10.11.2014 Views

overview and evaluation of models in use for m/a policy portfolios ...

overview and evaluation of models in use for m/a policy portfolios ...

overview and evaluation of models in use for m/a policy portfolios ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PROMITHEAS-4<br />

OVERVIEW AND EVALUATION OF<br />

MODELS IN USE FOR M/A POLICY<br />

PORTFOLIOS AND SELECTION THE<br />

RELEVANT FOR PROMITHEAS-4<br />

Dr. Todor Balabanov, IHS, Vienna, e-mail: balabano@ihs.ac.at<br />

3/9/2011<br />

Abstracts: After short <strong>overview</strong> <strong>of</strong> the <strong>models</strong> <strong>use</strong>d <strong>in</strong> some <strong>in</strong>tegrated project f<strong>in</strong>anced by the FP<br />

5,6 <strong>and</strong> 7 the ma<strong>in</strong> features <strong>of</strong> the 12 widely <strong>use</strong>d energy-environmental <strong>models</strong> will be shortly<br />

described then we will be present<strong>in</strong>g <strong>models</strong> subdivision <strong>in</strong>to “Top-Down” <strong>and</strong> “Bottom-Up” as<br />

well as the recent modell<strong>in</strong>g advances, <strong>and</strong> on the basis <strong>of</strong> eight criteria we will be select<strong>in</strong>g the<br />

<strong>in</strong>tegrated energy-environmental modell<strong>in</strong>g tool best suited to the objectives <strong>of</strong> the PROMITHEAS 4<br />

project


Table <strong>of</strong> Contents:<br />

1. Climate Mitigation <strong>and</strong> Adaptation ________________________________________ 3<br />

1.1. Mitigation Strategies _______________________________________________________ 3<br />

1.2. Adaptation Strategies _______________________________________________________ 3<br />

2. Research on Adaptation , Mitigation Policies <strong>in</strong> FP5/FP6/FP7 ___________________ 3<br />

2.1. Overview <strong>of</strong> <strong>models</strong> <strong>use</strong>d <strong>in</strong> the ADAM project __________________________________ 4<br />

2.1.1. E3MG ________________________________________________________________________ 4<br />

2.1.2. MERGE ________________________________________________________________________ 5<br />

2.1.3. REMIND _______________________________________________________________________ 6<br />

2.1.4. POLES _________________________________________________________________________ 6<br />

2.1.5. TIMER _________________________________________________________________________ 7<br />

2.2. Research on Adaptation , Mitigation <strong>and</strong> Policies <strong>in</strong> FP7 ___________________________ 7<br />

2.2.1. Modell<strong>in</strong>g Framework <strong>of</strong> the POEM project ___________________________________________ 8<br />

2.2.2. Ensemble <strong>of</strong> <strong>models</strong> <strong>of</strong> the TOCSIN project ___________________________________________ 9<br />

3. A review <strong>of</strong> widely <strong>use</strong>d energy-environmental modell<strong>in</strong>g tools________________ 10<br />

3.1. LEAP ___________________________________________________________________ 10<br />

3.2. EnergyPLAN _____________________________________________________________ 11<br />

3.3. MARKAL/TIMES __________________________________________________________ 12<br />

3.4. MESSAGE _______________________________________________________________ 13<br />

3.5. IKARUS _________________________________________________________________ 13<br />

3.6. INFORSE ________________________________________________________________ 14<br />

3.7. Mesap PlaNet ____________________________________________________________ 14<br />

3.8. PRIMES <strong>and</strong> GEM-E3 Models ________________________________________________ 14<br />

3.9. BALMOREL ______________________________________________________________ 15<br />

3.10. ENPEP-BALANCE ________________________________________________________ 16<br />

3.11. MERCI-ATHDM E3: The Austrian Hybrid Dynamic Model E3 _____________________ 16<br />

4. A brief classification <strong>of</strong> energy <strong>models</strong> ____________________________________ 17<br />

4.1.1. ‘Top-Down’ Models _____________________________________________________________ 17<br />

4.1.2. ‘Bottom-Up’ Models ____________________________________________________________ 18<br />

4.1.3. Recent Modell<strong>in</strong>g Advances ______________________________________________________ 19<br />

5. Selection <strong>of</strong> an <strong>in</strong>tegrated modell<strong>in</strong>g tool __________________________________ 21<br />

6. References ___________________________________________________________ 23<br />

6.1. References to the <strong>models</strong> <strong>use</strong>d <strong>in</strong> FPs funded projects ___________________________ 27<br />

2


1. Climate Mitigation <strong>and</strong> Adaptation<br />

The terms ―adaptation‖ <strong>and</strong> ―mitigation‖ are two important terms that are fundamental <strong>in</strong> the climate change<br />

debate. The IPCC def<strong>in</strong>ed adaptation as adjustment <strong>in</strong> natural or human systems <strong>in</strong> response to actual or expected<br />

climatic stimuli or their effects, which moderate harm or exploits beneficial opportunities. Similarly, Mitchell<br />

<strong>and</strong> Tanner (2006) def<strong>in</strong>ed adaptation as an underst<strong>and</strong><strong>in</strong>g <strong>of</strong> how <strong>in</strong>dividuals, groups <strong>and</strong> natural systems can<br />

prepare <strong>for</strong> <strong>and</strong> respond to changes <strong>in</strong> climate or their environment. Accord<strong>in</strong>g to them, it is crucial to reduc<strong>in</strong>g<br />

vulnerability to climate change. While mitigation tackles the ca<strong>use</strong>s <strong>of</strong> climate change, adaptation tackles the<br />

effects <strong>of</strong> the phenomenon. The potential to adjust <strong>in</strong> order to m<strong>in</strong>imize negative impact <strong>and</strong> maximize any<br />

benefits from changes <strong>in</strong> climate is known as adaptive capacity. A successful adaptation can reduce<br />

vulnerability by build<strong>in</strong>g on <strong>and</strong> strengthen<strong>in</strong>g exist<strong>in</strong>g cop<strong>in</strong>g strategies.<br />

In general the more mitigation there is, the less will be the impacts to which we will have to adjust, <strong>and</strong> the less<br />

the risks <strong>for</strong> which we will have to try <strong>and</strong> prepare. Conversely, the greater the degree <strong>of</strong> preparatory adaptation,<br />

the less may be the impacts associated with any given degree <strong>of</strong> climate change.<br />

For people today, already feel<strong>in</strong>g the impacts <strong>of</strong> past <strong>in</strong>action <strong>in</strong> reduc<strong>in</strong>g greenho<strong>use</strong> gas emissions, adaptation<br />

is not altogether passive, rather it is an active adjustment <strong>in</strong> response to new stimuli. However, our present age<br />

has proactive options (mitigation), <strong>and</strong> must also plan to live with the consequences (adaptation) <strong>of</strong> global<br />

warm<strong>in</strong>g.<br />

The idea that less mitigation means greater climatic change <strong>and</strong> consequently requir<strong>in</strong>g more adaptation is the<br />

basis <strong>for</strong> the urgency surround<strong>in</strong>g reductions <strong>in</strong> greenho<strong>use</strong> gases. Climate mitigation <strong>and</strong> adaptation should not<br />

be seen as alternatives to each other, as they are not discrete activities but rather a comb<strong>in</strong>ed set <strong>of</strong> actions <strong>in</strong> an<br />

overall strategy to reduce greenho<strong>use</strong> gas emissions.<br />

1.1. Mitigation Strategies<br />

Climate change <strong>in</strong>volves complex <strong>in</strong>teractions between climatic, environmental, economic, political,<br />

<strong>in</strong>stitutional, social, <strong>and</strong> technological processes. It cannot be addressed or comprehended <strong>in</strong> isolation <strong>of</strong> broader<br />

societal goals (such as equity or susta<strong>in</strong>able development), or other exist<strong>in</strong>g or probable future sources <strong>of</strong> stress.<br />

In the United Nations Framework Convention on Climate Change (UNFCCC) three conditions are made explicit<br />

when work<strong>in</strong>g towards the goal <strong>of</strong> greenho<strong>use</strong> gas stabilisation <strong>in</strong> the atmosphere:<br />

1. That it should take place with<strong>in</strong> a time-frame sufficient to allow ecosystems to adapt naturally to climate<br />

change;<br />

2. That food production is not threatened <strong>and</strong>;<br />

3. That economic development should proceed <strong>in</strong> a susta<strong>in</strong>able manner<br />

To elim<strong>in</strong>ate or reduce the risk <strong>of</strong> climate change to human life <strong>and</strong> property, both <strong>policy</strong> <strong>in</strong>struments <strong>and</strong><br />

technology must be <strong>use</strong>d <strong>in</strong> the context <strong>of</strong> susta<strong>in</strong>able development.<br />

1.2. Adaptation Strategies<br />

The United Nations Framework Convention on Climate Change refers to adaptation <strong>in</strong> several <strong>of</strong> its articles:<br />

Article 4.1(f): All Parties shall ―Take climate change considerations <strong>in</strong>to account, to the extent feasible, <strong>in</strong> their<br />

relevant social, economic <strong>and</strong> environmental policies <strong>and</strong> actions, <strong>and</strong> employ appropriate methods, <strong>for</strong> example<br />

impact assessments, <strong>for</strong>mulated <strong>and</strong> determ<strong>in</strong>ed nationally, with a view to m<strong>in</strong>imiz<strong>in</strong>g adverse effects on the<br />

economy, on public health <strong>and</strong> on the quality <strong>of</strong> the environment, <strong>of</strong> projects or measures undertaken by them to<br />

mitigate or adapt to climate change.‖<br />

2. Research on Adaptation , Mitigation Policies <strong>in</strong> FP5/FP6/FP7<br />

Accord<strong>in</strong>g to Dr. Wolfram Schrimpf (2008) from the Climate Change <strong>and</strong> Environmental Risks Unit <strong>of</strong> the<br />

Environment Directorate, DG Research, mitigation <strong>and</strong> adaptation are to be seen as a ‗co-exercise‘. Practical<br />

adaptation actions <strong>and</strong> measures are to be based on sound, scientific, technical <strong>and</strong> socio-economic <strong>in</strong><strong>for</strong>mation<br />

(ref. i.e. Green Paper, Third Pillar ‘ Reduc<strong>in</strong>g uncerta<strong>in</strong>ty by Exp<strong>and</strong><strong>in</strong>g the knowledge base +through<br />

<strong>in</strong>tegrated climate research)<br />

3


Accord<strong>in</strong>gly <strong>in</strong> FP5/FP6 a number <strong>of</strong> projects related to Adaptation <strong>and</strong> Mitigation Strategies <strong>and</strong> to prediction<br />

<strong>of</strong> climatic change <strong>and</strong> its impacts have been f<strong>in</strong>anced. Examples <strong>of</strong> <strong>in</strong>tegrated projects are:<br />

ADAM Adaptation <strong>and</strong> Mitigation Strategies: Support<strong>in</strong>g European climate Policy - started March<br />

2006 <strong>and</strong> f<strong>in</strong>ished <strong>in</strong> July 2009, f<strong>in</strong>anced with € 18.2 million, <strong>in</strong>volv<strong>in</strong>g 120 researchers <strong>in</strong> 26 research<br />

<strong>in</strong>stitutions across Europe <strong>and</strong> worldwide; A comparison <strong>of</strong> <strong>models</strong> <strong>use</strong>d <strong>in</strong> the ADAM project is<br />

presented <strong>in</strong> below; http://www.adamproject.eu/<br />

PRUDENCE Prediction <strong>of</strong> regional Scenarios <strong>and</strong> Uncerta<strong>in</strong>ties <strong>for</strong> Def<strong>in</strong><strong>in</strong>g European Climate<br />

Change Risks <strong>and</strong> Effects; http://prudence.dmi.dk/<br />

ENSEMBLES Predictions <strong>of</strong> climate changes <strong>and</strong> their impacts; http://ensembles-eu.met<strong>of</strong>fice.com/,<br />

among the partners are: National Observatory <strong>of</strong> Athens <strong>and</strong> Aristotle University <strong>of</strong> Thessaloniki,<br />

CECILIA Central <strong>and</strong> Eastern Europe Climate Change Impact <strong>and</strong> Vulnerability Assessment;<br />

http://www.cecilia-eu.org/<br />

CIRCE Climate Change <strong>and</strong> Impact Research: the Mediterranean Environment,<br />

http://www.circeproject.eu/<strong>in</strong>dex.php?option=com_frontpage&Itemid=1<br />

2.1. Overview <strong>of</strong> <strong>models</strong> <strong>use</strong>d <strong>in</strong> the ADAM project<br />

ADAM supports the EU <strong>in</strong> the development <strong>of</strong> post-2012 global climate policies, the def<strong>in</strong>ition <strong>of</strong> European<br />

mitigation policies to reach its 2020 goals, <strong>and</strong> the emergence <strong>of</strong> new adaptation policies <strong>for</strong> Europe with special<br />

attention to the role <strong>of</strong> extreme weather events.<br />

The ADAM project was address<strong>in</strong>g the follow<strong>in</strong>g questions: How can the global energy system be trans<strong>for</strong>med?<br />

What are the possible mitigation pathways? What are the associated costs?<br />

We report on the comparison <strong>of</strong> five energy-environment-economy <strong>models</strong>, namely: the macro-econometric<br />

simulation model E3MG, the optimal growth <strong>models</strong> MERGE-ETL (abbreviated as MERGE <strong>in</strong> the follow<strong>in</strong>g)<br />

<strong>and</strong> REMIND-S (abbreviated as REMIND <strong>in</strong> the follow<strong>in</strong>g) <strong>and</strong> the energy system <strong>models</strong> POLES <strong>and</strong> TIMER.<br />

E3MG, MERGE <strong>and</strong> REMIND are top-down macroeconomic <strong>models</strong> with a more or less sophisticated energy<br />

system. POLES <strong>and</strong> TIMER are bottom-up energy system <strong>models</strong>.<br />

The <strong>policy</strong> scenarios are analysed <strong>for</strong> the period from 2000–2100 (POLES only until 2050), where the<br />

optimisation <strong>models</strong> are run beyond 2100 to avoid end effects. Data are provided on a five year basis (10 year <strong>for</strong><br />

E3MG). The <strong>models</strong> provide different numbers <strong>of</strong> World regions. For this comparison exercise we agreed on<br />

seven World regions: Ch<strong>in</strong>a (CHN), Eastern Europe <strong>and</strong> Russia (EERU), Europe (EU15), India (IND), Japan<br />

(JPN), USA (USA), <strong>and</strong> the rest <strong>of</strong> the World (ROW). Additionally we <strong>in</strong>vestigate the aggregated WORLD<br />

region.<br />

Model details: For a better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the <strong>models</strong>, a short description <strong>of</strong> each model is given below.<br />

Moreover, we present a short <strong>overview</strong> concern<strong>in</strong>g the way <strong>in</strong>duced technological change (ITC) is modelled <strong>and</strong><br />

how an emissions trad<strong>in</strong>g system (ETS) is implemented <strong>in</strong> each model, as these are central po<strong>in</strong>ts <strong>for</strong> modell<strong>in</strong>g<br />

the scenarios<br />

2.1.1. E3MG<br />

E3MG - E3 st<strong>and</strong>s <strong>for</strong> energy-environment- economy, M <strong>for</strong> model <strong>and</strong> G <strong>for</strong> Global<br />

The Cambridge Centre <strong>for</strong> Climate Change Mitigation Research has build an econometric simulation model <strong>of</strong><br />

the global energy-environment- economy (E3) system, estimated on annual data 1971-2002 <strong>and</strong> project<strong>in</strong>g<br />

annually to 2030 <strong>and</strong> every 10 years to 2100. It is a disequilibrium model with an open structure such that labour,<br />

<strong>for</strong>eign exchange <strong>and</strong> public f<strong>in</strong>ancial markets are not necessarily closed. It is very disaggregated, with 20 world<br />

regions (<strong>in</strong>clud<strong>in</strong>g the 13 nation states with the highest CO2 emissions <strong>in</strong> 2000), 12 energy carriers, 19 energy<br />

<strong>use</strong>rs, 28 energy technologies, 14 atmospheric emissions <strong>and</strong> 42 <strong>in</strong>dustrial sectors, with comparable detail <strong>for</strong> the<br />

rest <strong>of</strong> the economy. The methodology <strong>of</strong> the model can be described as post-Keynesian, follow<strong>in</strong>g that <strong>of</strong> the<br />

European model E3ME developed by Cambridge Econometrics, except that at the global level various markets<br />

are closed, e.g. total exports equal total imports at a sectoral level allow<strong>in</strong>g <strong>for</strong> imbalances <strong>in</strong> the data. It is<br />

designed to address the issues <strong>of</strong> energy security <strong>and</strong> climate stabilisation both <strong>in</strong> the medium <strong>and</strong> long terms,<br />

with particular emphasis on dynamics, uncerta<strong>in</strong>ty <strong>and</strong> the design <strong>and</strong> <strong>use</strong> <strong>of</strong> economic <strong>in</strong>struments, such as<br />

emission allowance trad<strong>in</strong>g schemes.<br />

Induced technological change (ITC) <strong>in</strong> E3MG <strong>in</strong>corporates endogenous technological change <strong>in</strong> three ways: (i)<br />

Top-down macroeconomic effects: the sectoral energy <strong>and</strong> export dem<strong>and</strong> equations <strong>in</strong>clude <strong>in</strong>dicators <strong>of</strong><br />

technological progress <strong>in</strong> the <strong>for</strong>m <strong>of</strong> accumulated gross <strong>in</strong>vestment <strong>and</strong> Research <strong>and</strong> Development (R&D), (ii)<br />

bottom-up eng<strong>in</strong>eer<strong>in</strong>g effects: the energy technology submodel <strong>in</strong>corporates learn<strong>in</strong>g-by-do<strong>in</strong>g through<br />

reductions <strong>in</strong> costs <strong>of</strong> <strong>in</strong>vestment <strong>in</strong> energy-generation technologies accord<strong>in</strong>g to global scale economies, <strong>and</strong><br />

(iii) amplify<strong>in</strong>g effects: the extra <strong>in</strong>vestment <strong>in</strong> new technologies, <strong>in</strong> relation to basel<strong>in</strong>e <strong>in</strong>vestment <strong>in</strong>duces<br />

4


further output <strong>and</strong> there<strong>for</strong>e <strong>in</strong>vestment, trade, <strong>in</strong>come, consumption <strong>and</strong> output <strong>in</strong> the rest <strong>of</strong> the world economy<br />

through a Keynesian multiplier effect. R&D is endogenously related to <strong>in</strong>dustrial gross <strong>in</strong>vestment, with an<br />

exogenous component determ<strong>in</strong>ed by government fund<strong>in</strong>g <strong>policy</strong>. It affects aggregate <strong>and</strong> disaggregate energy<br />

dem<strong>and</strong>. R&D is also part <strong>of</strong> gross <strong>in</strong>vestment which is a measure <strong>of</strong> technological progress impact<strong>in</strong>g exports,<br />

imports, <strong>in</strong>dustrial hours worked, employment, <strong>in</strong>dustrial prices, export <strong>and</strong> import prices. All these are part <strong>of</strong><br />

the macro-econometric model <strong>and</strong> the correspond<strong>in</strong>g parameters are econometrically estimated. R&D is <strong>in</strong> turn<br />

<strong>in</strong>fluenced by extra <strong>in</strong>vestments <strong>in</strong> new technologies, which emerge from mitigation measures that <strong>in</strong>duce<br />

change towards low carbon technologies. Furthermore, R&D is amongst the <strong>policy</strong> <strong>in</strong>struments <strong>in</strong> the model<br />

promot<strong>in</strong>g greenho<strong>use</strong> gas abatement. Out <strong>of</strong> the 28 energy technologies available <strong>in</strong> E3MG, 14 have learn<strong>in</strong>g<br />

modes <strong>in</strong>cluded <strong>and</strong> are effectively <strong>use</strong>d <strong>in</strong> the model. Learn<strong>in</strong>g is implemented <strong>in</strong> the energy technology<br />

bottom-up submodel through learn<strong>in</strong>g curves with vary<strong>in</strong>g learn<strong>in</strong>g rates. Learn<strong>in</strong>g curves are modeled through<br />

regional <strong>in</strong>vestment <strong>in</strong> energy generation technologies that depend on global scale economies. As <strong>in</strong>vestment is<br />

made <strong>in</strong> new technologies, learn<strong>in</strong>g takes place <strong>and</strong> the cost <strong>of</strong> these new technologies decreases so that they<br />

become competitive with the more ―established‖ technologies. The model is capable <strong>of</strong> expla<strong>in</strong><strong>in</strong>g how lowcarbon<br />

technologies are adopted as the real cost <strong>of</strong> carbon rises <strong>in</strong> the system, with learn<strong>in</strong>g-by-do<strong>in</strong>g reduc<strong>in</strong>g<br />

capital costs as the scale <strong>of</strong> adoption <strong>in</strong>creases. A switch from one technology to another is modeled with<strong>in</strong> the<br />

energy technology bottom-up submodel <strong>in</strong> E3MG. This allows <strong>for</strong> a treatment <strong>of</strong> substitution between energy<br />

technologies (<strong>for</strong> example between fossil <strong>and</strong> non-fossil fuel technologies), account<strong>in</strong>g <strong>for</strong> non-l<strong>in</strong>earities (<strong>and</strong><br />

threshold effects) result<strong>in</strong>g from <strong>in</strong>vestment <strong>in</strong> new technology, learn<strong>in</strong>g-by-do<strong>in</strong>g, <strong>and</strong> <strong>in</strong>novation. The<br />

submodel is an annual dynamic technology model <strong>of</strong> energy supply based on the concept <strong>of</strong> a price effect on the<br />

elasticity <strong>of</strong> substitution between compet<strong>in</strong>g technologies. Although the submodel is not estimated by <strong>for</strong>mal<br />

econometric techniques it does model <strong>in</strong> a simplified way the switch from carbon energy sources to non-carbon<br />

energy sources over time. For each type <strong>of</strong> energy dem<strong>and</strong>ed there is usually a technology or fuel <strong>of</strong> choice – a<br />

marker technology – aga<strong>in</strong>st which the alternatives will have to compete. The total capital <strong>and</strong> operat<strong>in</strong>g costs <strong>of</strong><br />

us<strong>in</strong>g this fuel per unit <strong>of</strong> output are <strong>use</strong>d as a basis or numeraire <strong>for</strong> express<strong>in</strong>g the relative costs <strong>of</strong> the<br />

alternatives.<br />

Emissions trad<strong>in</strong>g: The emissions trad<strong>in</strong>g scheme is implemented <strong>in</strong> E3MG globally only <strong>for</strong> the energy sector<br />

through permit auction<strong>in</strong>g. The emissions trad<strong>in</strong>g is assumed to start from 2011 <strong>and</strong> the revenues raised are<br />

recycled <strong>and</strong> spent with<strong>in</strong> each <strong>of</strong> the correspond<strong>in</strong>g region by reduc<strong>in</strong>g <strong>in</strong>direct taxes to ensure macroeconomic<br />

