Hum. Genet. 1996, 59, 1276–1287.<br />

[18] Sigurgardóttir, S., Helgason, A., Gulcher, J. R., Stefansson,<br />

K., Donnelly, P., Am. J. Hum. Genet. 2000, 66, 1599–1609.<br />

[19] Liu, M. R., Pan, K. F., Li, Z. F., Wang, Y., Deng, D. J., Zhang,<br />

L., Lu, Y. Y., World J. Gastroenterol. 2002, 8, 426–430.<br />

[20] Tully, G., Lareu, M., Electrophoresis 2001, 22, 180.<br />

[21] Budowle, B., Allard, M. W., Wilson, M. R., Forensic Sci. Int.<br />

2002, 126, 30–33.<br />

[22] Bandelt, H.-J., Lahermo, P., Richards, M., Macaulay, V., Int.<br />

J. Legal Med. 2001, 115, 64–69.<br />

[23] Bandelt, H.-J., Qu<strong>in</strong>tana-Murci, L., Salas, A., Macaulay, V.,<br />

Am. J. Hum. Genet. 2002, 71, 1150–1160.<br />

[24] Grzybowski, T., Electrophoresis 2000, 21, 548–553.<br />

[25] Sullivan, K. M., Hopgood, R., Lang, B., Gill, P., Electrophoresis<br />

1991, 12, 17–21.<br />

[26] Hopgood, R., Sullivan, K. M., Gill, P., BioTechniques 1992,<br />

13, 82–92.<br />

[27] Sullivan, K. M., Hopgood, R., Gill, P., Int. J. Legal Med. 1992,<br />

105, 83–86.<br />

[28] Carracedo, A., D’Aloja, E., Dupuy, B., Jangblad, A., Karjala<strong>in</strong>en,<br />

M., Lambert, C., Parson, W., Pfeiffer, H., Pfiz<strong>in</strong>ger, H.,<br />

Sabatier, M., Syndercombe Court, D., Vide, C., Forensic<br />

Sci. Int. 1998, 97, 165–170.<br />

[29] Budowle, B., Allard, M. W., Wilson, M., Forensic Sci. Int.<br />

2002, 130, 68–70.<br />

[30] D’Eustachio, P., Forensic Sci. Int. 2002, 130, 63–67.<br />

[31] Wilson, M. R., Polanskey, D., Butler, J., DiZ<strong>in</strong>no, J. A.,<br />

Reprogle, J., Budowle, B., BioTechniques 1995, 18, 662–<br />

669.<br />

[32] Wilson, M. R., DiZ<strong>in</strong>no, J. A., Polanskey, D., Reprogle, J.,<br />

Budowle, B., Int. J. Legal Med. 1995, 108, 68–74.<br />

[33] Melton, T., Nelson, K., Croat. Med. J. 2001, 42, 298–303.<br />

[34] Macaulay, V., Richards, M., Hickey, E., Vega, E., Cruciani, F.,<br />

Guida, V., Scozzari, R., Bonné-Tamir, Sykes, B., Torroni, A.,<br />

Am. J. Hum. Genet. 1999, 64, 232–249.<br />

[35] Malyarchuk, B. A., Grzybowski, T., Derenko, M. V., Czarny,<br />

J., Wozniak, M., Miścicka-Śliwka, D., Ann. Hum. Genet.<br />

2002, 66, 261–283.<br />

[36] Malyarchuk, B. A., Rogoz<strong>in</strong>, I. B., Berikov, V. B., Derenko, M.<br />

V., Hum. Genet. 2002, 111, 46–53.<br />

[37] Zischler, H., Geisert, H., von Haeseler, A., Pääbo, S., Nature<br />

1995, 378, 489–492.<br />

[38] Sajantila, A., Lahermo, P., Antt<strong>in</strong>en, T., Lukka, M., Sistonen,<br />

P., Savontaus, M. L., Aula, P., Beckman, L., Tranebjaerg, L.,<br />

Gedde-Dahl, T., Issel-Tarver, L., DiRienzo, A., Pääbo, S., Genome<br />

Res. 1995, 5, 42–52.<br />

[39] Lutz, S., Weisser, H.-J., Heizmann, J., Pollak, S., Int. J. Legal<br />

Med. 1998, 111, 67–77.<br />

[40] L<strong>in</strong>ch, C. A., Whit<strong>in</strong>g, D. A., Holland, M. M., J. Forensic Sci.<br />

2001, 46, 844–853.<br />

[41] Grzybowski, T., Electrophoresis 2001, 22, 181–182.<br />

[42] Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L.,<br />

Coulson, A. R., Drou<strong>in</strong>, J., Eperon, I. C., Nierlich, D. P., Roe,<br />

B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R.,<br />

Young, I. G., Nature 1981, 290, 457–465.<br />

[43] Woischnik, M., Moraes, C. T., Genome Res. 2002, 12, 885–<br />

893.<br />

[44] Morgan, M. A., Parsons, T. J., Holland, M. M., Proceed<strong>in</strong>gs<br />

from the Eight International Symposium on Human Identification<br />

1997, Promega Corporation, Madison, WI, USA 1998,<br />

p. 128.<br />

[45] Keohavong, P., Thilly, W. G., Proc. Natl. Acad. Sci. USA<br />

1989, 86, 9253–9257.<br />

[46] Eckert, K. A., Kunkel, T. A., PCR Methods Appl. 1991, 1,<br />

17–24.<br />

[47] Tosaka, A., Ogawa, M., Yoshida, S., Suzuki, M., J. Biol.<br />

Chem. 2001, 276, 27562–27567.<br />

[48] Suzuki, M., Yoshida, S., Adman, E. T., Blank, A., Loeb, L. A.,<br />

J. Biol. Chem. 2000, 275, 32728–32735.<br />

[49] Yoshida, K., Tosaka, A., Kamiya, H., Murate, T., Kasai, H.,<br />

Nimura, Y., Ogawa, M., Yoshida, S., Suzuki, M., Nucleic<br />

Acids Res. 2001, 29, 4206–4214.<br />

[50] Malyarchuk, B. A., Derenko, M. V., Russ. J. Genet. 2001, 37,<br />

823–832.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!