<strong>in</strong>flation stability. For the non-energy sectors carbon taxes are globally applied with the tax rate given by the<br />

ETS price, aga<strong>in</strong> assum<strong>in</strong>g revenue recycl<strong>in</strong>g region-by-region.<br />

2.1.2. MERGE<br />

The Model <strong>for</strong> Evaluat<strong>in</strong>g Regional <strong>and</strong> Global Effects (MERGE) <strong>of</strong> Paul Scherrer Institute is an <strong>in</strong>tegrated<br />

assessment model (IAM) that comprises a disaggregation <strong>of</strong> the energy system <strong>in</strong> electric <strong>and</strong> non-electric<br />

sectors, a macro-economic production function <strong>and</strong> a simplified climate model. The world modelled <strong>in</strong> MERGE<br />

is divided <strong>in</strong>to n<strong>in</strong>e geopolitical regions. An ETA-MACRO model describes each <strong>of</strong> these n<strong>in</strong>e regions. The ETA<br />

component is a ―bottom-up‖ eng<strong>in</strong>eer<strong>in</strong>g model that describes the energy-supply sector <strong>of</strong> a given region, <strong>and</strong><br />

captures price-dependent substitutions <strong>of</strong> energy <strong>for</strong>ms <strong>and</strong> energy to achieve specified CO2 reduction targets.<br />

The MACRO component is a ―top-down‖ Ramsey type macroeconomic growth model that balances the non<br />

energy part <strong>of</strong> the economy <strong>of</strong> a given region us<strong>in</strong>g a nested constant-elasticity-<strong>of</strong> substitution (CES) production<br />

function. The MACRO model also captures autonomous (e.g., price-<strong>in</strong>dependent) effects <strong>and</strong> macroeconomic<br />

feedbacks between the energy sector <strong>and</strong> the rest <strong>of</strong> the economy, such as the impacts <strong>of</strong> higher energy prices<br />

(e.g., result<strong>in</strong>g from CO2 control) on economic activities. MERGE also <strong>in</strong>cludes a simple climate <strong>and</strong> damage<br />

model which considers market (through production losses), <strong>and</strong> non-market damages (through losses <strong>in</strong> global<br />

welfare). Those derived non-market damages (i.e. disutility) are proportional to a quadratic temperature change<br />

function, the global temperature <strong>in</strong>crease be<strong>in</strong>g a function <strong>of</strong> the aggregate carbon emissions levels. F<strong>in</strong>ally,<br />

MERGE allows the model<strong>in</strong>g <strong>of</strong> multi-gas climate-change mitigation strategies <strong>and</strong> the assessment <strong>of</strong> the impact<br />

<strong>of</strong> alternative <strong>policy</strong> <strong>in</strong>struments on stimulat<strong>in</strong>g technological change towards a low-carbon global energy<br />

system.<br />

All energy technologies <strong>in</strong>clude learn<strong>in</strong>g (ITC), with the exception <strong>of</strong> a few conventional power stations such as<br />

exist<strong>in</strong>g fossil-based or hydro power plant. MERGE applies two-factor learn<strong>in</strong>g curves <strong>for</strong> the <strong>in</strong>vestment costs<br />

<strong>of</strong> each learn<strong>in</strong>g technology. Experience <strong>and</strong> R&D expenditures are thus endogenously accounted <strong>for</strong> <strong>in</strong><br />

MERGE. In both electric <strong>and</strong> non-energy sectors, all technologies are perfect substitutes, i.e. all production<br />

levels are summed up to satisfy energy needs. The least cost technology supplies the dem<strong>and</strong>, up to some<br />

maximum potential level, e.g. w<strong>in</strong>d power capacity or biomass availability. The changes <strong>in</strong> each production level<br />

are controlled accord<strong>in</strong>g to bounds on expansion <strong>and</strong> decl<strong>in</strong>e rates (see Kypreos <strong>and</strong> Bahn, 2003).<br />

Emissions trad<strong>in</strong>g: CO2 permits are traded on an <strong>in</strong>ternational market <strong>and</strong> give rise to a price <strong>of</strong> carbon, along<br />

with other traded commodities, i.e. the numeraire good, oil, gas, coal, biomass, the energy <strong>in</strong>tensive sector good.<br />

5


Global trade constra<strong>in</strong>ts applied <strong>in</strong> each period ensure that <strong>in</strong>ternational net trade <strong>of</strong> CO2 permits (the difference<br />

between export <strong>and</strong> imports) is balanced.<br />

2.1.3. REMIND<br />

REMIND-S - Potsdam Institute <strong>for</strong> Climate Impact Research: a multi-region endogenous economic growth<br />

model based on the global <strong>in</strong>tegrated assessment model MIND. REMIND <strong>models</strong> the economic dynamics <strong>of</strong><br />

each world region by adopt<strong>in</strong>g an endogenous growth framework. It calculates time paths <strong>of</strong> <strong>in</strong>vestment <strong>and</strong><br />

consumption decisions that are <strong>in</strong>ter temporally optimal. The objective is to maximize the social welfare <strong>of</strong> each<br />

region, def<strong>in</strong>ed as the present value <strong>of</strong> utility, which is a function <strong>of</strong> per capita consumption exhibit<strong>in</strong>g<br />

dim<strong>in</strong>ish<strong>in</strong>g marg<strong>in</strong>al utility. Production takes place <strong>in</strong> an <strong>in</strong>dustrial sector <strong>and</strong> an energy sector. The <strong>in</strong>dustrial<br />

sector is decomposed <strong>in</strong> consumption goods <strong>and</strong> service sector, <strong>and</strong> an <strong>in</strong>vestment goods sector. Both sectors are<br />

represented by a CES-type production function with capital, labour <strong>and</strong> energy <strong>for</strong> production factors. The<br />

energy sector dist<strong>in</strong>guishes a fossil extraction sector, a fossil energy sector, a renewable energy sector <strong>and</strong> a<br />

rema<strong>in</strong><strong>in</strong>g energy sector. The latter <strong>in</strong>cludes ma<strong>in</strong>ly nuclear energy <strong>and</strong> traditional biomass. Its output is given<br />

exogenously. The macroeconomic system <strong>and</strong> the energy system are l<strong>in</strong>ked by energy, which is dem<strong>and</strong>ed by<br />

both <strong>in</strong>dustrial sectors <strong>and</strong> which is supplied by the energy sector. In turn, the energy sector dem<strong>and</strong>s<br />

<strong>in</strong>vestments which are supplied by the <strong>in</strong>dustrial sector. Technological change has an endogenous <strong>for</strong>mulation<br />

with R&D <strong>in</strong>vestments <strong>in</strong> labour <strong>and</strong> energy productivity, learn<strong>in</strong>g by do<strong>in</strong>g, <strong>and</strong> v<strong>in</strong>tage capital <strong>in</strong> the different<br />

energy sectors. REMIND extends this structure by essential elements <strong>of</strong> regional <strong>in</strong>teractions, e.g. trade <strong>and</strong><br />

capital flows, <strong>and</strong> technological spillovers.<br />

Induced technological change (ITC) represents changes <strong>in</strong> the technological characteristics <strong>of</strong> the economic <strong>and</strong><br />

energy system driven by exogenous policies (e.g. climate policies <strong>and</strong> trade policies). As part <strong>of</strong> endogenous<br />

technological, <strong>in</strong>duced technological change is modeled <strong>in</strong> REMIND <strong>in</strong> several ways. First, production factors<br />

can be substituted by each other, <strong>in</strong> particular the production factor energy can be substituted by capital. Second,<br />

R&D <strong>in</strong>vestments represent a channel <strong>of</strong> ITC. They can be redirected to <strong>in</strong>crease both energy <strong>and</strong> labour<br />

efficiency with different <strong>in</strong>tensity. These efficiency parameters are additionally impacted by technological<br />

spillovers – a third element <strong>of</strong> ITC. Fourth, ITC is represented by the energy mix, which is driven by <strong>in</strong>vestments<br />

<strong>in</strong>to energy technologies. F<strong>in</strong>ally, REMIND <strong>models</strong> learn<strong>in</strong>g-by-do<strong>in</strong>g by means <strong>of</strong> learn<strong>in</strong>g curves, <strong>in</strong> particular<br />

<strong>for</strong> renewable energies. Investment costs <strong>of</strong> renewable energies decrease by 15% <strong>for</strong> each doubl<strong>in</strong>g <strong>of</strong><br />

cumulative <strong>in</strong>stalled capacity. There is no global learn<strong>in</strong>g, hence the different progress <strong>of</strong> regions <strong>in</strong><br />

technological learn<strong>in</strong>g is taken <strong>in</strong>to account.<br />

Emissions trad<strong>in</strong>g: Each region <strong>in</strong> REMIND is allocated an amount <strong>of</strong> emission permits <strong>for</strong> free, which<br />

corresponds to the regional emission cap <strong>and</strong> follows a given allocation rule. The sum <strong>of</strong> the regional emission<br />

permits equals the exogenously given global CO2 budget <strong>of</strong> the energy sector. For each unit <strong>of</strong> fossil resources<br />

converted <strong>in</strong>to f<strong>in</strong>al energy a permit is needed. Emissions trad<strong>in</strong>g provide the opportunity to buy <strong>and</strong> sell the<br />

permits. At each time step the worldwide sum <strong>of</strong> the exports <strong>of</strong> emission permits equals the sum <strong>of</strong> imports. The<br />

emissions trade is part <strong>of</strong> the whole trad<strong>in</strong>g system. All exports <strong>and</strong> imports <strong>of</strong> a region are subject to an<br />

<strong>in</strong>tertemporal trade balance which ensures that no deficits can be susta<strong>in</strong>ed <strong>in</strong> the long run. However, lend<strong>in</strong>g <strong>and</strong><br />

borrow<strong>in</strong>g <strong>of</strong> permits is possible temporarily.<br />

2.1.4. POLES<br />

POLES - ENERDATA/ LEPII-EPE – IEPE, Université Pierre Mendes France: works <strong>in</strong> a year-by-year recursive<br />

simulation <strong>and</strong> partial equilibrium framework from 2005 to 2050, with endogenous <strong>in</strong>ternational energy prices<br />

<strong>and</strong> lagged adjustments <strong>of</strong> supply <strong>and</strong> dem<strong>and</strong> by world region. POLES provides a detailed description <strong>of</strong> a large<br />

number <strong>of</strong> electricity technologies (large-scale, new <strong>and</strong> renewables) <strong>in</strong> each <strong>of</strong> the 47 POLES countries or<br />

regions cover<strong>in</strong>g the world. Their regional development depends on different factors such as fuel prices, <strong>policy</strong><br />

choices (nuclear phase out, <strong>in</strong>centives <strong>for</strong> renewables through payback tariffs, etc...) <strong>and</strong> specific features like<br />

seismic activity likely to <strong>in</strong>crease the <strong>in</strong>vestment cost <strong>for</strong> some technologies like nuclear. The improvement <strong>in</strong><br />

the technology per<strong>for</strong>mances <strong>and</strong> costs can be projected <strong>in</strong> two different ways: either us<strong>in</strong>g exogenous data from<br />

the TECHPOL database or through endogenous technical mechanisms through two-factor learn<strong>in</strong>g curves, which<br />

comb<strong>in</strong>e learn<strong>in</strong>g by do<strong>in</strong>g <strong>and</strong> learn<strong>in</strong>g by search<strong>in</strong>g processes.<br />

The impact <strong>of</strong> <strong>in</strong>duced technological change (ITC) on mitigation costs strongly depends on the way<br />

technological change is <strong>in</strong>troduced. Technological change is the complex result <strong>of</strong>: exogenous events (scientific<br />

discoveries), <strong>in</strong>ducement factors (e.g. R&D <strong>in</strong>vestment, relative prices) <strong>and</strong> endogenous mechanisms (e.g.<br />

learn<strong>in</strong>g by do<strong>in</strong>g). The two-factor learn<strong>in</strong>g curves (TFLC) <strong>in</strong> the POLES model are meant to provide a<br />

simplified but mean<strong>in</strong>gful description <strong>of</strong> technological change. The <strong>in</strong>corporation <strong>in</strong> POLES <strong>of</strong> TFLC<br />

relationships <strong>for</strong> the ma<strong>in</strong> technologies <strong>and</strong> technology clusters enable POLES to per<strong>for</strong>m R&D <strong>policy</strong><br />

simulations <strong>in</strong> a dynamic environment where an <strong>in</strong>crease <strong>in</strong> R&D ef<strong>for</strong>t produces improvements lead<strong>in</strong>g to<br />

higher technology adoption <strong>and</strong> hence to further improvements through experience ga<strong>in</strong>ed <strong>in</strong> a virtuous learn<strong>in</strong>g<br />

circle. R&D spend<strong>in</strong>g is exogenous <strong>in</strong> the model.<br />

6


Emissions trad<strong>in</strong>g: Emissions trad<strong>in</strong>g <strong>for</strong> each country is calculated as the difference between actual emissions<br />

<strong>and</strong> allocations. In each scenario POLES determ<strong>in</strong>es the Carbon Value <strong>for</strong> each <strong>in</strong>dividual carbon market.<br />

Relative abatement <strong>and</strong> trad<strong>in</strong>g costs are then calculated through the production <strong>for</strong> each country <strong>of</strong> the Marg<strong>in</strong>al<br />

Abatement Cost curves <strong>of</strong> the energy sector: these curves are confronted to the Carbon Value <strong>of</strong> the amount <strong>of</strong><br />

permits traded. The POLES model is then able to determ<strong>in</strong>e abatement <strong>and</strong> trad<strong>in</strong>g costs <strong>for</strong> all countries.<br />

2.1.5. TIMER<br />

TIMER – the Netherl<strong>and</strong>s Environmental Assessment Agency: the global energy model describes long-term<br />

trends <strong>in</strong> the world energy system, based on <strong>in</strong>terplay <strong>of</strong> dynamics factors such as development <strong>of</strong> energy<br />

dem<strong>and</strong>, depletion <strong>and</strong> technology development <strong>of</strong> various energy sources <strong>and</strong> technologies, cost based<br />

substitution <strong>and</strong> the development <strong>of</strong> climate <strong>policy</strong>. The TIMER model has been described <strong>in</strong> de Vries et al.<br />

(2001) <strong>and</strong> van Vuuren (2007). The current version <strong>of</strong> the model cover 26 regions - <strong>and</strong> the TIMER model <strong>for</strong>ms<br />

a part <strong>of</strong> the Integrated Assessment Model IMAGE. Energy dem<strong>and</strong> <strong>in</strong> TIMER is based on scenario assumptions<br />

<strong>for</strong> economic <strong>and</strong> population development. The economic activity <strong>in</strong>dicators are comb<strong>in</strong>ed with assumptions on<br />

technology development <strong>for</strong> end-<strong>use</strong> technologies, assumptions on autonomous energy efficiency improvement<br />

<strong>and</strong> structural change. In a next step, energy dem<strong>and</strong> is met based on selection <strong>of</strong> different energy carriers,<br />

<strong>in</strong>clud<strong>in</strong>g coal, oil <strong>and</strong> natural gas, traditional <strong>and</strong> modern biomass, electricity, hydrogen <strong>and</strong> heat. These energy<br />

carriers are selected on the basis <strong>of</strong> relative costs via a mult<strong>in</strong>omial logit distribution function (van Vuuren,<br />

2007). The f<strong>in</strong>al energy carriers are produced from a range <strong>of</strong> primary energy carriers that on their turn compete<br />

<strong>for</strong> market share on the basis <strong>of</strong> costs (e.g. electricity can be produced from fossil fuels, biomass <strong>and</strong> nuclear,<br />

solar, w<strong>in</strong>d <strong>and</strong> hydropower). Throughout the model, <strong>in</strong>ertia are <strong>in</strong>troduced by an explicit treatment <strong>of</strong> v<strong>in</strong>tages<br />

<strong>of</strong> capital stock. The costs <strong>of</strong> the primary energy carriers are determ<strong>in</strong>ed <strong>in</strong> the long-term by technology<br />

development (mostly based on learn<strong>in</strong>g-by-do<strong>in</strong>g i.e. technologies improve with their cumulative build-up <strong>of</strong><br />

<strong>in</strong>stalled capacity) <strong>and</strong> resource depletion (driv<strong>in</strong>g up costs <strong>for</strong> extraction <strong>of</strong> exhaustible energy resources with<br />

their cumulative production; <strong>and</strong> <strong>of</strong> renewable resources with annual production). An important technology <strong>in</strong><br />

TIMER <strong>in</strong> the context <strong>of</strong> climate <strong>policy</strong> is carbon capture- <strong>and</strong>-storage. This technology can be applied <strong>in</strong><br />

comb<strong>in</strong>ation with fossil-fuel <strong>and</strong> biomass fired power plants, <strong>in</strong> the <strong>in</strong>dustry end-<strong>use</strong> sector <strong>and</strong> <strong>in</strong> the production<br />

<strong>of</strong> hydrogen. Its <strong>use</strong> is cost driven - where costs are function <strong>of</strong> capture costs (that decl<strong>in</strong>e over time) <strong>and</strong> storage<br />

costs (that <strong>in</strong>crease as a function <strong>of</strong> depletion <strong>of</strong> storage capacity). TIMER is mostly <strong>use</strong>d <strong>in</strong> conjunction with the<br />

IMAGE <strong>in</strong>tegrated assessment model <strong>and</strong> the FAIR climate <strong>policy</strong> scanner. The comb<strong>in</strong>ation <strong>of</strong> the three <strong>models</strong><br />

allows development <strong>of</strong> multi-gas mitigation scenarios cover<strong>in</strong>g not only energy but also l<strong>and</strong>-<strong>use</strong> related sources.<br />

The FAIR model <strong>use</strong>s marg<strong>in</strong>al abatement curves (based on TIMER <strong>and</strong> IMAGE) to select a leastcost emission<br />

reduction pathways across all regions <strong>and</strong> sources (constra<strong>in</strong>ed by assumptions on emission trad<strong>in</strong>g). F<strong>in</strong>al<br />

strategies are evaluated <strong>in</strong> TIMER <strong>and</strong> IMAGE <strong>for</strong> energy, climate <strong>and</strong> l<strong>and</strong> <strong>use</strong> consequences.<br />

ITC: This description is adopted from van Vurren et al., 2006: An important aspect <strong>of</strong> the TIMER model is the<br />

endogenous <strong>for</strong>mulation <strong>of</strong> technological development on the basis <strong>of</strong> learn<strong>in</strong>g by- do<strong>in</strong>g. In the TIMER model,<br />

learn<strong>in</strong>g-by-do<strong>in</strong>g <strong>in</strong>fluences the capital-output ratio <strong>of</strong> coal, oil <strong>and</strong> gas production, the specific <strong>in</strong>vestment cost<br />

<strong>of</strong> renewable <strong>and</strong> nuclear energy, the cost <strong>of</strong> hydrogen technologies <strong>and</strong> the rate at which the energy conservation<br />

cost curves decl<strong>in</strong>e. In TIMER, the existence <strong>of</strong> a s<strong>in</strong>gle global learn<strong>in</strong>g curve is postulated. Regions are then<br />

assumed to pool knowledge <strong>and</strong> ‗learn‘ together or to be (partly) blocked from this pool. In the latter case, only<br />

the obviously smaller cumulated production with<strong>in</strong> the region itself drives the learn<strong>in</strong>g process. Substitution<br />

among energy carriers <strong>and</strong> technologies is described <strong>in</strong> the model with a mult<strong>in</strong>omial logit <strong>for</strong>mulation. The<br />

mult<strong>in</strong>omial logit model implies that the market share <strong>of</strong> a certa<strong>in</strong> technology or fuel type depends on costs<br />

relative to compet<strong>in</strong>g technologies. The option with the lowest costs obta<strong>in</strong>s the largest market share, but <strong>in</strong> most<br />

cases not the full market. The latter is <strong>in</strong>terpreted as a representation <strong>of</strong> heterogeneity <strong>in</strong> the <strong>for</strong>m <strong>of</strong> specific<br />

market niches <strong>for</strong> every technology or fuel. The mult<strong>in</strong>omial logit mechanism is <strong>use</strong>d <strong>in</strong> TIMER to describe<br />

substitution among end-<strong>use</strong> energy carriers, different <strong>for</strong>ms <strong>of</strong> electricity generation (coal, oil, natural gas,<br />

solar/w<strong>in</strong>d <strong>and</strong> nuclear) <strong>and</strong> substitution between fossil fuels <strong>and</strong> bioenergy.<br />

Emissions trad<strong>in</strong>g: A model <strong>of</strong> mitigation costs <strong>and</strong> emissions trade (FAIR, Den Elzen <strong>and</strong> Lucas, 2003) is<br />

l<strong>in</strong>ked to the TIMER model <strong>of</strong> the energy system. This model calculates the tradable emission permits, the<br />

<strong>in</strong>ternational permit price <strong>and</strong> the total abatement costs, with or without emissions trad<strong>in</strong>g, accord<strong>in</strong>g to the<br />

regional emission allowances <strong>of</strong> a certa<strong>in</strong> climate regime. The model <strong>use</strong>s aggregated permit dem<strong>and</strong> <strong>and</strong> supply<br />

curves derived from Marg<strong>in</strong>al Abatement Cost (MAC) curves <strong>for</strong> the different regions, gases <strong>and</strong> sources. The<br />

obta<strong>in</strong>ed <strong>in</strong>ternational permit price is then implemented <strong>in</strong> TIMER. In TIMER, ETS is <strong>use</strong>d <strong>in</strong> all scenarios.<br />

2.2. Research on Adaptation , Mitigation <strong>and</strong> Policies <strong>in</strong> FP7<br />

Research on Adaptation <strong>in</strong> FP7 recognises that the Adaptation should be considered with<strong>in</strong> the ‗triangle‘<br />

mitigation, socio-economic development <strong>and</strong> adaptation.<br />

7


In the follow<strong>in</strong>g are some selected projects on Climate Change Adaptation, Mitigation <strong>and</strong> Policies as listed <strong>in</strong><br />

the European Research Framework Program, Research on Climate Change (2009), <strong>in</strong>clud<strong>in</strong>g those with the<br />

develop<strong>in</strong>g countries:<br />

GILDED — Governance, Infrastructure, Lifestyle Dynamics <strong>and</strong> Energy Dem<strong>and</strong>: European Post-Carbon<br />

Communities, http://www.gildedeu.org/<br />

PACT — Pathways <strong>for</strong> Carbon Transitions, http://www.pact-carbon-transition.org/<br />

PLANETS — Probabilistic Long-Term Assessment <strong>of</strong> New Technology Scenarios, http://www.feemproject.net/planets/<br />

2.2.1. Modell<strong>in</strong>g Framework <strong>of</strong> the POEM project<br />

POEM project - Policy Options to engage Emerg<strong>in</strong>g Asian economies <strong>in</strong> a post-Kyoto regime,<br />

http://themasites.pbl.nl/en/themasites/image/projects/reports/poem.html , is us<strong>in</strong>g the IMAGE 2.4 modell<strong>in</strong>g<br />

Framework, developed by the IMAGE team from the Netherl<strong>and</strong>s Environmental Assessment Agency (PBL),<br />

consists <strong>of</strong> a number <strong>of</strong> sub <strong>models</strong>, structured as shown at the Figure 1.<br />

Scenarios: The objective <strong>of</strong> the IMAGE 2.4 model is to explore the long-term dynamics <strong>of</strong> global environmental<br />

change, follow<strong>in</strong>g from human development activities. This requires a coherent image <strong>of</strong> how the world system<br />

could evolve. Future greenho<strong>use</strong> gas emissions, <strong>for</strong> <strong>in</strong>stance, are the result <strong>of</strong> complex <strong>in</strong>teract<strong>in</strong>g demographic,<br />

techno-economic, socio-cultural <strong>and</strong> political <strong>for</strong>ces. Obviously, all <strong>of</strong> these key driv<strong>in</strong>g <strong>for</strong>ces are <strong>in</strong>herently<br />

uncerta<strong>in</strong> <strong>and</strong> <strong>in</strong>creas<strong>in</strong>gly uncerta<strong>in</strong> as the time horizon moves <strong>in</strong>to the future. The <strong>use</strong> <strong>of</strong> scenarios is a widely<br />

accepted approach <strong>for</strong> explor<strong>in</strong>g the b<strong>and</strong>width <strong>of</strong> future developments <strong>and</strong> the sensitivity <strong>of</strong> the outcome to<br />

alternative, yet <strong>in</strong>ternally consistent, sets <strong>of</strong> assumptions. Scenarios are thus images <strong>of</strong> how the future might<br />

unfold, <strong>and</strong> thus an appropriate tool <strong>for</strong> analyz<strong>in</strong>g how driv<strong>in</strong>g <strong>for</strong>ces may <strong>in</strong>fluence future emissions <strong>and</strong> <strong>in</strong><br />

assess<strong>in</strong>g the associated uncerta<strong>in</strong>ties.<br />

Figure 1. IMAGE 2.4 modell<strong>in</strong>g Framework<br />

A short description <strong>of</strong> some <strong>of</strong> the sub <strong>models</strong> <strong>of</strong> IMAGE 2.4 modell<strong>in</strong>g Framework:<br />

Demography: the model PHOENIX is a tool to assess future changes (simulation period is 1950-2100) <strong>in</strong> the<br />

population size <strong>and</strong> structure <strong>in</strong> relation to the socio-economic conditions <strong>and</strong> state <strong>of</strong> the environment <strong>for</strong> 25<br />

world regions <strong>of</strong> IMAGE 2.4.<br />

The Agricultural Economy Model (AEM) computes the regional dem<strong>and</strong> <strong>for</strong> food <strong>and</strong> feed crops <strong>and</strong> timber.<br />

Production required is determ<strong>in</strong>ed by the sum <strong>of</strong> domestic regional dem<strong>and</strong> <strong>and</strong> net trade.<br />

8


Energy Supply <strong>and</strong> Dem<strong>and</strong>: The IMAGE Energy Regional Model (TIMER) is a global energy model. Its<br />

ma<strong>in</strong> objective is to analyze the long-term trends <strong>in</strong> energy dem<strong>and</strong> <strong>and</strong> efficiency <strong>and</strong> the possible transition<br />

towards renewable energy sources.<br />

L<strong>and</strong> Use Emissions: The L<strong>and</strong>-Use Emissions Model (LUEM) computes the emissions <strong>of</strong> gaseous pollutants<br />

(greenho<strong>use</strong> gases, gas species <strong>in</strong>volved <strong>in</strong> ozone chemistry, aerosol <strong>for</strong>mation <strong>and</strong> acidify<strong>in</strong>g compounds),<br />

stemm<strong>in</strong>g from natural <strong>and</strong> l<strong>and</strong>-<strong>use</strong> related sources<br />

Carbon, Nitrogen <strong>and</strong> Water Cycle: In the carbon, nitrogen <strong>and</strong> water cycle component, IMAGE 2.4 <strong>in</strong>cludes<br />

<strong>models</strong> <strong>for</strong> describ<strong>in</strong>g the global carbon cycle (Terrestrial Carbon Model) <strong>and</strong> the global nitrogen <strong>and</strong> phosphate<br />

cycle.<br />

Climate impacts: The impacts <strong>of</strong> global warm<strong>in</strong>g on the global sea level are calculated by the Sea-Level Rise<br />

Model (SLRM), which has not been changed <strong>in</strong> IMAGE 2.4. In this model the total sea-level rise is <strong>in</strong>fluenced<br />

by thermal expansion <strong>of</strong> the oceans <strong>and</strong> by chang<strong>in</strong>g the net mass balance <strong>of</strong> glaciers <strong>and</strong> ice sheets. The most<br />

important ice sheets <strong>of</strong> Greenl<strong>and</strong> <strong>and</strong> Antarctica are taken <strong>in</strong>to account <strong>in</strong> SLRM<br />

2.2.2. Ensemble <strong>of</strong> <strong>models</strong> <strong>of</strong> the TOCSIN project<br />

TOCSIN — Technology-Oriented Cooperation <strong>and</strong> Strategies <strong>in</strong> India <strong>and</strong> Ch<strong>in</strong>a: Re<strong>in</strong><strong>for</strong>c<strong>in</strong>g the EU dialogue<br />

with Develop<strong>in</strong>g Countries on Climate Change Mitigation, http://tocs<strong>in</strong>.ordecsys.com/<br />

The FP6 TOCSIN project has evaluated climate change mitigation options <strong>in</strong> Ch<strong>in</strong>a <strong>and</strong> India <strong>and</strong> the conditions<br />

<strong>for</strong> strategic cooperation on research, development <strong>and</strong> demonstration (RD&D) <strong>and</strong> technology transfer with the<br />

European Union. In particular, the project <strong>in</strong>vestigated the strategic dimensions <strong>of</strong> RD&D cooperation <strong>and</strong> the<br />

challenge <strong>of</strong> creat<strong>in</strong>g <strong>in</strong>centives to encourage the participation <strong>of</strong> develop<strong>in</strong>g countries <strong>in</strong> post-2012 GHG<br />

emissions reduction strategies <strong>and</strong> technological cooperation.<br />

The research is structured around the <strong>use</strong> <strong>of</strong> an ensemble <strong>of</strong> <strong>models</strong> that are coupled together via advanced large<br />

scale mathematical programm<strong>in</strong>g techniques:<br />

(1) World <strong>and</strong> regional (i.e. Ch<strong>in</strong>a <strong>and</strong> India) MARKAL/TIMES bottom-up techno-economic <strong>models</strong> permitt<strong>in</strong>g<br />

a global assessment <strong>of</strong> technology options <strong>in</strong> different regions <strong>of</strong> the world. A full documentation on the TIMES<br />

model‘s generic equations, variables, <strong>and</strong> parameters, as well as its economic significance, is available from<br />

www.etsap.org<br />

(2) GEMINI-E3 is the name <strong>of</strong> a top down Computable General Equilibrium Model developed jo<strong>in</strong>tly by the<br />

French M<strong>in</strong>istry <strong>of</strong> Equipment <strong>and</strong> the French Atomic Energy Agency <strong>in</strong> collaboration with the Swiss Federal<br />

Institute <strong>of</strong> Technology (Lausanne) 1 .<br />

GEMINI-E3 is currently a family <strong>of</strong> general equilibrium <strong>models</strong>, all <strong>of</strong> them multi sector <strong>and</strong> dynamic, but some<br />

multi-country <strong>and</strong> some purely domestic or aimed at domestic <strong>policy</strong> assessment purposes. The orig<strong>in</strong>al version<br />

<strong>of</strong> the multi-country model is fully described <strong>in</strong> Bernard (1998). Several successive versions have been<br />

developed, with an <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> countries/regions (from 3 to 28) <strong>and</strong> an <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> sectors<br />

(from 8 to 18). A more detailed representation <strong>of</strong> countries <strong>and</strong> sectors was required by new types <strong>of</strong> appraisal,<br />

from very global ones such as the Kyoto Protocol to more precise ones such as the European Trad<strong>in</strong>g System<br />

implemented from the start <strong>of</strong> 2005. GEMINI-E3 as <strong>use</strong>d <strong>for</strong> this project <strong>in</strong>cludes a representation <strong>of</strong> develop<strong>in</strong>g<br />

countries‘ economies (i.e. Ch<strong>in</strong>a <strong>and</strong> India) permitt<strong>in</strong>g an assessment <strong>of</strong> welfare, terms <strong>of</strong> trade <strong>and</strong> emissions<br />

trad<strong>in</strong>g effects; As <strong>for</strong> numerical specification <strong>and</strong> resolution, the present version <strong>of</strong> GEMINI-E3 (<strong>and</strong> GEMINI-<br />

EMU) is <strong>for</strong>mulated as a mixed complementarity problem us<strong>in</strong>g GAMS with the PATH solver.<br />

(3) The World Induced Technical Change Hybrid WITCH model 2 is an energy-economy-climate model<br />

developed by the climate change group at FEEM. WITCH is represent<strong>in</strong>g the effect on economic growth <strong>of</strong><br />

technology competition <strong>in</strong> a global climate change mitigation context.<br />

The model has been <strong>use</strong>d extensively <strong>for</strong> the analysis <strong>of</strong> the economics <strong>of</strong> climate change policies.<br />

WITCH is an economic model with a specific representation <strong>of</strong> the energy sector, thus belong<strong>in</strong>g to the new<br />

class <strong>of</strong> fully <strong>in</strong>tegrated (hard l<strong>in</strong>k) hybrid <strong>models</strong>. It is a global model, divided <strong>in</strong>to 12 macro-regions. For the<br />

present analysis the dist<strong>in</strong>guish<strong>in</strong>g features <strong>of</strong> the model are two.<br />

The first one is the representation <strong>of</strong> endogenous technical change <strong>in</strong> the energy sector. Advancements <strong>in</strong> carbon<br />

mitigation technologies are described by both diffusion <strong>and</strong> <strong>in</strong>novation processes. Learn<strong>in</strong>g by Do<strong>in</strong>g <strong>and</strong> by<br />

Research<strong>in</strong>g allows devis<strong>in</strong>g the optimal <strong>in</strong>vestment strategies <strong>in</strong> technologies <strong>and</strong> R&D <strong>in</strong> response to given<br />

1 GEMINI-E3 France (Bernard (1999a) ,Bernard (1999b)), GEMINI-E3 Switzerl<strong>and</strong> (Bernard<br />

et alii (2005)}, GEMINI-E3 Tunisia, (Besma (2006)).<br />

2<br />

See www.feem-web.it/witch <strong>for</strong> a list <strong>of</strong> applications <strong>and</strong> papers<br />

9


climate policies. Moreover, knowledge <strong>in</strong> a country does not depend solely on R&D <strong>in</strong>vestments <strong>in</strong> that country<br />

but it is partially affected by other countries‘ R&D <strong>in</strong>vestments, via an <strong>in</strong>ternational spillovers mechanism. The<br />

second relevant model<strong>in</strong>g feature is the game-theoretic set up. The model is able to produce two different<br />

solutions, one assum<strong>in</strong>g countries fully cooperate on global externalities, the so called globally optimal solution.<br />

The second is a decentralized solution that is strategically optimal <strong>for</strong> each given region <strong>in</strong> response to all other<br />

regions choice, the def<strong>in</strong>ition <strong>of</strong> Nash equilibrium. This model<strong>in</strong>g features allows to account <strong>for</strong> externalities due<br />

to all global public goods (CO2, <strong>in</strong>ternational knowledge spillovers, exhaustible resources etc.), mak<strong>in</strong>g possible<br />

to model free rid<strong>in</strong>g <strong>in</strong>centives.<br />

3. A review <strong>of</strong> widely <strong>use</strong>d energy-environmental modell<strong>in</strong>g tools<br />

Table 1 Computer Models to be presented <strong>in</strong> details<br />

Model Organisation (l<strong>in</strong>k) Availability<br />

LEAP<br />

Stockholm Environment Institute<br />

(http://www.energycommunity.org/)<br />

Commercial/free <strong>for</strong><br />

develop<strong>in</strong>g countries<br />

<strong>and</strong> students<br />

EnergyPLAN Aalborg University (http://www.energyplan.eu/) Free to Download<br />

MARKAL/TIMES<br />

Energy Technology Systems Analysis Program, International<br />

Energy Agency (http://www.etsap.org/)<br />

Commercial<br />

MESSAGE<br />

International Institute <strong>for</strong> Applied Systems Analysis<br />

(http://www.iiasa.ac.at/)<br />

Free/Simulators must be<br />

purchased<br />

IKARUS<br />

INFORSE<br />

Mesap PlaNet<br />

Research Centre Jülich, Institute <strong>of</strong> Energy Research<br />

(http://www.fz-juelich.de/ief/ief-ste/<strong>in</strong>dex.php?<strong>in</strong>dex=3)<br />

The International Network <strong>for</strong> Susta<strong>in</strong>able Energy<br />

(http://www.<strong>in</strong><strong>for</strong>se.org/europe/Vision2050.htm)<br />

seven2one<br />

(http://www.seven2one.de/de/technologie/mesap.html)<br />

Commercial/Earlier<br />

versions are free<br />

Distributed to nongovernmental<br />

organisations<br />

Commercial<br />

PRIMES <strong>and</strong><br />

GEM-E3<br />

National Technical University <strong>of</strong> Athens<br />

(http://www.e3mlab.ntua.gr/)<br />

Projects completed <strong>for</strong> a<br />

fee<br />

BALMOREL<br />

Project Driven with a <strong>use</strong>rs network <strong>and</strong> <strong>for</strong>um around it<br />

(http://www.balmorel.com)<br />

Free to Download (open<br />

source)<br />

ENPEP-<br />

BALANCE<br />

Argonne National Laboratory. Energy <strong>and</strong> Power Evaluation<br />

Program.


Development) based <strong>use</strong>rs. Currently LEAP has over 5000 <strong>use</strong>rs <strong>in</strong> 169 countries <strong>and</strong> to <strong>use</strong> LEAP typically<br />

requires three or four days <strong>of</strong> tra<strong>in</strong><strong>in</strong>g (onl<strong>in</strong>e tra<strong>in</strong><strong>in</strong>g is available <strong>in</strong> English). www.energycommunity.org<br />

LEAP is a comprehensive <strong>in</strong>tegrated scenario-based energy-environment model<strong>in</strong>g tool. Its scenarios account <strong>for</strong><br />

how energy is consumed, converted <strong>and</strong> produced <strong>in</strong> a given energy system under a range <strong>of</strong> alternative<br />

assumptions on population, economic development, technology, price <strong>and</strong> so on. It is notable <strong>for</strong> its flexibility,<br />

transparency <strong>and</strong> <strong>use</strong>r-friendl<strong>in</strong>ess. LEAP is primarily an account<strong>in</strong>g system but <strong>use</strong>rs can also build<br />

econometric <strong>and</strong> simulation-based <strong>models</strong>. The <strong>use</strong>r can mix <strong>and</strong> match these methodologies as required <strong>in</strong> a<br />

given analysis. For example, a <strong>use</strong>r might create top-down projections <strong>of</strong> energy dem<strong>and</strong> <strong>in</strong> one sector based on<br />

a few macroeconomic <strong>in</strong>dicators (price, GDP), while creat<strong>in</strong>g a detailed bottom-up <strong>for</strong>ecast based on an end-<strong>use</strong><br />

analysis <strong>in</strong> other sectors. LEAP supports both f<strong>in</strong>al <strong>and</strong> <strong>use</strong>ful energy dem<strong>and</strong> analyses as well as detailed stockturnover<br />

modell<strong>in</strong>g <strong>for</strong> transportation <strong>and</strong> other analyses. On the supply side LEAP supports a range <strong>of</strong><br />

simulation methods <strong>for</strong> modell<strong>in</strong>g both capacity expansion <strong>and</strong> plant dispatch. LEAP <strong>in</strong>cludes a built-<strong>in</strong><br />

Technology <strong>and</strong> Environmental Database (TED) conta<strong>in</strong><strong>in</strong>g data on the costs, per<strong>for</strong>mance <strong>and</strong> emission factors<br />

<strong>for</strong> over 1000 energy technologies. LEAP can be <strong>use</strong>d to calculate the emissions pr<strong>of</strong>iles <strong>and</strong> can also be <strong>use</strong>d to<br />

create scenarios <strong>of</strong> non-energy sector emissions <strong>and</strong> s<strong>in</strong>ks (e.g. from cement production, l<strong>and</strong>-<strong>use</strong> change, solid<br />

waste, etc.).<br />

LEAP <strong>in</strong>cludes features designed to make creat<strong>in</strong>g scenarios, manag<strong>in</strong>g <strong>and</strong> document<strong>in</strong>g data <strong>and</strong> assumptions<br />

<strong>and</strong> view<strong>in</strong>g results reports as easy <strong>and</strong> flexible as possible. For example, LEAP's ma<strong>in</strong> data structure is<br />

<strong>in</strong>tuitively displayed as a hierarchical "tree" which be edited by dragg<strong>in</strong>g <strong>and</strong> dropp<strong>in</strong>g or copy<strong>in</strong>g <strong>and</strong> past<strong>in</strong>g<br />

branches. St<strong>and</strong>ard energy balance tables <strong>and</strong> Reference Energy System (RES) diagrams are automatically<br />

generated <strong>and</strong> kept synchronized as the <strong>use</strong>r edits the tree. The Results View is an extremely powerful report<br />

generator capable <strong>of</strong> generat<strong>in</strong>g thous<strong>and</strong>s <strong>of</strong> reports as charts or tables. LEAP is designed to work closely with<br />

Micros<strong>of</strong>t Office products (Word, Excel, PowerPo<strong>in</strong>t) mak<strong>in</strong>g it easy to import, export <strong>and</strong> l<strong>in</strong>k to data <strong>and</strong><br />

<strong>models</strong> created elsewhere.<br />

A list <strong>of</strong> 34 reports <strong>in</strong>volv<strong>in</strong>g LEAP can be obta<strong>in</strong>ed from [2]. In addition, LEAP has been <strong>use</strong>d <strong>for</strong> over 70 peerreviewed<br />

journal papers <strong>in</strong>clud<strong>in</strong>g, an analysis <strong>of</strong> the potential reductions <strong>in</strong> energy dem<strong>and</strong> <strong>and</strong> GHG emissions<br />

with<strong>in</strong> road transport <strong>in</strong> Ch<strong>in</strong>a [3], identify<strong>in</strong>g the feasible penetration <strong>of</strong> susta<strong>in</strong>able energy on the Greek isl<strong>and</strong><br />

<strong>of</strong> Crete [4], <strong>and</strong> an <strong>in</strong>vestigation <strong>in</strong>to the benefits <strong>of</strong> improved build<strong>in</strong>g energy-efficiencies <strong>in</strong> Ch<strong>in</strong>a [5]. A<br />

recent EU relation publication is the study <strong>for</strong> the 27 EU countries named ―Europe‘s Share <strong>of</strong> the Climate<br />

Challenge: Domestic Actions <strong>and</strong> International Obligations to Protect the Planet‖ 3<br />

LEAP implementations Costs:<br />

IHS will require a paid license - cost US$ 3.000 (EUR 2.200) <strong>for</strong> 2 years.<br />

All <strong>of</strong> the other organizations (assum<strong>in</strong>g they are not-<strong>for</strong>-pr<strong>of</strong>it organizations) qualify <strong>for</strong> free licenses.<br />

The national "starter" data sets <strong>for</strong> LEAP <strong>for</strong> our partners will be provided cost free.<br />

The costs <strong>in</strong>volved <strong>in</strong> the backstopp<strong>in</strong>g technical support: an <strong>in</strong>itial guess would be to budget <strong>for</strong> at least 5 days<br />

<strong>of</strong> time <strong>of</strong> one <strong>of</strong> our more junior staff. This would cost 5 x US$500 = US $2.500 (EUR 1.820).<br />

The costs <strong>in</strong>volved <strong>in</strong> the one week tra<strong>in</strong><strong>in</strong>g on LEAP, say <strong>in</strong> Vienna: Assum<strong>in</strong>g this was undertaken by the<br />

senior associate Charlie Heap the costs would be his time (5 x US$1100) = $5.500 (EUR 4.000) plus travel <strong>and</strong><br />

accommodation expenses. So roughly US$ 8.000 (EUR 5.850). If there were more than 10 tra<strong>in</strong>ees then we<br />

would need a second tra<strong>in</strong>er (not necessarily as expensive as me). This assumes that IHS would provide the<br />

venue <strong>and</strong> all tra<strong>in</strong><strong>in</strong>g equipment<br />

3.2. EnergyPLAN<br />

EnergyPLAN has been developed <strong>and</strong> exp<strong>and</strong>ed on a cont<strong>in</strong>uous basis s<strong>in</strong>ce 1999 at Aalborg University,<br />

Denmark [90]. Approximately ten versions <strong>of</strong> EnergyPLAN have been created <strong>and</strong> it has been downloaded by<br />

more than 1200 people. The current version can be downloaded <strong>for</strong> free from [22] while the tra<strong>in</strong><strong>in</strong>g period<br />

required can take a few days up to a month, depend<strong>in</strong>g on the level <strong>of</strong> complexity required.<br />

EnergyPLAN is a <strong>use</strong>r-friendly tool designed <strong>in</strong> a series <strong>of</strong> tab sheets <strong>and</strong> programmed <strong>in</strong> Delphi Pascal. The<br />

ma<strong>in</strong> purpose <strong>of</strong> the tool is to assist the design <strong>of</strong> national or regional energy plann<strong>in</strong>g strategies by simulat<strong>in</strong>g<br />

the entire energy-system: this <strong>in</strong>cludes heat <strong>and</strong> electricity supplies as well as the transport <strong>and</strong> <strong>in</strong>dustrial sectors.<br />

All thermal, renewable, storage/conversion, transport, <strong>and</strong> costs (with the option <strong>of</strong> additional costs) can be<br />

modelled by EnergyPLAN. It is a determ<strong>in</strong>istic <strong>in</strong>put/output tool <strong>and</strong> general <strong>in</strong>puts are dem<strong>and</strong>s, renewable<br />

energy sources, energy station capacities, costs, <strong>and</strong> a number <strong>of</strong> different regulation strategies <strong>for</strong> import/export<br />

3<br />

Heaps Ch., Erickson P., Kartha S., Kemp-Benedict E.,(2009), Europe‘s Share <strong>of</strong> the Climate Challenge: Domestic Actions<br />

<strong>and</strong> International Obligations to Protect the Planet, Stockholm Environment Institute<br />

11


<strong>and</strong> excess electricity production. Outputs are energy balances <strong>and</strong> result<strong>in</strong>g annual productions, fuel<br />

consumption, import/export <strong>of</strong> electricity, <strong>and</strong> total costs <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>come from the exchange <strong>of</strong> electricity. In<br />

the programm<strong>in</strong>g, any procedures which would <strong>in</strong>crease the calculation time have been avoided, <strong>and</strong> the<br />

computation <strong>of</strong> 1 year requires only a few seconds on a normal computer. F<strong>in</strong>ally, EnergyPLAN optimises the<br />

operation <strong>of</strong> a given system as opposed to tools which optimise <strong>in</strong>vestments <strong>in</strong> the system.<br />

Previously, EnergyPLAN has been <strong>use</strong>d to analyse the large-scale <strong>in</strong>tegration <strong>of</strong> w<strong>in</strong>d [6] as well as optimal<br />

comb<strong>in</strong>ations <strong>of</strong> renewable energy sources [7], management <strong>of</strong> surplus electricity [8], the <strong>in</strong>tegration <strong>of</strong> w<strong>in</strong>d<br />

power us<strong>in</strong>g Vehicle-to-Grid electric-vehicles [9], the implementation <strong>of</strong> small-scale CHP [10], <strong>in</strong>tegrated<br />

systems <strong>and</strong> local energy markets [11], renewable energy strategies <strong>for</strong> susta<strong>in</strong>able development [12], the <strong>use</strong> <strong>of</strong><br />

waste <strong>for</strong> energy purposes [13], the potential <strong>of</strong> fuel cells <strong>and</strong> electrolysers <strong>in</strong> future energy-systems [14,15], the<br />

potential <strong>of</strong> thermoelectric generation (TEG) <strong>in</strong> thermal energy-systems [16], <strong>and</strong> the effect <strong>of</strong> energy storage<br />

[17], with specific work on compressed-air energy storage [18,19] <strong>and</strong> thermal energy storage [6,7, 25]. In<br />

addition, EnergyPLAN was <strong>use</strong>d to analyse the potential <strong>of</strong> CHP <strong>and</strong> renewable energy <strong>in</strong> Estonia, Germany,<br />

Pol<strong>and</strong>, Spa<strong>in</strong>, <strong>and</strong> the UK [26]. Other publications can be seen on the EnergyPLAN website [19], while an<br />

<strong>overview</strong> <strong>of</strong> the work completed us<strong>in</strong>g EnergyPLAN is available <strong>in</strong> [20]. F<strong>in</strong>ally, EnergyPLAN has been <strong>use</strong>d to<br />

simulate a 100% renewable energy-system <strong>for</strong> the isl<strong>and</strong> <strong>of</strong> Mljet <strong>in</strong> Croatia [21] as well as the countries <strong>of</strong><br />

Irel<strong>and</strong> [106] <strong>and</strong> Denmark [22, 27].<br />

3.3. MARKAL/TIMES<br />

MARKAL (MARket ALlocation) is a technology-rich energy/economic/environmental model. It was developed<br />

<strong>in</strong> a collaborative ef<strong>for</strong>t under the auspices <strong>of</strong> the International Energy Agency Energy Technology Systems<br />

Analysis Programme (ETSAP). MARKAL is a generic model tailored by the <strong>in</strong>put data to represent the<br />

evolution over a period <strong>of</strong> usually 20 to 50 years <strong>of</strong> a specific energy-environment system at the national,<br />

regional, state or prov<strong>in</strong>ce, or community level. The system is represented as a network, depict<strong>in</strong>g all possible<br />

flows <strong>of</strong> energy from resource extraction, through energy trans<strong>for</strong>mation <strong>and</strong> end-<strong>use</strong> devices, to dem<strong>and</strong> <strong>for</strong><br />

<strong>use</strong>ful energy services. Each l<strong>in</strong>k <strong>in</strong> the network is characterized by a set <strong>of</strong> technical coefficients (e.g., capacity,<br />

efficiency), environmental emission coefficients (e.g., CO2, SOx, NOx), <strong>and</strong> economic coefficients (e.g., capital<br />

costs, date <strong>of</strong> commercialization). Many such energy networks or Reference Energy Systems (RES) are feasible<br />

<strong>for</strong> each time period. MARKAL f<strong>in</strong>ds the best RES <strong>for</strong> each time period by select<strong>in</strong>g the set <strong>of</strong> options that<br />

m<strong>in</strong>imizes total system cost over the entire plann<strong>in</strong>g horizon. TIMES (The Integrated MARKAL-EFOM<br />

System) builds on the best features <strong>of</strong> MARKAL <strong>and</strong> the Energy Flow Optimization Model (EFOM). In order to<br />

work with MARKAL, you need a number <strong>of</strong> s<strong>of</strong>tware elements: MARKAL itself, a <strong>use</strong>r-<strong>in</strong>terface (two are<br />

available <strong>for</strong> W<strong>in</strong>dows: ANSWER <strong>and</strong> VEDA), GAMS (a high-level model<strong>in</strong>g system <strong>for</strong> mathematical<br />

programm<strong>in</strong>g problems) <strong>and</strong> an optimiz<strong>in</strong>g solver such as MINOS, CPLEX or OSL.<br />

Figure 2. ETSAP developed <strong>and</strong> coded two model generators - MARKAL <strong>and</strong> TIMES - <strong>and</strong> two data<br />

management systems: ANSWER <strong>and</strong> VEDA<br />

A number <strong>of</strong> variations <strong>of</strong> MARKAL are available <strong>in</strong>clud<strong>in</strong>g<br />

<br />

<br />

MARKAL-MACRO: which l<strong>in</strong>ks MARKAL with a macroeconomic model to provide dem<strong>and</strong>s that are<br />

endogenous <strong>and</strong> responsive to price, <strong>and</strong> estimates <strong>of</strong> GDP impact <strong>and</strong> feedbacks.<br />

STOCHASTIC, which associates probabilities with the occurrence <strong>of</strong> each scenario, allow<strong>in</strong>g hedg<strong>in</strong>g<br />

strategies to be determ<strong>in</strong>ed that identify robust rather than purely optimal strategies.<br />

12


GOAL PROGRAMMING: which solves MARKAL accord<strong>in</strong>g to the weighted preferences <strong>of</strong> various<br />

stakeholders with respect to cost versus environmental goals.<br />

The MARKAL/TIMES (www.etsap.org) tools have been <strong>use</strong>d <strong>for</strong> countless studies [36], which <strong>in</strong>clude an<br />

<strong>in</strong>vestigation <strong>in</strong>to the future prospects <strong>of</strong> hydrogen <strong>and</strong> fuel cells [37-39], as well as hydrogen vehicles [40,41],<br />

exam<strong>in</strong>ations <strong>in</strong>to the future role <strong>of</strong> nuclear power [42] <strong>and</strong> nuclear fusion [43-45], <strong>and</strong> the impacts <strong>of</strong> w<strong>in</strong>d<br />

power on the future <strong>use</strong> <strong>of</strong> fuels [46]. Also, MARKAL/TIMES has been <strong>use</strong>d to simulate European Commission<br />

<strong>in</strong>tegrated policies on the <strong>use</strong> <strong>of</strong> renewable sources, climate change mitigation <strong>and</strong> energy efficiency<br />

improvement, the so called 20–20–20 targets, <strong>and</strong> far more str<strong>in</strong>gent targets <strong>in</strong> the longer term at the national <strong>and</strong><br />

pan EU level [47].<br />

At the moment, MARKAL/TIMES is <strong>use</strong>d <strong>in</strong> 70 countries by 250 <strong>in</strong>stitutions (<strong>of</strong> which 75% are active <strong>use</strong>rs).<br />

The source code is distributed free-<strong>of</strong>-charge by sign<strong>in</strong>g a Letter <strong>of</strong> Agreement. However, the code is written <strong>in</strong><br />

GAMS, which is a commercial language <strong>and</strong> there<strong>for</strong>e has to be purchased. In addition, both an <strong>in</strong>terface <strong>and</strong> a<br />

solver must also be purchased to <strong>use</strong> the source code effectively: as a result the total cost is approximately<br />

US$1780–US$4420 (€1275– €3170) <strong>for</strong> an educational license <strong>and</strong> approximately US$13,700– US$21,200<br />

(€9825–15,200) <strong>for</strong> a commercial license [35]. The most dem<strong>and</strong><strong>in</strong>g part <strong>of</strong> MARKAL/TIMES is tra<strong>in</strong><strong>in</strong>g which<br />

takes some months.<br />

MARKAL/TIMES applications by our consortium members:<br />

a. In the Republic <strong>of</strong> Moldova <strong>for</strong> Energy Efficiency <strong>and</strong> RES Analysis; Presented at the ETSAP<br />

Workshop 2010; The model was developed <strong>in</strong> the framework <strong>of</strong> the Synenergy Project Funded by<br />

USAID- Hellenic Aid; Developers: Sergiu Robu, Institute <strong>of</strong> Power Eng<strong>in</strong>eer<strong>in</strong>g, Academy <strong>of</strong> Sciences<br />

<strong>of</strong> Moldova; www.ie.asm.md; sergiu.robu@asm.md; Philip Siakkis CRES -Centre <strong>for</strong> Renewable<br />

Energy Sources, Greece, fsiakkis@cres.gr ; Dr. George Giannakidis, CRES -Centre <strong>for</strong> Renewable<br />

Energy Sources, Greece, www.cres.gr ggian@cres.gr ;<br />

b. MARKAL applications <strong>in</strong> Turkey: (1) Establish<strong>in</strong>g energy efficiency <strong>and</strong> mitigation strategies <strong>in</strong><br />

Turkey by Egemen Sulukan, Mustafa Saglam, (2) Analys<strong>in</strong>g Alternative Scenarios on TURKISH<br />

MARKAL Model by Tanay S. Uyar, Egemen Sulukan, Mustafa Salam, both teams from Uni-Marmara,<br />

Istanbul<br />

3.4. MESSAGE<br />

MESSAGE (Model <strong>for</strong> Energy Supply Strategy Alternatives <strong>and</strong> their General Environmental Impact) has<br />

been developed by the International Institute <strong>for</strong> Applied Systems Analysis (IIASA) <strong>in</strong> Austria s<strong>in</strong>ce the 1980s<br />

[48,49]. Depend<strong>in</strong>g on the scope <strong>and</strong> research question, various different versions <strong>of</strong> MESSAGE have been<br />

created with several hundred <strong>use</strong>rs. It is free <strong>for</strong> academic purposes, <strong>and</strong> a special agreement between the IIASA<br />

<strong>and</strong> IAEA (International Atomic Energy Agency) permits its <strong>use</strong> with<strong>in</strong> the IAEA <strong>and</strong> its member states. The<br />

latter has facilitated a number <strong>of</strong> <strong>in</strong>-depth tra<strong>in</strong><strong>in</strong>g courses <strong>for</strong> energy experts <strong>in</strong> the IAEA member countries:<br />

usually tak<strong>in</strong>g approximately 2 weeks <strong>of</strong> tra<strong>in</strong><strong>in</strong>g to be able complete basic applications.<br />

MESSAGE is a systems eng<strong>in</strong>eer<strong>in</strong>g optimisation tool <strong>use</strong>d <strong>for</strong> the plann<strong>in</strong>g <strong>of</strong> medium to long-term energysystems,<br />

analys<strong>in</strong>g climate change policies, <strong>and</strong> develop<strong>in</strong>g scenarios <strong>for</strong> national or global regions. The tool<br />

<strong>use</strong>s a 5 or 10 year time-step to simulate a maximum <strong>of</strong> 120 years. All thermal generation, renewable,<br />

storage/conversion, transport technologies, <strong>and</strong> costs (<strong>in</strong>clud<strong>in</strong>g SO2 <strong>and</strong> NOX costs) can be simulated by<br />

MESSAGE as well as carbon sequestration. The tool‘s pr<strong>in</strong>cipal results are the estimation <strong>of</strong> global <strong>and</strong> regional<br />

multi-sector mitigation strategies <strong>in</strong>stead <strong>of</strong> climate targets. MESSAGE determ<strong>in</strong>es cost-effective <strong>portfolios</strong> <strong>of</strong><br />

GHG emission limitation <strong>and</strong> reduction measures. It has recently been extended to cover the full suite <strong>of</strong> GHGs<br />

<strong>and</strong> other radiative substances, <strong>for</strong> the development <strong>of</strong> multi-gas scenarios that try to stabilise future CO2-<br />

equivalent concentrations [50].<br />

MESSAGE has previously been <strong>use</strong>d to develop global energy transition pathways <strong>for</strong> the World Energy<br />

Council [51] <strong>and</strong> GHG emission scenarios <strong>for</strong> the Intergovernmental Panel on Climate Change [52]. Other<br />

studies <strong>in</strong>clude scenario assessment with a focus on climate stabilization [53, 54], national studies <strong>of</strong> <strong>in</strong>novation<br />

programs on the Iranian electricity sector [55], <strong>policy</strong> options <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g the <strong>use</strong> <strong>of</strong> renewable energy [56],<br />

energy supply options <strong>in</strong> the Baltic States [57], <strong>and</strong> design<strong>in</strong>g a susta<strong>in</strong>able energy plan <strong>for</strong> Cuba [58].<br />

MESSAGE has been <strong>use</strong>d to simulate renewable-energy penetrations <strong>of</strong> 70% <strong>in</strong> the electricity sector, 60% <strong>in</strong> the<br />

heat sector, <strong>and</strong> 55% <strong>in</strong> the transport sector, <strong>in</strong> the GGI B1 scenario <strong>of</strong> [54] (all the quantitative data <strong>for</strong> this<br />

study is available at [59]).<br />

3.5. IKARUS<br />

IKARUS is a dynamic bottom-up l<strong>in</strong>ear cost-optimisation scenario tool <strong>for</strong> national energy-systems, which is<br />

ma<strong>in</strong>ta<strong>in</strong>ed by the Institute <strong>of</strong> Energy Research at Jülich Research Centre, Germany [60]. To date 20 versions<br />

13


have been released, but the current version is not commercially available. However, earlier versions are sold <strong>for</strong><br />

approximately €250 <strong>and</strong> to <strong>use</strong> IKARUS requires at least three months <strong>of</strong> tra<strong>in</strong><strong>in</strong>g.<br />

A time-step <strong>of</strong> five years is <strong>use</strong>d by IKARUS <strong>and</strong> each one is optimised by itself us<strong>in</strong>g the heritage from all<br />

periods be<strong>for</strong>e. The tool can simulate a timeframe <strong>of</strong> approximately 40 years (usually up to 2050). Unlike<br />

perfect-<strong>for</strong>esight tools, IKARUS does not take <strong>in</strong>to account future changes <strong>in</strong> each time-step dur<strong>in</strong>g the<br />

optimisation to provide a realistic character <strong>of</strong> prognosis <strong>and</strong> projection. There<strong>for</strong>e, aspects like reaction to<br />

sudden changes (e.g. <strong>of</strong> energy prices), flexibility <strong>of</strong> technical scenarios, lost opportunities, etc., can be<br />

exam<strong>in</strong>ed. Interactions with macroeconomic <strong>in</strong>put/output tools, dependencies on elasticities, <strong>and</strong> technological<br />

learn<strong>in</strong>g are also possible. The objective is normally to reduce total system costs, but numerous other objectives<br />

can be specified such as emissions reductions. IKARUS simulates all sectors <strong>of</strong> the energy-system <strong>and</strong> almost all<br />

generation, storage/conversion, <strong>and</strong> transport technologies: the only technologies not considered are wave, tidal,<br />

compressed-air energy storage, <strong>and</strong> <strong>in</strong>telligent battery-electric vehicles.<br />

Some <strong>in</strong>vestigations that IKARUS has contributed to are an <strong>in</strong>vestigation <strong>in</strong>to the role <strong>of</strong> carbon capture <strong>and</strong><br />

storage (CCS) <strong>in</strong> reduc<strong>in</strong>g carbon emissions [61], the effects <strong>of</strong> stochastic energy prices on long-term energy<br />

scenarios [62], the <strong>in</strong>troduction <strong>of</strong> fuzzy constra<strong>in</strong>ts to provide a better representation <strong>of</strong> political decisionmak<strong>in</strong>g<br />

processes <strong>in</strong> the energy economy <strong>and</strong> energy <strong>policy</strong> [63], <strong>and</strong> the implications <strong>of</strong> high energy prices [64].<br />

3.6. INFORSE<br />

INFORSE (International Network <strong>for</strong> Susta<strong>in</strong>able Energy) is an energy balanc<strong>in</strong>g tool <strong>for</strong> national energysystems<br />

developed <strong>in</strong> 2002 by the network [64]. It is currently not <strong>for</strong> sale to external <strong>use</strong>rs, but <strong>in</strong>stead is<br />

distributed to non-governmental organisations (NGOs). To <strong>use</strong> INFORSE requires 2–4 weeks <strong>of</strong> tra<strong>in</strong><strong>in</strong>g.<br />

The tool consists <strong>of</strong> l<strong>in</strong>ked spreadsheets which are <strong>use</strong>d to <strong>in</strong>put the details <strong>of</strong> the energy-system be<strong>in</strong>g<br />

modelled. These <strong>in</strong>clude details about energy production, energy dem<strong>and</strong>, energy trends, <strong>and</strong> energy policies. All<br />

thermal generation, renewable generation, <strong>and</strong> hydrogen-based storage/conversion devices except tidal power are<br />

available. The transport technologies <strong>in</strong>cluded are conventional, battery-electric, <strong>and</strong> hydrogen vehicles as well<br />

as rail. The results from INFORSE give an <strong>overview</strong> <strong>for</strong> the possible energy development <strong>in</strong> a country or region,<br />

by provid<strong>in</strong>g an energy balance <strong>for</strong> every decade simulated over a maximum timeframe <strong>of</strong> 100 years. This<br />

illustrates the potential <strong>use</strong> <strong>of</strong> renewable energy <strong>and</strong> identifies the trends <strong>in</strong> energy efficiency, energy services,<br />

<strong>and</strong> energy policies entered <strong>in</strong>to INFORSE. The costs <strong>in</strong> INFORSE <strong>in</strong>clude an overall energy cost <strong>and</strong> CO2<br />

costs.<br />

INFORSE has been <strong>use</strong>d to simulate the potential utilisation <strong>of</strong> renewable energy by 2050 <strong>for</strong> a number <strong>of</strong><br />

countries <strong>in</strong>clud<strong>in</strong>g Belarus, Bulgaria, Denmark, Latvia, Lithuania, Romania, Russia, Slovakia, Ukra<strong>in</strong>e, <strong>and</strong> the<br />

UK, as well as simulat<strong>in</strong>g a 100% renewable energy-system <strong>for</strong> Denmark by 2030. These studies can be<br />

accessed via the INFORSE homepage [64].<br />

3.7. Mesap PlaNet<br />

Mesap (Modular Energy-System Analysis <strong>and</strong> Plann<strong>in</strong>g Environment) is an energy-system analysis toolbox,<br />

<strong>and</strong> PlaNet (Plann<strong>in</strong>g Network) is a l<strong>in</strong>ear network module <strong>for</strong> Mesap. It was orig<strong>in</strong>ally developed by the<br />

Institute <strong>for</strong> Energy Economics <strong>and</strong> the Rational Use <strong>of</strong> Energy (IER) at the University <strong>of</strong> Stuttgart <strong>in</strong> 1997 [65–<br />

67], but it is now ma<strong>in</strong>ta<strong>in</strong>ed by the German company Seven2one In<strong>for</strong>mationssysteme GmbH [68]. In total 15<br />

versions <strong>of</strong> Mesap Pla-Net has been released <strong>and</strong> it has approximately 20 <strong>use</strong>rs. To purchase Mesap PlaNet costs<br />

at least €11,500, but there is a discount <strong>for</strong> research groups. It takes 5 days <strong>of</strong> tra<strong>in</strong><strong>in</strong>g to learn how to <strong>use</strong> Mesap<br />

PlaNet.<br />

Mesap PlaNet is designed to analyse <strong>and</strong> simulate energy supply, dem<strong>and</strong>, costs, <strong>and</strong> environmental impacts<br />

<strong>for</strong> local, regional, national, <strong>and</strong> global energy-systems. A detailed cost calculation determ<strong>in</strong>es the specific<br />

production cost <strong>of</strong> all commodities <strong>in</strong> the reference energy-system, based on the <strong>in</strong>vestment, fixed O&M, <strong>and</strong><br />

variable O&M costs. The tool <strong>use</strong>s a technology-oriented modell<strong>in</strong>g approach, where several competitive<br />

technologies that supply energy services are represented by parallel processes. All thermal generation,<br />

renewable, storage/conversion, <strong>and</strong> transport technologies are considered <strong>in</strong> the simulation. The simulation is<br />

carried out <strong>in</strong> a <strong>use</strong>r-specified time-step which ranges from 1 m<strong>in</strong> to multiple years, while the total time-period is<br />

unlimited.<br />

Mesap PlaNet has previously been <strong>use</strong>d to simulate global energy supply strategies [69,70] <strong>and</strong> to compare<br />

energy-efficiency strategies <strong>in</strong> Slovenia [71]. It has also simulated a 100% renewable energy-system [70].<br />

3.8. PRIMES <strong>and</strong> GEM-E3 Models<br />

PRIMES 4 simulates a market equilibrium solution <strong>for</strong> energy supply <strong>and</strong> dem<strong>and</strong> [71]. It has been developed by<br />

4 http://www.e3mlab.ntua.gr/e3mlab/PRIMES%20Manual/The_PRIMES_MODEL_2010.pdf<br />

14


the National Technical University <strong>of</strong> Athens (NTUA) s<strong>in</strong>ce 1994, but it is not sold to third parties. Instead, the<br />

tool is <strong>use</strong>d with<strong>in</strong> consultancy projects undertaken by NTUA <strong>and</strong> partners.<br />

The equilibrium <strong>use</strong>d <strong>in</strong> PRIMES is static (with<strong>in</strong> each time period) but repeated <strong>in</strong> a time-<strong>for</strong>ward path,<br />

under dynamic relationships. All thermal, renewable, storage/conversion, <strong>and</strong> transport technologies can be<br />

simulated except battery energy storage, compressed-air energy storage, <strong>in</strong>telligent battery-electric-vehicles, <strong>and</strong><br />

hybrid vehicles. PRIMES is organised <strong>in</strong> sub-tools, each one represent<strong>in</strong>g the behaviour <strong>of</strong> a specific ‗dem<strong>and</strong>er‘<br />

<strong>and</strong>/or a ‗supplier‘ <strong>of</strong> energy. The tool can support <strong>policy</strong> analysis <strong>in</strong> the follow<strong>in</strong>g fields: (1) st<strong>and</strong>ard energy<br />

<strong>policy</strong> issues: security <strong>of</strong> supply, strategy, costs (<strong>in</strong>cludes all costs), etc., (2) environmental issues, (3) Pric<strong>in</strong>g<br />

<strong>policy</strong> <strong>and</strong> taxation, st<strong>and</strong>ards on technologies, (4) new technologies <strong>and</strong> renewable sources, (5) energy<br />

efficiency <strong>in</strong> the dem<strong>and</strong>-side, (6) alternative fuels, (7) conversion to decentralisation <strong>and</strong> electricity-market<br />

liberalisation, (8) <strong>policy</strong> issues regard<strong>in</strong>g electricity generation, gas distribution, <strong>and</strong> new energy <strong>for</strong>ms. PRIMES<br />

is organised by an energy production sub-system <strong>for</strong> supply consist<strong>in</strong>g <strong>of</strong> oil products, natural gas, coal,<br />

electricity <strong>and</strong> heat production, biomass supply, <strong>and</strong> others, <strong>and</strong> by end-<strong>use</strong> sectors <strong>for</strong> dem<strong>and</strong> consist<strong>in</strong>g <strong>of</strong><br />

residential, commercial, transport, <strong>and</strong> n<strong>in</strong>e <strong>in</strong>dustrial sectors. Some dem<strong>and</strong>ers may also be suppliers, as <strong>for</strong><br />

example <strong>in</strong>dustrial co-generators <strong>of</strong> electricity <strong>and</strong> steam.<br />

PRIMES has previously been <strong>use</strong>d to create energy outlooks <strong>for</strong> the EU [71], develop a climate change action<br />

<strong>and</strong> renewable energy <strong>policy</strong> package <strong>for</strong> the EU [73] <strong>and</strong> also, to analyse a number <strong>of</strong> different policies to<br />

reduce GHG <strong>in</strong> the EU25 by 2030 [74, 75]. F<strong>in</strong>ally, PRIMES has been <strong>use</strong>d <strong>for</strong> several EU governments as well<br />

as private companies.<br />

NTUA has also developed the top down GEM-E3 Model 5 : The GEM-E3 (World <strong>and</strong> Europe versions) model is<br />

an applied general equilibrium model, simultaneously represent<strong>in</strong>g 37 World regions/24 European countries,<br />

which provides details on the macro-economy <strong>and</strong> its <strong>in</strong>teraction with the environment <strong>and</strong> the energy system. It<br />

covers all production sectors (aggregated to 26) <strong>and</strong> <strong>in</strong>stitutional agents <strong>of</strong> the economy. It is an empirical, largescale<br />

model, written entirely <strong>in</strong> structural <strong>for</strong>m. The model computes the equilibrium prices <strong>of</strong> goods, services,<br />

labor <strong>and</strong> capital that simultaneously clear all markets under the Walras law <strong>and</strong> determ<strong>in</strong>es the optimum balance<br />

<strong>for</strong> energy dem<strong>and</strong>/supply <strong>and</strong> emission/abatement.<br />

3.9. BALMOREL<br />

BALMOREL is a partial-equilibrium model with an emphasis on the electricity sector <strong>and</strong> CHP. It is developed,<br />

ma<strong>in</strong>ta<strong>in</strong>ed, <strong>and</strong> distributed under open source ideals s<strong>in</strong>ce 2000, <strong>and</strong> can be freely downloaded from [76]. The<br />

tool is <strong>for</strong>mulated <strong>in</strong> the GAMS modell<strong>in</strong>g language [77] <strong>and</strong> approximately 10 different versions have been<br />

created (the number <strong>of</strong> <strong>use</strong>rs is not monitored). In addition to provid<strong>in</strong>g 100% documentation at code level, any<br />

<strong>use</strong>r can modify the tool to suit specific requirements <strong>for</strong> a given application. The <strong>for</strong>mulated model is solved <strong>in</strong><br />

st<strong>and</strong>ard s<strong>of</strong>tware so no new optimisation code needs to be written. To run a typical analysis us<strong>in</strong>g BALMOREL,<br />

one week <strong>of</strong> tra<strong>in</strong><strong>in</strong>g is necessary.<br />

Input data <strong>and</strong> calculation results are given <strong>in</strong> relation to a geographical subdivision. Time aspects are treated<br />

flexibly <strong>in</strong> relation to how many years are represented, <strong>and</strong> how many subdivisions <strong>of</strong> time are with<strong>in</strong> the each<br />

year. Typical choices are 250 time segments per year over a 20 year time-horizon, or 8760 time segments per<br />

year over 1 year, depend<strong>in</strong>g on the purpose <strong>of</strong> the study. BALMOREL can simulate the electricity sector <strong>and</strong><br />

some <strong>of</strong> the heat sector (district heat<strong>in</strong>g), but not the transport sector (transport technologies are not represented<br />

as st<strong>and</strong>ard, but some projects [78] have developed transport sector modules). The different types <strong>of</strong> units<br />

<strong>in</strong>clude electricity, district heat<strong>in</strong>g, CHP, short-term heat storages, hydro power, w<strong>in</strong>d, <strong>and</strong> solar. Electricity<br />

storage can also be represented by hydrogen storage or pumped hydroelectric. Electricity transmission is<br />

described <strong>in</strong> relation to a number <strong>of</strong> nodes that are connected by transmission l<strong>in</strong>es <strong>and</strong> allows <strong>for</strong> the<br />

identification <strong>of</strong> bottlenecks <strong>in</strong> the transmission system. In relation to generation capacity, the tool may <strong>in</strong>vest<br />

optimally <strong>in</strong> electricity <strong>and</strong> CHP technologies. The <strong>in</strong>vestments respect specified restrictions e.g., <strong>in</strong> relation to<br />

maximum <strong>in</strong>vestment addition per year, or maximum fuel available. Also, BALMOREL considers all costs<br />

with<strong>in</strong> the energy-system as well as SO2 <strong>and</strong> NOX penalties.<br />

BALMOREL has been applied to projects <strong>in</strong> Denmark [79–81], Norway [82], Estonia [82], Latvia [83],<br />

Lithuania [84], Germany [94], <strong>and</strong> countries outside <strong>of</strong> Europe [85]. It has been <strong>use</strong>d to analyse security <strong>of</strong><br />

electricity supply [86,87], the role <strong>of</strong> dem<strong>and</strong> response [79], w<strong>in</strong>d power development [81,85], the role <strong>of</strong> natural<br />

gas [80], development <strong>of</strong> <strong>in</strong>ternational electricity markets [88], market power [89], <strong>in</strong>vestigate the expansion <strong>of</strong><br />

district heat<strong>in</strong>g <strong>in</strong> Copenhagen (an on-go<strong>in</strong>g project) [90], the expansion <strong>of</strong> electricity transmission [82],<br />

<strong>in</strong>ternational markets <strong>for</strong> green certificates <strong>and</strong> emission trad<strong>in</strong>g as well as environmental <strong>policy</strong> <strong>evaluation</strong> [91],<br />

unit commitment [55–57], compressed-air energy storage [68], <strong>and</strong> learn<strong>in</strong>g curves [69]. To date the highest<br />

renewable penetrations simulated by BALMOREL are 50% <strong>in</strong> the electricity sector [81] <strong>and</strong> 10% <strong>in</strong> the transport<br />

sector [78].<br />

5 http://www.e3mlab.ntua.gr/e3mlab/GEM%20-%20E3%20Manual/Manual%20<strong>of</strong>%20GEM-E3.pdf<br />

15


3.10. ENPEP-BALANCE<br />

The non-l<strong>in</strong>ear, equilibrium ENPEP-BALANCE tool matches the dem<strong>and</strong> <strong>for</strong> energy with available resources<br />

<strong>and</strong> technologies. It was developed by Argonne National Laboratory <strong>in</strong> the USA <strong>in</strong> 1999 <strong>and</strong> it is <strong>use</strong>d <strong>in</strong> over 50<br />

countries, but the exact number <strong>of</strong> <strong>use</strong>rs is not known.<br />

ENPEP-BALANCE can be downloaded <strong>for</strong> free from [95], <strong>and</strong> it takes approximately one week <strong>of</strong> tra<strong>in</strong><strong>in</strong>g <strong>for</strong><br />

basic applications or two weeks <strong>of</strong> tra<strong>in</strong><strong>in</strong>g <strong>for</strong> advanced applications. ENPEP-BALANCE <strong>use</strong>s a market-based<br />

simulation approach to determ<strong>in</strong>e the response <strong>of</strong> various segments <strong>of</strong> the energy-system to changes <strong>in</strong> energy<br />

prices <strong>and</strong> dem<strong>and</strong> levels. The analysis is carried out on an annual basis <strong>for</strong> up to a maximum <strong>of</strong> 75 years, <strong>and</strong><br />

typically on national energy-systems. The tool relies on a decentralized decision-mak<strong>in</strong>g process <strong>in</strong> the energy<br />

sector <strong>and</strong> basic <strong>in</strong>put parameters <strong>in</strong>clude <strong>in</strong><strong>for</strong>mation on the entire energy-system structure.<br />

All thermal <strong>and</strong> renewable generation can be simulated, but the only storage/conversion technology accounted<br />

<strong>for</strong> is hydrogen production. Also, all f<strong>in</strong>ancial aspects are considered as well as the option <strong>of</strong> add<strong>in</strong>g additional<br />

costs.<br />

ENPEP-BALANCE simultaneously f<strong>in</strong>ds the <strong>in</strong>tersection <strong>of</strong> supply <strong>and</strong> dem<strong>and</strong> curves <strong>for</strong> all energy supply<br />

<strong>for</strong>ms <strong>and</strong> all energy <strong>use</strong>s <strong>in</strong>cluded <strong>in</strong> the energy network. Equilibrium is reached when ENPEP-BALANCE<br />

f<strong>in</strong>ds a set <strong>of</strong> market clear<strong>in</strong>g prices <strong>and</strong> quantities that satisfy all relevant equations <strong>and</strong> <strong>in</strong>equalities. The tool<br />

employs the Jacobi iterative technique to f<strong>in</strong>d the solution that is with<strong>in</strong> a <strong>use</strong>r-def<strong>in</strong>ed convergence tolerance.<br />

Some <strong>of</strong> the case studies which ENPEP-BALANCE has been <strong>use</strong>d <strong>for</strong> <strong>in</strong>clude analyz<strong>in</strong>g Mexico‘s future energy<br />

needs <strong>and</strong> estimat<strong>in</strong>g the associated environmental burdens [96], develop<strong>in</strong>g green- ho<strong>use</strong>-gas (GHG) emissions<br />

projections <strong>for</strong> Turkey [97], <strong>and</strong> a GHG mitigation analysis <strong>for</strong> Bulgaria [98].<br />

A full range <strong>of</strong> other publications that ENPEP-BALANCE participated <strong>in</strong> is available at [99].<br />

F<strong>in</strong>ally, ENPEP-BALANCE has been <strong>use</strong>d to simulate nearly 20% <strong>of</strong> the electricity production from renewable<br />

energy sources with<strong>in</strong> an energy-system [100].<br />

ENPEP Applications accord<strong>in</strong>g to <br />

The Energy <strong>and</strong> Power Evaluation Program (ENPEP) is <strong>use</strong>d by staff members <strong>of</strong> the Center <strong>for</strong> Energy,<br />

Environmental, <strong>and</strong> Economic Systems Analysis (CEEESA), energy <strong>and</strong> environmental m<strong>in</strong>istries, lend<strong>in</strong>g<br />

agencies, research <strong>in</strong>stitutes, <strong>and</strong> energy regulatory commissions around the world. Model applications cover the<br />

entire spectrum <strong>of</strong> issues found <strong>in</strong> today‘s complex energy markets:<br />

<br />

<br />

<br />

<br />

<br />

<br />

Energy <strong>policy</strong> analysis<br />

Energy market projections<br />

Natural gas market analysis<br />

Carbon emissions projections<br />

Projections <strong>of</strong> criteria pollutants (SO2, NOX, etc.)<br />

Carbon mitigation studies<br />

Increas<strong>in</strong>gly, model applications focus on climate-change–related issues. ENPEP climate change study reports<br />

can be downloaded at various web sites, <strong>in</strong>clud<strong>in</strong>g the United Nations Framework Convention on Climate<br />

Change (UNFCCC) <strong>and</strong> the U.S. Environmental Protection Agency (EPA).<br />

3.11. MERCI-ATHDM E3: The Austrian Hybrid Dynamic Model E3<br />

For the MERCI or Austrian Hybrid Dynamic Model E3 ( ATHDM E3), where E3 st<strong>and</strong>s <strong>for</strong> energy-economyecology<br />

the Hybrid Dynamic Model <strong>for</strong> Top Down – Bottom Up Ramsey type dynamic general equilibrium<br />

model (that is allow<strong>in</strong>g <strong>for</strong> systematic trade-<strong>of</strong>f analysis <strong>of</strong> environmental quality, economic per<strong>for</strong>mance <strong>and</strong><br />

welfare.<br />

As to <strong>policy</strong> measures related also to mitigation <strong>of</strong> climate change impacts by promotion <strong>of</strong> renewable energies<br />

there has been a shift - as more generally <strong>in</strong> environmental <strong>policy</strong> design - from comm<strong>and</strong>-<strong>and</strong>-control policies<br />

to market-based <strong>in</strong>struments such as taxes, subsidies, <strong>and</strong> tradable quotas where a recent impact assessment by<br />

the European Commission, 2008, has shown that feed-<strong>in</strong> tariffs are the preferred promotion measure, <strong>in</strong> addition,<br />

to direct subsidies <strong>for</strong> renewable energy– typically differentiated by the type <strong>of</strong> green energy, i.e., w<strong>in</strong>d, biomass,<br />

solar cells, etc.<br />

Methodologically the focus is set on the CGE (Computational General Equilibrium) model<strong>in</strong>g approach. The<br />

usual approach <strong>in</strong> model<strong>in</strong>g environmental <strong>and</strong> climate related issues is the <strong>use</strong> <strong>of</strong> Top Down <strong>models</strong> <strong>in</strong><br />

analyz<strong>in</strong>g the options <strong>of</strong> development with respect to the overall economy, as well as the <strong>use</strong> <strong>of</strong> Bottom Up<br />

<strong>models</strong> <strong>for</strong> the analysis <strong>of</strong> technological processes, e.g. on the energy system level.<br />

16


The comb<strong>in</strong>ation <strong>of</strong> a Bottom Up <strong>and</strong> a Top Down part <strong>in</strong> the model<strong>in</strong>g framework <strong>for</strong> Austria, that deals with<br />

short to medium term targets (EU 20-20-20 targets, Austrian Energy Strategy) ant the ambition to create long<br />

term scenarios until 2050 connects newest results <strong>in</strong> applied CGE model<strong>in</strong>g <strong>and</strong> research <strong>in</strong> climate change<br />

studies. The presented model<strong>in</strong>g approach is basically oriented at the works <strong>of</strong> Pr<strong>of</strong>. Christoph Boehr<strong>in</strong>ger <strong>and</strong><br />

Pr<strong>of</strong>. Thomas Ruther<strong>for</strong>d 67 , who propose a comb<strong>in</strong>ation <strong>of</strong> Bottom Up <strong>and</strong> Top Down <strong>models</strong> <strong>in</strong> a common<br />

framework.<br />

4. A brief classification <strong>of</strong> energy <strong>models</strong><br />

Many energy-environmental <strong>models</strong> are <strong>in</strong> current <strong>use</strong> around the world, each designed to emphasize a particular<br />

facet <strong>of</strong> <strong>in</strong>terest. Differences <strong>in</strong>clude: economic rationale, level <strong>of</strong> disaggregation <strong>of</strong> the variables, time horizon<br />

over which decisions are made (<strong>and</strong> which is closely related to the type <strong>of</strong> decisions, i.e. only operational<br />

plann<strong>in</strong>g or also <strong>in</strong>vestment decisions), <strong>and</strong> geographic scope. One <strong>of</strong> the most significant differentiat<strong>in</strong>g features<br />

among energy-environmental <strong>models</strong> is the degree <strong>of</strong> detail with which commodities <strong>and</strong> technologies are<br />

represented, which will guide our classification <strong>of</strong> <strong>models</strong> <strong>in</strong> two major classes.<br />

4.1.1. ‘Top-Down’ Models<br />

At one end <strong>of</strong> the spectrum are aggregated General Equilibrium (GE) <strong>models</strong>. In these each sector is represented<br />

by a production function designed to simulate the potential substitutions between the ma<strong>in</strong> factors <strong>of</strong> production<br />

(also highly aggregated <strong>in</strong>to a few variables such as: energy, capital, <strong>and</strong> labour) <strong>in</strong> the production <strong>of</strong> each<br />

sector‘s output. In this model category are found a number <strong>of</strong> <strong>models</strong> <strong>of</strong> national or global energy systems.<br />

These <strong>models</strong> are usually called ―Top-Down‖, beca<strong>use</strong> they represent an entire economy via a relatively small<br />

number <strong>of</strong> aggregate variables <strong>and</strong> equations. In these <strong>models</strong>, production function parameters are calculated <strong>for</strong><br />

each sector such that <strong>in</strong>puts <strong>and</strong> outputs reproduce a s<strong>in</strong>gle base historical year 8 . In <strong>policy</strong> runs, the mix <strong>of</strong><br />

<strong>in</strong>puts 9 required to produce one unit <strong>of</strong> a sector‘s output is allowed to vary accord<strong>in</strong>g to <strong>use</strong>r-selected elasticities<br />

<strong>of</strong> substitution. Sectoral production functions most typically have the follow<strong>in</strong>g general <strong>for</strong>m:<br />

where<br />

X S is the output <strong>of</strong> sector S,<br />

K S , L S , <strong>and</strong> E S are the <strong>in</strong>puts <strong>of</strong> capital, labour <strong>and</strong> energy needed to produce one unit <strong>of</strong> output <strong>in</strong> sector<br />

S,<br />

ρ is the elasticity <strong>of</strong> substitution parameter,<br />

A 0 <strong>and</strong> the B‘s are scal<strong>in</strong>g coefficients.<br />

The choice <strong>of</strong> ρ determ<strong>in</strong>es the ease or difficulty with which one production factor may be substituted <strong>for</strong><br />

another: the smaller ρ is (but still greater than or equal to 1), the easier it is to substitute the factors to produce<br />

the same amount <strong>of</strong> output from sector S. Also note that the degree <strong>of</strong> factor substitutability does not vary among<br />

the factors <strong>of</strong> production — the ease with which capital can be substituted <strong>for</strong> labour is equal to the ease with<br />

which capital can be substituted <strong>for</strong> energy, while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the same level <strong>of</strong> output. GE <strong>models</strong> may also <strong>use</strong><br />

alternate <strong>for</strong>ms <strong>of</strong> production function (3-1), but reta<strong>in</strong> the basic idea <strong>of</strong> an explicit substitutability <strong>of</strong> production<br />

factors.<br />

Some <strong>of</strong> the top-down <strong>models</strong> mentioned <strong>in</strong> this review:<br />

1. The Austrian Hybrid Dynamic Model E3 ( ATHDM E3) is a comb<strong>in</strong>ation <strong>of</strong> a ―top-down‖ Ramsey type<br />

dynamic general equilibrium model (where E3 st<strong>and</strong>s <strong>for</strong> energy-economy-ecology) represent<strong>in</strong>g the macroeconomy<br />

through a Social Account<strong>in</strong>g Matrix with 12 produc<strong>in</strong>g sectors <strong>and</strong> where Hybrid means allow<strong>in</strong>g<br />

several aggregated energy technologies (bottom-up) with<strong>in</strong> the same model.<br />

6 Böhr<strong>in</strong>ger, C., Ruther<strong>for</strong>d, T.,F.:Comb<strong>in</strong><strong>in</strong>g bottom-up <strong>and</strong> top-down, Energy Economics volume 30, March 2008, Pages<br />

574-596<br />

7 Ruther<strong>for</strong>d, T. F.: Constant Elasticity <strong>of</strong> Substitution Functions: Some H<strong>in</strong>ts <strong>and</strong> Useful Formulae, manuscript, 1995,<br />

University <strong>of</strong> Colorado<br />

8 These <strong>models</strong> assume that the relationships (as def<strong>in</strong>ed by the <strong>for</strong>m <strong>of</strong> the production functions as well as the calculated parameters)<br />

between sector level <strong>in</strong>puts <strong>and</strong> outputs are <strong>in</strong> equilibrium <strong>in</strong> the base year.<br />

9 Most <strong>models</strong> <strong>use</strong> <strong>in</strong>puts such as labor, energy, <strong>and</strong> capital, but other <strong>in</strong>put factors may conceivably be added, such as arable l<strong>and</strong>, water, or<br />

even technical know-how. Similarly, labour may be further subdivided <strong>in</strong>to several categories.<br />

17


Hence, the hybrid approach permits an energy-economy-ecology model to comb<strong>in</strong>e technological details <strong>of</strong> an<br />

energy system (bottom-up) with a characterization <strong>of</strong> the overall economy market equilibrium (top-down).<br />

Mathematically ATHDM E3 is <strong>for</strong>mulated as a Mixed Complementarity Problem.<br />

2. GEMINI-E3 is a ―top-down‖ Computable General Equilibrium Model that is multi sector <strong>and</strong> dynamic, <strong>and</strong><br />

can be either multi-country or purely domestic aimed at domestic <strong>policy</strong> assessment purposes.<br />

3. The MACRO component <strong>of</strong> the MERGE model is a ―top-down‖ Ramsey type macroeconomic growth model<br />

that balances the non energy part <strong>of</strong> the economy <strong>of</strong> a given region us<strong>in</strong>g a nested constant-elasticity-<strong>of</strong><br />

substitution (CES) production function. The MACRO model also captures autonomous (e.g., price-<strong>in</strong>dependent)<br />

effects <strong>and</strong> macroeconomic feedbacks between the energy sector <strong>and</strong> the rest <strong>of</strong> the economy, such as the<br />

impacts <strong>of</strong> higher energy prices (e.g., result<strong>in</strong>g from CO2 control) on economic activities.<br />

4.1.2. ‘Bottom-Up’ Models<br />

At the other end <strong>of</strong> the spectrum are the very detailed, technology explicit <strong>models</strong> that focus primarily on the<br />

energy sector <strong>of</strong> an economy. In these <strong>models</strong>, each important energy-us<strong>in</strong>g technology is identified by a detailed<br />

description <strong>of</strong> its <strong>in</strong>puts, outputs, unit costs, <strong>and</strong> several other technical <strong>and</strong> economic characteristics. In these socalled<br />

‗Bottom-Up‘ <strong>models</strong>, a sector is constituted by a (usually large) number <strong>of</strong> logically arranged<br />

technologies, l<strong>in</strong>ked together by their <strong>in</strong>puts <strong>and</strong> outputs (commodities, which may be energy <strong>for</strong>ms or carriers,<br />

materials, emissions <strong>and</strong>/or dem<strong>and</strong> services). Some bottom-up <strong>models</strong> compute a partial equilibrium via<br />

maximization <strong>of</strong> the total net (consumer <strong>and</strong> producer) surplus, while others simulate other types <strong>of</strong> behaviour by<br />

economic agents, as will be discussed below. In bottom-up <strong>models</strong>, one unit <strong>of</strong> sectoral output (e.g., a billion<br />

vehicle kilometres, one billion tonnes transported by heavy trucks or one Petajoule <strong>of</strong> residential cool<strong>in</strong>g service)<br />

is produced us<strong>in</strong>g a mix <strong>of</strong> <strong>in</strong>dividual technologies‘ outputs. Thus the production function <strong>of</strong> a sector is implicitly<br />

constructed, rather than explicitly specified as <strong>in</strong> more aggregated <strong>models</strong>. Such implicit production functions<br />

may be quite complex, depend<strong>in</strong>g on the complexity <strong>of</strong> the reference energy system <strong>of</strong> each sector (sub-RES).<br />

Some examples <strong>of</strong> ‗Bottom-Up‘ Models:<br />

1. MARKAL/ TIMES bottom-up techno-economic model permitt<strong>in</strong>g a global assessment <strong>of</strong> technology options<br />

<strong>in</strong> different regions <strong>of</strong> the world. A full documentation on the TIMES model‘s generic equations, variables, <strong>and</strong><br />

parameters, as well as its economic significance, is available from www.etsap.org<br />

2. The TIMER Energy Regional Model as <strong>use</strong>d <strong>in</strong> the IMAGE model<strong>in</strong>g system is a global energy model. Its<br />

ma<strong>in</strong> objective is to analyze the long-term trends <strong>in</strong> energy dem<strong>and</strong> <strong>and</strong> efficiency <strong>and</strong> the possible transition<br />

towards renewable energy sources.<br />

3. EnergyPLAN is assist<strong>in</strong>g the design <strong>of</strong> national or regional energy plann<strong>in</strong>g strategies by simulat<strong>in</strong>g the<br />

entire energy-system: this <strong>in</strong>cludes heat <strong>and</strong> electricity supplies as well as the transport <strong>and</strong> <strong>in</strong>dustrial sectors. All<br />

thermal, renewable, storage/conversion, transport, <strong>and</strong> costs (with the option <strong>of</strong> additional costs) can be modelled<br />

by it. It is a determ<strong>in</strong>istic <strong>in</strong>put/output tool <strong>and</strong> general <strong>in</strong>puts are dem<strong>and</strong>s, renewable energy sources, energy<br />

station capacities, costs, <strong>and</strong> a number <strong>of</strong> different regulation strategies <strong>for</strong> import/export <strong>and</strong> excess electricity<br />

production. Outputs are energy balances <strong>and</strong> result<strong>in</strong>g annual productions, fuel consumption, import/export <strong>of</strong><br />

electricity, <strong>and</strong> total costs <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>come from the exchange <strong>of</strong> electricity<br />

4. MESSAGE is a systems eng<strong>in</strong>eer<strong>in</strong>g optimisation tool <strong>use</strong>d <strong>for</strong> the plann<strong>in</strong>g <strong>of</strong> medium to long-term energysystems,<br />

analys<strong>in</strong>g climate change policies, <strong>and</strong> develop<strong>in</strong>g scenarios <strong>for</strong> national or global regions. The tool<br />

<strong>use</strong>s a 5 or 10 year time-step to simulate a maximum <strong>of</strong> 120 years. All thermal generation, renewable,<br />

storage/conversion, transport technologies, <strong>and</strong> costs (<strong>in</strong>clud<strong>in</strong>g SO2 <strong>and</strong> NOX costs) can be simulated by<br />

MESSAGE as well as carbon sequestration. The tool‘s pr<strong>in</strong>cipal results are the estimation <strong>of</strong> global <strong>and</strong> regional<br />

multi-sector mitigation strategies <strong>in</strong>stead <strong>of</strong> climate targets. MESSAGE determ<strong>in</strong>es cost-effective <strong>portfolios</strong> <strong>of</strong><br />

GHG emission limitation <strong>and</strong> reduction measures. It has recently been extended to cover the full suite <strong>of</strong> GHGs<br />

<strong>and</strong> other radiative substances, <strong>for</strong> the development <strong>of</strong> multi-gas scenarios that try to stabilise future CO2-<br />

equivalent concentrations<br />

5. IKARUS is a dynamic bottom-up l<strong>in</strong>ear cost-optimisation scenario tool <strong>for</strong> national energy-systems, which is<br />

ma<strong>in</strong>ta<strong>in</strong>ed by the Institute <strong>of</strong> Energy Research at Jülich Research Centre, Germany. A time-step <strong>of</strong> 5 years is<br />

<strong>use</strong>d by IKARUS <strong>and</strong> each one is optimised by itself us<strong>in</strong>g the heritage from all periods be<strong>for</strong>e. The tool can<br />

simulate a timeframe <strong>of</strong> approximately 40 years (usually up to 2050).<br />

6. INFORSE (International Network <strong>for</strong> Susta<strong>in</strong>able Energy) is an energy balanc<strong>in</strong>g tool <strong>for</strong> national energysystems<br />

developed <strong>in</strong> 2002 by the network. The tool consists <strong>of</strong> l<strong>in</strong>ked spreadsheets which are <strong>use</strong>d to <strong>in</strong>put the<br />

details <strong>of</strong> the energy-system be<strong>in</strong>g modelled. These <strong>in</strong>clude details about energy production, energy dem<strong>and</strong>,<br />

energy trends, <strong>and</strong> energy policies. All thermal generation, renewable generation, <strong>and</strong> hydrogen-based<br />

18


storage/conversion devices except tidal power are available. The transport technologies <strong>in</strong>cluded are<br />

conventional, battery-electric, <strong>and</strong> hydrogen vehicles as well as rail. The results from INFORSE give an<br />

<strong>overview</strong> <strong>for</strong> the possible energy development <strong>in</strong> a country or region, by provid<strong>in</strong>g an energy balance <strong>for</strong> every<br />

decade simulated over a maximum timeframe <strong>of</strong> 100 years. This illustrates the potential <strong>use</strong> <strong>of</strong> renewable energy<br />

<strong>and</strong> identifies the trends <strong>in</strong> energy efficiency, energy services, <strong>and</strong> energy policies entered <strong>in</strong>to INFORSE.<br />

7. MESAP (Modular Energy-System Analysis <strong>and</strong> Plann<strong>in</strong>g Environment) is an energy-system analysis toolbox,<br />

<strong>and</strong> PlaNet (Plann<strong>in</strong>g Network) is a l<strong>in</strong>ear network module <strong>for</strong> Mesap. Mesap PlaNet is designed to analyse <strong>and</strong><br />

simulate energy supply, dem<strong>and</strong>, costs, <strong>and</strong> environmental impacts <strong>for</strong> local, regional, national, <strong>and</strong> global<br />

energy-systems. A detailed cost calculation determ<strong>in</strong>es the specific production cost <strong>of</strong> all commodities <strong>in</strong> the<br />

reference energy-system, based on the <strong>in</strong>vestment, fixed O&M, <strong>and</strong> variable O&M costs. The tool <strong>use</strong>s a<br />

technology-oriented modell<strong>in</strong>g approach, where several competitive technologies that supply energy services are<br />

represented by parallel processes. All thermal generation, renewable, storage/conversion, <strong>and</strong> transport<br />

technologies are considered <strong>in</strong> the simulation. The simulation is carried out <strong>in</strong> a <strong>use</strong>r-specified time-step which<br />

ranges from 1 m<strong>in</strong> to multiple years, while the total time-period is unlimited.<br />

8. BALMOREL is a partial-equilibrium model with an emphasis on the electricity sector <strong>and</strong> CHP.<br />

BALMOREL can simulate the electricity sector <strong>and</strong> some <strong>of</strong> the heat sector (district heat<strong>in</strong>g), but not the<br />

transport sector (transport technologies are not represented as st<strong>and</strong>ard, but some projects have developed<br />

transport sector modules). The different types <strong>of</strong> units <strong>in</strong>clude electricity, district heat<strong>in</strong>g, CHP, short-term heat<br />

storages, hydro power, w<strong>in</strong>d, <strong>and</strong> solar. Electricity storage can also be represented by hydrogen storage or<br />

pumped hydroelectric. Electricity transmission is described <strong>in</strong> relation to a number <strong>of</strong> nodes that are connected<br />

by transmission l<strong>in</strong>es <strong>and</strong> allows <strong>for</strong> the identification <strong>of</strong> bottlenecks <strong>in</strong> the transmission system.<br />

9. ENPEP-BALANCE tool matches the dem<strong>and</strong> <strong>for</strong> energy with available resources <strong>and</strong> technologies. ENPEP-<br />

BALANCE <strong>use</strong>s a market-based simulation approach to determ<strong>in</strong>e the response <strong>of</strong> various segments <strong>of</strong> the<br />

energy-system to changes <strong>in</strong> energy prices <strong>and</strong> dem<strong>and</strong> levels. The analysis is carried out on an annual basis <strong>for</strong><br />

up to a maximum <strong>of</strong> 75 years, <strong>and</strong> typically on national energy-systems. The tool relies on a decentralized<br />

decision-mak<strong>in</strong>g process <strong>in</strong> the energy sector <strong>and</strong> basic <strong>in</strong>put parameters <strong>in</strong>clude <strong>in</strong><strong>for</strong>mation on the entire<br />

energy-system structure. All thermal <strong>and</strong> renewable generation can be simulated <strong>and</strong> all f<strong>in</strong>ancial aspects are<br />

considered as well as the option <strong>of</strong> add<strong>in</strong>g additional costs. ENPEP-BALANCE simultaneously f<strong>in</strong>ds the<br />

<strong>in</strong>tersection <strong>of</strong> supply <strong>and</strong> dem<strong>and</strong> curves <strong>for</strong> all energy supply <strong>for</strong>ms <strong>and</strong> all energy <strong>use</strong>s <strong>in</strong>cluded <strong>in</strong> the energy<br />

network. Equilibrium is reached when ENPEP-BALANCE f<strong>in</strong>ds a set <strong>of</strong> market clear<strong>in</strong>g prices <strong>and</strong> quantities<br />

that satisfy all relevant equations <strong>and</strong> <strong>in</strong>equalities. The tool employs the Jacobi iterative technique to f<strong>in</strong>d the<br />

solution that is with<strong>in</strong> a <strong>use</strong>r-def<strong>in</strong>ed convergence tolerance.<br />

4.1.3. Recent Modell<strong>in</strong>g Advances<br />

While the above dichotomy applied fairly well to earlier <strong>models</strong>, these dist<strong>in</strong>ctions now tend to be somewhat<br />

blurred by recent advances <strong>in</strong> both categories <strong>of</strong> model. In the case <strong>of</strong> aggregate top-down <strong>models</strong>, several<br />

general equilibrium <strong>models</strong> now <strong>in</strong>clude a fair amount <strong>of</strong> fuel <strong>and</strong> technology disaggregation <strong>in</strong> the key energy<br />

produc<strong>in</strong>g sectors (<strong>for</strong> <strong>in</strong>stance: electricity production, oil <strong>and</strong> gas supply). This is the case with MERCI-<br />

ATHDM E3 <strong>and</strong> MERGE, <strong>for</strong> <strong>in</strong>stance. In the other direction, the more advanced bottom-up <strong>models</strong> are<br />

‗reach<strong>in</strong>g up‘ to capture some <strong>of</strong> the effects <strong>of</strong> the entire economy on the energy system. For <strong>in</strong>stance, the<br />

TIMES model has end-<strong>use</strong> dem<strong>and</strong>s (<strong>in</strong>clud<strong>in</strong>g dem<strong>and</strong>s <strong>for</strong> <strong>in</strong>dustrial output) that are sensitive to their own<br />

prices, <strong>and</strong> thus capture the impact <strong>of</strong> ris<strong>in</strong>g energy prices on economic output <strong>and</strong> vice versa. Recent<br />

<strong>in</strong>carnations <strong>of</strong> technology-rich <strong>models</strong> are multi-regional, <strong>and</strong> thus are able to consider the impacts <strong>of</strong> energyrelated<br />

decisions on trade. It is worth not<strong>in</strong>g that while the multi-regional top-down <strong>models</strong> have always<br />

represented trade, they have done so with a very limited set <strong>of</strong> traded commodities – typically one or two,<br />

whereas there may be quite a number <strong>of</strong> traded energy <strong>for</strong>ms <strong>and</strong> materials <strong>in</strong> multi-regional bottom-up <strong>models</strong>.<br />

Examples <strong>for</strong> currently developed top down environmental <strong>models</strong> <strong>of</strong> the research community are GEM-E3<br />

(General Equilibrium Model <strong>for</strong> Economy – Energy - Environment) 10 , MERGE (Model <strong>for</strong> Estimat<strong>in</strong>g the<br />

Regional <strong>and</strong> Global Effects <strong>of</strong> Greenho<strong>use</strong> Gas Reductions) 11 , as well as WITCH (World Induced Technical<br />

Change Hybrid) 12 .<br />

10 See http://www.gem-e3.net/<br />

11 See http://www.stan<strong>for</strong>d.edu/group/MERGE/<br />

12 See http://www.feem.it/getpage.aspx?id=2461&sez=Research&padre=18&sub=75&idsub=102<br />

19


A list <strong>of</strong> detailed bottom up <strong>models</strong> <strong>for</strong> the technological analysis <strong>in</strong>cludes amongst others the <strong>models</strong><br />

MESSAGE (Model <strong>for</strong> Energy Supply Strategy Alternatives <strong>and</strong> their General Environmental Impact) 13 ,<br />

PRIMES Energy System Model 14 <strong>and</strong> MARKAL (Market Allocation) Model 15 .<br />

An additional example <strong>for</strong> a complex climate- <strong>and</strong> environmental model is the GAINS model, developed by<br />

IIASA (International Institute <strong>for</strong> Applied Systems Analysis), that can be categorized as an „Integrated<br />

Assessment Model―(IAM) 16 . These k<strong>in</strong>ds <strong>of</strong> <strong>models</strong> are slightly different, they <strong>in</strong>tegrate <strong>in</strong><strong>for</strong>mation on air<br />

emissions as well as their diffusion, effects <strong>and</strong> mitigation options <strong>and</strong> costs as well as synergies with other<br />

external parts <strong>of</strong> the environment.<br />

Many research works on greenho<strong>use</strong> gas emissions have been carried out <strong>and</strong> numerical model scenarios on the<br />

topic have been made on global <strong>and</strong> European scale IPCC (2007). As examples one could name the project<br />

RECIPE (Report on Energy <strong>and</strong> Climate Policy <strong>in</strong> Europe) 17 that foc<strong>use</strong>d on the targets <strong>of</strong> reach<strong>in</strong>g an <strong>in</strong>crease<br />

<strong>of</strong> only 2°C until 2020 us<strong>in</strong>g amongst others the REMIND-R model developed by the Potsdam Institute <strong>for</strong><br />

Climate Impact Research.<br />

The TIMES model <strong>in</strong>troduces further enhancements over <strong>and</strong> above those <strong>of</strong> MARKAL. In TIMES, the horizon<br />

may be divided <strong>in</strong>to periods <strong>of</strong> unequal lengths, thus permitt<strong>in</strong>g a more flexible modell<strong>in</strong>g <strong>of</strong> long horizons:<br />

typically, one may adopt short periods <strong>in</strong> the near-term (the <strong>in</strong>itial period <strong>of</strong>ten consists <strong>of</strong> a s<strong>in</strong>gle base year),<br />

<strong>and</strong> longer ones <strong>in</strong> the out years; TIMES <strong>in</strong>cludes both technology related variables (as <strong>in</strong> MARKAL) <strong>and</strong> flow<br />

related variables (as <strong>in</strong> the EFOM model, (van der Voort et. al., 1984), thus allow<strong>in</strong>g the easy creation <strong>of</strong> more<br />

flexible processes <strong>and</strong> constra<strong>in</strong>ts; the expression <strong>of</strong> the TIMES objective function (total system cost) tracks the<br />

payments <strong>of</strong> <strong>in</strong>vestments <strong>and</strong> other costs much more precisely that <strong>in</strong> other bottom-up <strong>models</strong>.<br />

In spite <strong>of</strong> these advances <strong>in</strong> both classes <strong>of</strong> <strong>models</strong>, there rema<strong>in</strong> important differences.<br />

Specifically:<br />

Top-down <strong>models</strong> encompass macroeconomic variables beyond the energy sector proper, such as<br />

wages, consumption, <strong>and</strong> <strong>in</strong>terest rates, <strong>and</strong><br />

Bottom-up <strong>models</strong> have a rich representation <strong>of</strong> the variety <strong>of</strong> technologies (exist<strong>in</strong>g <strong>and</strong>/or future)<br />

available to meet energy needs, <strong>and</strong>, they <strong>of</strong>ten have the capability to track a wide variety <strong>of</strong> traded<br />

commodities.<br />

The Top-down vs. Bottom-up approach is not the only relevant difference among energy <strong>models</strong>. Among Topdown<br />

<strong>models</strong>, the so-called Computable General Equilibrium <strong>models</strong> (CGE) described above differ markedly<br />

from the macro econometric <strong>models</strong>. The latter do not compute equilibrium solutions, but rather simulate the<br />

flows <strong>of</strong> capital <strong>and</strong> other monetized quantities between sectors (see e.g. E3MG <strong>of</strong> the Cambridge Centre <strong>for</strong><br />

Climate Change Mitigation Research). They <strong>use</strong> econometrically derived <strong>in</strong>put-output coefficients to compute<br />

the impacts <strong>of</strong> these flows on the ma<strong>in</strong> sectoral <strong>in</strong>dicators, <strong>in</strong>clud<strong>in</strong>g economic output (GDP) <strong>and</strong> other variables<br />

(labour, <strong>in</strong>vestments). The sectoral variables are then aggregated <strong>in</strong>to national <strong>in</strong>dicators <strong>of</strong> consumption, <strong>in</strong>terest<br />

rate, GDP, labour, <strong>and</strong> wages.<br />

Among technology explicit <strong>models</strong> also, two ma<strong>in</strong> classes are usually dist<strong>in</strong>guished: the first class is that <strong>of</strong> the<br />

partial equilibrium <strong>models</strong> such as MARKAL <strong>and</strong> TIMES, that <strong>use</strong> optimization techniques to compute a least<br />

cost (or maximum surplus) path <strong>for</strong> the energy system. The SAGE <strong>in</strong>carnation <strong>of</strong> the MARKAL model possesses<br />

a market shar<strong>in</strong>g mechanism that allows it to reproduce certa<strong>in</strong> behavioural characteristics <strong>of</strong> observed markets.<br />

The second class is that <strong>of</strong> simulation <strong>models</strong>, where the emphasis is on represent<strong>in</strong>g a system not governed<br />

purely by f<strong>in</strong>ancial costs <strong>and</strong> pr<strong>of</strong>its. One <strong>of</strong> these simulation <strong>models</strong> is LEAP the Long-range Energy<br />

Alternatives Plann<strong>in</strong>g system.<br />

LEAP is a comprehensive <strong>in</strong>tegrated scenario-based energy-environment modell<strong>in</strong>g tool. Its scenarios account<br />

<strong>for</strong> how energy is consumed, converted <strong>and</strong> produced <strong>in</strong> a given energy system under a range <strong>of</strong> alternative<br />

assumptions on population, economic development, technology, price <strong>and</strong> so on. LEAP is primarily an<br />

account<strong>in</strong>g system but <strong>use</strong>rs can also build econometric <strong>and</strong> simulation-based <strong>models</strong> as well. The <strong>use</strong>r can mix<br />

<strong>and</strong> match these methodologies as required <strong>in</strong> a given analysis. For example, a <strong>use</strong>r might create top-down<br />

projections <strong>of</strong> energy dem<strong>and</strong> <strong>in</strong> one sector based on a few macroeconomic <strong>in</strong>dicators (price, GDP), while<br />

13 See http://www.iiasa.ac.at/Research/ECS/docs/<strong>models</strong>.html#MESSAGE<br />

14 Pr<strong>of</strong>. P. Capros, The PRIMES Energy System Model, Institute <strong>of</strong> Communication <strong>and</strong> Computer Systems <strong>of</strong> the National<br />

Technical University <strong>of</strong> Athens (ICCS-NTUA), E3M-Lab, 1995<br />

15 See http://www.etsap.org/Tools/MARKAL.htm<br />

16 For<strong>in</strong><strong>for</strong>mation on GAINS model see GAINS EUROPE, Greenho<strong>use</strong> Gas - Air Pollution Interactions <strong>and</strong> Synergies,<br />

http://ga<strong>in</strong>s.iiasa.ac.at/ga<strong>in</strong>s/docu.EUR/<strong>in</strong>dex.menu, 2010<br />

17 Luderer, G. et.al.: Report on Energy <strong>and</strong> Climate Policy <strong>in</strong> Europe (RECIPE), the economics <strong>of</strong> decarbonization, Potsdam,<br />

2009. http://www.pik-potsdam.de/recipe<br />

20


creat<strong>in</strong>g a detailed bottom-up <strong>for</strong>ecast based on an end-<strong>use</strong> analysis <strong>in</strong> other sectors. LEAP supports both f<strong>in</strong>al<br />

<strong>and</strong> <strong>use</strong>ful energy dem<strong>and</strong> analyses as well as detailed stock-turnover modell<strong>in</strong>g <strong>for</strong> transportation <strong>and</strong> other<br />

analyses. On the supply side LEAP supports a range <strong>of</strong> simulation <strong>and</strong> optimisation methods <strong>for</strong> modell<strong>in</strong>g both<br />

capacity expansion <strong>and</strong> plant dispatch. LEAP <strong>in</strong>cludes a built-<strong>in</strong> Technology <strong>and</strong> Environmental Database<br />

(TED) conta<strong>in</strong><strong>in</strong>g data on the costs, per<strong>for</strong>mance <strong>and</strong> emission factors <strong>for</strong> over 1000 energy technologies. LEAP<br />

can be <strong>use</strong>d to calculate the emissions pr<strong>of</strong>iles <strong>and</strong> can also be <strong>use</strong>d to create scenarios <strong>of</strong> non-energy sector<br />

emissions <strong>and</strong> s<strong>in</strong>ks (e.g. from cement production, l<strong>and</strong>-<strong>use</strong> change, solid waste, etc.).<br />

5. Selection <strong>of</strong> an <strong>in</strong>tegrated modell<strong>in</strong>g tool<br />

After a prelim<strong>in</strong>ary screen<strong>in</strong>g <strong>of</strong> the model presented <strong>in</strong> the Table 1, namely, LEAP , EnergyPLAN,<br />

MARKAL/TIMES, MESSAGE, IKARUS, INFORSE, Mesap PlaNet, PRIMES <strong>and</strong> GEM-E3, BALMORE, L<br />

ENPEP-BALANCE <strong>and</strong> MERCI-AUHDM E3 with <strong>in</strong>tention <strong>of</strong> identify<strong>in</strong>g the <strong>in</strong>tegrated model<strong>in</strong>g tools<br />

allow<strong>in</strong>g <strong>for</strong> analysis <strong>of</strong> Adaptation <strong>and</strong> Mitigation scenarios <strong>and</strong> identification <strong>of</strong> the respective <strong>portfolios</strong> two<br />

<strong>models</strong> seems to deserve more carefully comparisons on the basis <strong>of</strong> the eight criteria def<strong>in</strong>ed by the<br />

PROMITHEAS-4 work<strong>in</strong>g group on 10 th <strong>of</strong> March 2011.<br />

These are the LEAP <strong>and</strong> the MARKA/TIMES <strong>in</strong>tegrated energy-environmental modell<strong>in</strong>g tools.<br />

In Table 2 the detailed reflection on the selected criteria is presented <strong>and</strong>, to my m<strong>in</strong>d, the rank<strong>in</strong>g is quite clear<br />

– the LEAP model seems to be the only af<strong>for</strong>dable one <strong>in</strong> terms <strong>of</strong> suitability to our goals, availability <strong>of</strong> data,<br />

<strong>and</strong> the compliance with PROMITHEAS 4 objective s, as well as f<strong>in</strong>anc<strong>in</strong>g <strong>and</strong> tra<strong>in</strong><strong>in</strong>g.<br />

Certa<strong>in</strong>ly we should keep <strong>in</strong> m<strong>in</strong>d that this is the first attempt <strong>for</strong> <strong>models</strong> <strong>evaluation</strong> <strong>and</strong> it may be well possible<br />

that some <strong>models</strong> have been left out <strong>of</strong> our attention.<br />

To that end comments <strong>and</strong> suggestions are more than welcome.<br />

21


Table 2. Comparison <strong>of</strong>t he LEAP <strong>and</strong> MARKAL/TIME accord<strong>in</strong>g the criteria def<strong>in</strong>ed by the PROMITHEAS-4 work<strong>in</strong>g group 10 th <strong>of</strong> March 2011<br />

Model Organisation (l<strong>in</strong>k) Cover<strong>in</strong>g A/M<br />

LEAP<br />

MARKAL<br />

/<br />

TIMES<br />

Stockholm Environment Institute<br />

(http://www.energycommunity.org/)<br />

ETSAP, IEA<br />

(http://www.etsap.org/)<br />

Yes<br />

For Adaptation<br />

macroeconomic<br />

<strong>in</strong>dicators<br />

(price, GDP,<br />

etc.)<br />

Energy <strong>and</strong><br />

GHG<br />

mitigation<br />

study <strong>for</strong> the<br />

EU27<br />

Yes<br />

MARKAL-<br />

MACRO:<br />

provides <strong>for</strong><br />

endogenous<br />

<strong>and</strong> price<br />

responsive<br />

dem<strong>and</strong>s e, <strong>and</strong><br />

estimates <strong>of</strong><br />

GDP impact<br />

<strong>and</strong> feedbacks;<br />

Allows certa<strong>in</strong><br />

behavioural<br />

characteristics<br />

<strong>of</strong> observed<br />

markets to be<br />

reproduced<br />

Transparency, complexity, easy<br />

to <strong>use</strong><br />

Notable <strong>for</strong> its flexibility,<br />

transparency <strong>and</strong> <strong>use</strong>rfriendl<strong>in</strong>ess<br />

technology-rich<br />

energy/economic/environmental<br />

model that requires long<br />

preparatory work<br />

Availability <strong>of</strong> the model<br />

<strong>and</strong> the Data<br />

Paid license <strong>for</strong><br />

EU27/free <strong>for</strong><br />

develop<strong>in</strong>g countries;<br />

Total cost to the project<br />

€ 5.500<br />

Provides national<br />

"starter" data sets<br />

Includes a built-<strong>in</strong><br />

Technology <strong>and</strong><br />

Environmental Database<br />

(TED) <strong>for</strong> over<br />

1000 energy<br />

technologies.<br />

cost per <strong>use</strong>r <strong>for</strong><br />

educational license:<br />

€1.300– €3.200<br />

Economic/Energy/Enviro<br />

nmental Data base<br />

correspond to the EU<br />

statistical st<strong>and</strong>ards<br />

Compliance <strong>of</strong><br />

outputs with projects<br />

objectives<br />

F<strong>in</strong>al <strong>and</strong> <strong>use</strong>ful<br />

energy dem<strong>and</strong><br />

analyses; Stockturnover<br />

<strong>for</strong><br />

transport; Scenarios<br />

<strong>of</strong> energy <strong>and</strong> nonenergy<br />

sector<br />

emissions <strong>and</strong> s<strong>in</strong>ks<br />

<strong>use</strong>d to simulate<br />

European<br />

Commission<br />

<strong>in</strong>tegrated policies on<br />

the <strong>use</strong> <strong>of</strong> renewable<br />

sources, climate<br />

change mitigation<br />

<strong>and</strong> energy efficiency<br />

improvement, the so<br />

called 20–20–20<br />

targets, <strong>and</strong> far more<br />

str<strong>in</strong>gent A/M targets<br />

<strong>in</strong> the longer term at<br />

the national <strong>and</strong> pan<br />

EU level<br />

International<br />

recognition<br />

Currently<br />

LEAP has<br />

over 5000<br />

<strong>use</strong>rs <strong>in</strong> 169<br />

countries<br />

<strong>use</strong>d <strong>in</strong> 70<br />

countries by<br />

250<br />

<strong>in</strong>stitutions<br />

Tra<strong>in</strong><strong>in</strong>g <strong>and</strong><br />

technical support<br />

Onl<strong>in</strong>e tra<strong>in</strong><strong>in</strong>g is<br />

available <strong>and</strong><br />

sufficient <strong>for</strong> us<br />

Technical support<br />

provided aga<strong>in</strong>st<br />

fee<br />

The most<br />

dem<strong>and</strong><strong>in</strong>g part <strong>of</strong><br />

MARKAL/TIMES<br />

is tra<strong>in</strong><strong>in</strong>g which<br />

takes some months


6. References<br />

[1] Stockholm Environment Institute. Community <strong>for</strong> energy, environment <strong>and</strong> development.<br />

[accessed 02.02.2011].<br />

[2] COMMEND, the community <strong>for</strong> energy, environment & development, IHS registered to access LEAP<br />

applications. [accessed 02.02.2011].<br />

[3] Yan X, Crookes RJ. Reduction potentials <strong>of</strong> energy dem<strong>and</strong> <strong>and</strong> GHG emissions <strong>in</strong> Ch<strong>in</strong>a‘s road transport<br />

sector. Energy Policy 2009;37(2):658–68.<br />

[4] Giatrakos GP, Tsoutsos TD, Zografakis N., Susta<strong>in</strong>able power plann<strong>in</strong>g <strong>for</strong> the isl<strong>and</strong> <strong>of</strong> Crete. Energy Policy<br />

2009;37(4):1222–38.<br />

[5] Li J. Towards a low-carbon future <strong>in</strong> Ch<strong>in</strong>a‘s build<strong>in</strong>g sector – a review <strong>of</strong> energy <strong>and</strong> climate <strong>models</strong><br />

<strong>for</strong>ecast. Energy Policy 2008;36(5):1736–47.<br />

[6] Lund H, Munster E. Modell<strong>in</strong>g <strong>of</strong> energy systems with a high percentage <strong>of</strong> CHP <strong>and</strong> w<strong>in</strong>d power. Renew<br />

Energy 2003;28(14):2179–93.<br />

[7] Lund H. Large-scale <strong>in</strong>tegration <strong>of</strong> w<strong>in</strong>d power <strong>in</strong>to different energy systems. Energy 2005;30(13):2402–12.<br />

[8] Lund H. Large-scale <strong>in</strong>tegration <strong>of</strong> optimal comb<strong>in</strong>ations <strong>of</strong> PV, w<strong>in</strong>d <strong>and</strong> wave power <strong>in</strong>to the electricity<br />

supply. Renew Energy 2006;31(4): 503–15.<br />

[9] Lund H, Munster E. Management <strong>of</strong> surplus electricity-production from a fluctuat<strong>in</strong>g renewable-energy<br />

source. Appl Energy 2003;76(1–3):65–74.<br />

[10] Lund H, Kempton W. Integration <strong>of</strong> renewable energy <strong>in</strong>to the transport <strong>and</strong> electricity sectors through<br />

V2G. Energy Policy 2008;36(9):3578–87.<br />

[11] Lund H, Andersen AN. Optimal designs <strong>of</strong> small CHP plants <strong>in</strong> a market with fluctuat<strong>in</strong>g electricity prices.<br />

Energy Convers Manage 2005;46(6): 893–904.<br />

[12] Lund H, Munster E. Integrated energy systems <strong>and</strong> local energy markets. Energy Policy 2006;34(10):1152–<br />

60.<br />

[13] Lund H. Renewable energy strategies <strong>for</strong> susta<strong>in</strong>able development. Energy 2007;32(6):912–9.<br />

[14] Münster M, Lund H. Use <strong>of</strong> waste <strong>for</strong> heat, electricity <strong>and</strong> transport – challenges when per<strong>for</strong>m<strong>in</strong>g energy<br />

system analysis. Energy 2009;34(5): 636–44.<br />

[15] Mathiesen BV. Fuel cells <strong>and</strong> electrolysers <strong>in</strong> future energy systems. PhD thesis, Department <strong>of</strong><br />

Development <strong>and</strong> Plann<strong>in</strong>g, Aalborg University, Aalborg, Denmark, 2008.<br />

.<br />

[16] Mathiesen BV, Lund H. Comparative analyses <strong>of</strong> seven technologies to facilitate the <strong>in</strong>tegration <strong>of</strong><br />

fluctuat<strong>in</strong>g renewable energy sources. IET Renew Power Generat 2009;3(2):190–204.<br />

[17] Chen M, Lund H, Rosendahl LA, Condra TJ. Energy efficiency analysis <strong>and</strong> impact <strong>evaluation</strong> <strong>of</strong> the<br />

applications <strong>of</strong> thermoelectric power cycle to today‘s CHP systems. Appl Energy, <strong>in</strong> press<br />

doi:10.1016/j.apenergy.2009.<br />

[18] Blarke MB, Lund H. The effectiveness <strong>of</strong> storage <strong>and</strong> relocation options <strong>in</strong> renewable energy systems.<br />

Renew Energy 2008;33(7):1499–507.<br />

[19] Aalborg University. EnergyPLAN: advanced energy system analysis computer model.<br />

[accessed 02.02.2011].<br />

[20] Lund H. Renewable energy systems: the choice <strong>and</strong> model<strong>in</strong>g <strong>of</strong> 100% renewable solutions. MA, USA:<br />

Academic Press, ISBN: 978-0-12-375028-0.<br />

[21] Lund H, Duic N, Krajacic G, Graça Carvalho Md. Two energy system analysis <strong>models</strong>: a comparison <strong>of</strong><br />

methodologies <strong>and</strong> results. Energy 2007;32(6): 948–54.<br />

[22] Lund H, Mathiesen BV. Energy system analysis <strong>of</strong> 100% renewable energy systems – the case <strong>of</strong> Denmark<br />

<strong>in</strong> years 2030 <strong>and</strong> 2050. Energy 2009;34(5):524–31.<br />

[23] Lund H, Salgi G. The role <strong>of</strong> compressed air energy storage (CAES) <strong>in</strong> future susta<strong>in</strong>able energy systems.<br />

Energy Convers Manage 2009;50(5): 1172–9.<br />

[24] Lund H, Salgi G, Elmegaard B, Andersen AN. Optimal operation strategies <strong>of</strong> compressed air energy


storage (CAES) on electricity spot markets with fluctuat<strong>in</strong>g prices. Appl Therm Eng 2009;29(5–6):799–806.<br />

[25] Lund H, Clark WW. Management <strong>of</strong> fluctuations <strong>in</strong> w<strong>in</strong>d power <strong>and</strong> CHP compar<strong>in</strong>g two possible Danish<br />

strategies. Energy 2002;27(5):471–83.<br />

[26] DESIRE. Dissem<strong>in</strong>ation strategy on electricity balanc<strong>in</strong>g <strong>for</strong> large scale <strong>in</strong>tegration <strong>of</strong> renewable energy.<br />

[accessed 03.02.11].<br />

[27] Mathiesen BV. 100% Renewable energy systems <strong>in</strong> project future climate – the case <strong>of</strong> Denmark. In:<br />

Proceed<strong>in</strong>gs <strong>of</strong> the 5th Dubrovnik conference <strong>for</strong> susta<strong>in</strong>able development <strong>of</strong> energy, water <strong>and</strong> environment<br />

systems. Dubrovnik, Croatia, 29th September–3rd October, 2009<br />

[28]. Vienna University <strong>of</strong> Technology. Invert. [accessed 02.02.11].<br />

[29] Ragwitz M, Brakhage A, Kranzl L, Stadler M, Huber H, Haas R, et al. F<strong>in</strong>al report <strong>of</strong> work phase 6 <strong>of</strong> the<br />

project <strong>in</strong>vert. Vienna University <strong>of</strong> Technology; 2005. .<br />

[30] Stadler M, Kranzl L, Huber C, Haas R, Tsioliaridou E. Policy strategies <strong>and</strong> paths to promote susta<strong>in</strong>able<br />

energy systems – the dynamic <strong>in</strong>vert simulation tool. Energy Policy 2007;35(1):597–608.<br />

[31] Kranzl L, Stadler M, Huber C, Haas R, Ragwitz M, Brakhage A, et al. Deriv<strong>in</strong>g efficient <strong>policy</strong> <strong>portfolios</strong><br />

promot<strong>in</strong>g susta<strong>in</strong>able energy systems – case studies apply<strong>in</strong>g Invert simulation tool. Renewable Energy<br />

2006;31(15): 2393–410.<br />

[32] Bürger V, Kl<strong>in</strong>ski S, Lehr U, Leprich U, Nast M, Ragwitz M. Policies to support renewable energies <strong>in</strong> the<br />

heat market. Energy Policy 2008;36(8):3150–9.<br />

[33] Tsioliaridou E, Bakos GC, Stadler M. A new energy plann<strong>in</strong>g methodology <strong>for</strong> the penetration <strong>of</strong> renewable<br />

energy technologies <strong>in</strong> electricity sector – application <strong>for</strong> the isl<strong>and</strong> <strong>of</strong> Crete. Energy Policy<br />

2006;34(18):3757–64.<br />

[34] Tosato GC. Introduction to ETSAP <strong>and</strong> the MARKAL–TIMES <strong>models</strong> generators. International Energy<br />

Agency: NEET Workshop on Energy Technology Collaboration; 2008.<br />

.<br />

[35] International Energy Agency. TOOLS. < http://www.etsap.org/Tools.asp > [accessed 02.02.11].<br />

[36] Goldste<strong>in</strong> GA, Tosato GC. Global energy systems <strong>and</strong> common analyses: f<strong>in</strong>al report <strong>of</strong> Annex X (2005–<br />

2008). International Energy Agency; 2008. .<br />

[37] Contaldi M, Gracceva F, Mattucci A. Hydrogen perspectives <strong>in</strong> Italy: analysis <strong>of</strong> possible deployment<br />

scenarios. Int J Hydrogen Energy 2008;33(6): 1630–42.<br />

[38] Tseng P, Lee J, Friley P. A hydrogen economy: opportunities <strong>and</strong> challenges. Energy 2005;30(14):2703–20.<br />

[39] Gielen D, Simbolotti G. Prospects <strong>for</strong> hydrogen <strong>and</strong> fuel cells. International Energy Agency; 2005.<br />

.<br />

[40] Contreras A, Guervós E, Posso F. Market penetration analysis <strong>of</strong> the <strong>use</strong> <strong>of</strong> hydrogen <strong>in</strong> the road transport<br />

sector <strong>of</strong> the Madrid region, us<strong>in</strong>g MARKAL. Int J Hydrogen Energy 2009;34(1):13–20.<br />

[41] Endo E. Market penetration analysis <strong>of</strong> fuel cell vehicles <strong>in</strong> Japan by us<strong>in</strong>g the energy system model<br />

MARKAL. Int J Hydrogen Energy 2007;32(10–11): 1347–54.<br />

[421] Vaillancourt K, Labriet M, Loulou R, Waaub J-P. The role <strong>of</strong> nuclear energy <strong>in</strong> long-term climate<br />

scenarios: an analysis with the World-TIMES model. Energy Policy 2008;36(7):2296–307.<br />

[43] Hamacher T, Lako P, Ybema JR, Korhonen R, Aquilonius K, Cabal H, et al. Can fusion help to mitigate<br />

greenho<strong>use</strong> gas emissions? Fusion Eng Des 2001;58– 59:1087–90.<br />

[44] Lechon Y, Cabal H, Varela M, Saez R, Eherer C, Baumann M, et al. A global energy model with fusion.<br />

Fusion Eng Des 2005;75–79:1141–4.<br />

[45] Biberacher M. Fusion <strong>in</strong> the global energy system – GIS <strong>and</strong> TIMES. International Energy Agency; 2006.<br />

.<br />

[46] Nguyen KQ. Impacts <strong>of</strong> w<strong>in</strong>d power generation <strong>and</strong> CO2 emission constra<strong>in</strong>ts on the future choice <strong>of</strong> fuels<br />

<strong>and</strong> technologies <strong>in</strong> the power sector <strong>of</strong> Vietnam. Energy Policy 2007;35(4):2305–12.<br />

[47] Centre <strong>for</strong> Renewable Energy Sources (Greece). Monitor<strong>in</strong>g <strong>and</strong> <strong>evaluation</strong> <strong>of</strong> the RES directives<br />

24


implementation <strong>in</strong> EU27 <strong>and</strong> <strong>policy</strong> recommendations <strong>for</strong> 2020. [accessed<br />

03.02.2011].<br />

[48] International Institute <strong>for</strong> Applied Systems Analysis. Energy model<strong>in</strong>g framework: model <strong>for</strong> energy supply<br />

strategy alternatives <strong>and</strong> their general environmental impact (MESSAGE). <<br />

http://www.iiasa.ac.at/Research/ENE/model/message.html > [accessed 02.02.2011].<br />

[49] Messner S, Strubegger M. User‘s Guide <strong>for</strong> MESSAGE III. International Institute <strong>for</strong> Applied Systems<br />

Analysis; 1995. .<br />

[50] Rao S, Riahi K. The role <strong>of</strong> non-CO2 greenho<strong>use</strong> gases <strong>in</strong> climate change mitigation: long-term scenarios<br />

<strong>for</strong> the 21st century. Energy J 2006;27: 177–200 [multi-greenho<strong>use</strong> gas mitigation].<br />

[51] Nakicenovic N, Gruebler A, McDonald A, editors. Global energy perspectives. Cambridge: Cambridge<br />

University Press; 1998.<br />

[52] Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaff<strong>in</strong> S, et al. Special report on emissions<br />

scenarios. Intergovernmental panel on climate change; 2000.<br />

.<br />

[53] Grübler A, Nakicenovic N, Riahi K, Wagner F, Fischer G, Keppo I, et al. Integrated assessment <strong>of</strong><br />

uncerta<strong>in</strong>ties <strong>in</strong> greenho<strong>use</strong> gas emissions <strong>and</strong> their mitigation: <strong>in</strong>troduction <strong>and</strong> <strong>overview</strong>. Technol Forecast<br />

Soc Change 2007; 74(7):873–86.<br />

[54] Riahi K, Grübler A, Nakicenovic N. Scenarios <strong>of</strong> long-term socio-economic <strong>and</strong> environmental<br />

development under climate stabilization. Technol Forecast Soc Change 2007;74(7):887–935.<br />

[55] Shafiei E, Saboohi Y, Gh<strong>of</strong>rani MB. Impact <strong>of</strong> <strong>in</strong>novation programs on development <strong>of</strong> energy system: case<br />

<strong>of</strong> Iranian electricity-supply system. Energy Policy 2009;37(6):2221–30.<br />

[56] International Atomic Energy Agency. Assess<strong>in</strong>g <strong>policy</strong> options <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g the <strong>use</strong> <strong>of</strong> renewable energy<br />

<strong>for</strong> susta<strong>in</strong>able development: Modell<strong>in</strong>g energy scenarios <strong>for</strong> Sichuan, Ch<strong>in</strong>a. International Atomic Energy<br />

Agency; 2007. .<br />

[57] International Atomic Energy Agency. analyses <strong>of</strong> energy supply options <strong>and</strong> security <strong>of</strong> energy supply <strong>in</strong><br />

the Baltic states. International Atomic Energy Agency; 2007.<br />

.<br />

[58] International Atomic Energy Agency. Cuba: a country pr<strong>of</strong>ile on susta<strong>in</strong>able energy development.<br />

International Atomic Energy Agency; 2008. .<br />

[59] International Institute <strong>for</strong> Applied System Analysis. Greenho<strong>use</strong> gas <strong>in</strong>itiative: scenario data base.<br />

[accessed 03.02.11].<br />

[60] Forschungszentrum Jülich Institute <strong>for</strong> Energy Research. Systems Analysis <strong>and</strong> Technology Evaluation.<br />

[accessed 02.02.11].<br />

[61] Mart<strong>in</strong>sen D, L<strong>in</strong>ssen J, Markewitz P, Vögele S. CCS: a future CO2 mitigation option <strong>for</strong> Germany? – a<br />

bottom-up approach. Energy Policy 2007;35(4): 2110–20.<br />

[62] Krey V, Mart<strong>in</strong>sen D, Wagner H-J. Effects <strong>of</strong> stochastic energy prices on long-term energy–economic<br />

scenarios. Energy 2007;32(12):2340–9.<br />

[63] Mart<strong>in</strong>sen D, Krey V. Compromises <strong>in</strong> energy <strong>policy</strong> – us<strong>in</strong>g fuzzy optimization <strong>in</strong> an energy systems<br />

model. Energy Policy 2008;36(8): 2983–94.<br />

[64] Mart<strong>in</strong>sen D, Krey V, Markewitz P. Implications <strong>of</strong> high energy prices <strong>for</strong> energy system <strong>and</strong> emissions –<br />

the response from an energy model <strong>for</strong> Germany. Energy Policy 2007;35(9):4504–15.<br />

[64] INFORSE-Europe. Vision 2050: visions <strong>for</strong> a renewable energy world. [accessed 25.04.09].<br />

[65] Schlenzig C. PlaNet – E<strong>in</strong> entscheidungsunterstützendes System für die Energie-und Umweltplanung<br />

(PlaNet – a decision support system <strong>for</strong> energy <strong>and</strong> environmental plann<strong>in</strong>g). PhD thesis, Institut für<br />

Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart, Stuttgart, Germany; 1997.<br />

.<br />

[66] Baumhögger F, Baumhögger J, Baur J, Kühner R, Schellmann U, Schlenzig C, et al. Mesap Manual:<br />

Version 3.1. Institut für Energiewirtschaft und Rationelle Energieanwendung; 1998.<br />

25


[67] Schlenzig C. Energy plann<strong>in</strong>g <strong>and</strong> environmental management with the <strong>in</strong><strong>for</strong>mation <strong>and</strong> decision support<br />

system MESAP. Int J Global Energy Issues 1999;12(1–6):81–91<br />

[68] Schlenzig C. Seven2one modell<strong>in</strong>g: Erstellung <strong>in</strong>tegrierter Ener-giekonzepte mit Mesap/PlaNet (Seven2one<br />

modell<strong>in</strong>g: build<strong>in</strong>g <strong>in</strong>tegrated energy concepts with Mesap/PlaNet). seven2one; 2009. Error! Hyperl<strong>in</strong>k<br />

reference not valid.<br />

[69] Krewitt W, Simon S, Graus W, Teske S, Zervos A, Schäfer O. The 2 C scenario – a susta<strong>in</strong>able world<br />

energy perspective. Energy Policy 2007;35(10):4969–80.<br />

[70] Greenpeace. Energy [r]evolution – a susta<strong>in</strong>able global energy outlook. Greenpeace; 2008.<br />

.<br />

[71] Al-Mansour F, Merse S, Tomsic M. Comparison <strong>of</strong> energy efficiency strategies <strong>in</strong> the <strong>in</strong>dustrial sector <strong>of</strong><br />

Slovenia. Energy 2003;28(5):421–40.<br />

[71 a ] National Technical University <strong>of</strong> Athens. Energy–economics–environment modell<strong>in</strong>g laboratory research<br />

<strong>and</strong> <strong>policy</strong> analysis. < http://www.e3mlab.ntua.gr/e3mlab/ > [accessed 02.02.11].<br />

[72] Capros P, Mantzos L, Pap<strong>and</strong>reou V, Tasios N. Energy <strong>and</strong> transport outlook to 2030 – update 2007.<br />

European Communities; 2008. .<br />

[73] Commission <strong>of</strong> European Communities. Impact assessment: package <strong>of</strong> implementation measures <strong>for</strong> the<br />

EU‘s objectives on climate change <strong>and</strong> renewable energy <strong>for</strong> 2020. Commission <strong>of</strong> European Communities;<br />

2008. .<br />

[74] Bulteel P, Belmans R, Dolben G, Garcia Madruga M, Kallstr<strong>and</strong> B, Lace I, et al. The role <strong>of</strong> electricity: a<br />

new path to secure, competitive energy <strong>in</strong> a carbon-constra<strong>in</strong>ed world. Eurelectric; 2007.<br />

.<br />

[75] Capros P, Kouvaritakis N, Mantzos L. Economic <strong>evaluation</strong> <strong>of</strong> sectoral emission reduction objectives <strong>for</strong><br />

climate change: top-down analysis <strong>of</strong> greenho<strong>use</strong> gas emission reduction possibilities <strong>in</strong> the EU. National<br />

Technical University <strong>of</strong> Athens; 2001.


[86] Morthorst PE, Jensen SG, Meibom P. Invester<strong>in</strong>g og prisdannelse på et liberaliseret elmarked (Investment<br />

<strong>and</strong> pric<strong>in</strong>g <strong>in</strong> a liberalised electricity market). Risø National Laboratory; 2005.<br />

.<br />

[87] Jensen SG, Meibom P. Investments <strong>in</strong> liberalised power markets: gas turb<strong>in</strong>e <strong>in</strong>vestment opportunities <strong>in</strong> the<br />

Nordic power system. Int J Electr Power Energy Syst 2008;30(2):113–24.<br />

[88] Ea Energy Analyses, Hagman Energy, COWI. Congestion management <strong>in</strong> the Nordic market – <strong>evaluation</strong> <strong>of</strong><br />

different market <strong>models</strong>. Nordic Council <strong>of</strong> M<strong>in</strong>isters; 2008. .<br />

[89] Danish Energy Research Program 2003. Modell<strong>in</strong>g imperfect competition on the Nordic electricity market<br />

with Balmorel. Danish Energy Research Program 2003, 2005.<br />

.<br />

[90] VEKS, København E (KE), Metropolitan Copenhagen Heat<strong>in</strong>g Transmission Company (CTR). Long-term<br />

heat plan <strong>for</strong> Greater Copenhagen. < http://www.varmeplanhovedstaden.dk/ > [accessed 11.07.09].<br />

[91] L<strong>in</strong>dboe HH, Werl<strong>in</strong>g J, K<strong>of</strong>oed-Wiuff A, Bregnbmk L. Impact <strong>of</strong> CO2 quota allocation to new entrants <strong>in</strong><br />

the electricity market. Ea Energy Analyses, Energy Modell<strong>in</strong>g; 2007.<br />

.<br />

[92] Rud J. Systemanalyse af Compressed Air Energy Storage: Optimer<strong>in</strong>g, drift og implementer<strong>in</strong>g i det danske<br />

energimarked (System analysis <strong>of</strong> a potential compressed air energy storage: optimization, operation <strong>and</strong><br />

implementation <strong>in</strong> the Danish energy market). Masters thesis, Institut <strong>for</strong> Mekanisk Teknologi, Danmarks<br />

Tekniske Universitet, Copenhagen, Denmark; 2008. .<br />

[93] Dittmar L. Integration <strong>of</strong> energy sav<strong>in</strong>gs technologies <strong>and</strong> learn<strong>in</strong>g curves <strong>in</strong>to the BALtic MOdel <strong>of</strong><br />

Regional Electricity Liberalisation – BALMOREL. Masters thesis, University <strong>of</strong> Flensburg, Flensburg,<br />

Germany; 2006. .<br />

[94] Ball M, Wietschel M, Rentz O. Integration <strong>of</strong> a hydrogen economy <strong>in</strong>to the German energy system: an<br />

optimis<strong>in</strong>g modell<strong>in</strong>g approach. Int J Hydrogen Energy 2007;32(10–11):1355–68.<br />

[95] Argonne National Laboratory. Energy <strong>and</strong> Power Evaluation Program (ENPEP- BALANCE).<br />

[accessed 8.03.11]<br />

[96] International Atomic Energy Agency. Comparative assessment <strong>of</strong> energy options <strong>and</strong> strategies <strong>in</strong> Mexico<br />

until 2025, International Atomic Energy Agency; 2005, http://www.dis.anl.gov/news/MexicoEnergy.html,<br />

[accessed 8.03.11]<br />

[97] Conzelmann G, Koritarov V. Turkey energy <strong>and</strong> environmental review. Argonne National Laboratory; 2002,<br />

http://www.dis.anl.gov/news/TurkeyUndp.html<br />

[98] The United Nations (1996), Republic <strong>of</strong> Bulgaria: the first national communication on climate change,<br />

<br />

[99] Argonne National Laboratory. ENPEP applications. <br />

[accessed 8.03.11]<br />

[100] Mirsagedis S, Conzelmann G, Georgopoulou E, Koritarov V, Sarafidis Y. Long-term GHG emissions<br />

outlook <strong>for</strong> Greece. In: Proceed<strong>in</strong>gs <strong>of</strong> the 6th IAEE European conference on model<strong>in</strong>g <strong>in</strong> energy economics <strong>and</strong><br />

<strong>policy</strong>, Zurich, Switzerl<strong>and</strong>, 2–3 September; 2004.<br />

[101] Connolly D., Lund H., Mathiesen B.V., Leahy M. (2009), A review <strong>of</strong> computer tools <strong>for</strong> analyz<strong>in</strong>g the<br />

<strong>in</strong>tegration <strong>of</strong> renewable energy <strong>in</strong>to various energy systems, Applied Energy<br />

[102] Berger, C., R. Dubois, A. Haurie, E. Lessard, R. Loulou, <strong>and</strong> J.-Ph. Waaub, "Canadian MARKAL: an<br />

Advanced L<strong>in</strong>ear Programm<strong>in</strong>g System <strong>for</strong> Energy <strong>and</strong> Environment Modell<strong>in</strong>g", INFOR, Vol. 20, 114-125,<br />

1992.<br />

6.1. References to the <strong>models</strong> <strong>use</strong>d <strong>in</strong> FPs funded projects<br />

Global-Greenho<strong>use</strong>-Warm<strong>in</strong>g , 2011, Climate Mitigation <strong>and</strong> Adaptation, http://www.global-greenho<strong>use</strong>warm<strong>in</strong>g.com/climate-mitigation-<strong>and</strong>-adaptation.html,<br />

status 31 January 2011<br />

Dr. Wolfram Schrimpf <strong>and</strong> Dr. Elisabeth Lipiatou , Research on Adaptation to Climate Change: Needs <strong>for</strong><br />

Future Research, Climate Change & Environmental Risks Unit, Research Directorate General, European<br />

27


Commission, Presentation at the Bridg<strong>in</strong>g the Gap Conference, 14 – 16 May 2008, Portorož, Slovenia;<br />

http://www.bridg<strong>in</strong>gthegap.si/pdf/Adapation%20to%20climate%20change/Wolfram%20Schrimpf%20<strong>and</strong>%20El<br />

isabeth%20Lipiatou%20NEEDS%20FOR%20FUTURE%20RESEARCH.pdf<br />

European Research Framework Programme, Research on Climate Change, Prepared <strong>for</strong> the Third World<br />

Climate Conference (WCC-3), <strong>and</strong> the UNFCCC Conference <strong>of</strong> the Parties (COP-15), Directorate-General <strong>for</strong><br />

Research, Environment, 2009, http://ec.europa.eu/research/environment/pdf/cop-<br />

15.pdf#view=fit&pagemode=none<br />

Drouet L., Vielle M., Labriet M. <strong>and</strong> R. Loulou, 2008, A master program that will drive the coupl<strong>in</strong>g <strong>of</strong> GEMINI-<br />

E3 <strong>and</strong> MARKAL/TIMES <strong>models</strong>, Work<strong>in</strong>g paper, http://gem<strong>in</strong>ie3.epfl.ch/webdav/site/gem<strong>in</strong>ie3/shared/A%20master%20program%20that%20will%20drive%20the%20coupl<strong>in</strong><br />

g%20<strong>of</strong>%20GEMINIE3%20<strong>and</strong>%20MARKAL%20TIMES%20<strong>models</strong><br />

PRIMES MODEL; Pr<strong>of</strong>. P. Capros, E3Mlab <strong>of</strong> ICCS/NTUA; As Used <strong>for</strong> the 2007 EC Scenarios,<br />

http://www.e3mlab.ntua.gr/e3mlab/PRIMES%20Manual/The_PRIMES_MODEL_2008.pdf<br />

Richard Loulou et al., 2005 , Documentation <strong>for</strong> the TIMES Model, PART I,., Energy Technology Systems<br />

Analysis Programme, April 2005, http://www.etsap.org/tools.htm<br />

ADAM project: Full title: Adaptation <strong>and</strong> Mitigation Strategies: Support<strong>in</strong>g European Climate Policy,<br />

http://www.adamproject.eu/<br />

D. Connolly, H. Lund b, B.V. Mathiesen, M. Leahy (2010), A review <strong>of</strong> computer tools <strong>for</strong> analys<strong>in</strong>g the<br />

<strong>in</strong>tegration <strong>of</strong> renewable energy <strong>in</strong>to various energy systems, Applied Energy, journal homepage: www.elsevier<br />

.com/ locate/apenergy<br />

Fishbone, L.G., <strong>and</strong> H. Abilock, (1981), "MARKAL, A L<strong>in</strong>ear Programm<strong>in</strong>g Model <strong>for</strong> Energy Systems<br />

Analysis: Technical Description <strong>of</strong> the BNL Version", International Journal <strong>of</strong> Energy Research, Vol. 5, 353-<br />

375.<br />

Manne, A.S., <strong>and</strong> Wene, (1992), C-O., "MARKAL-MACRO: A L<strong>in</strong>ked Model <strong>for</strong> Energy- Economy Analysis",<br />

BNL-47161 report, Brookhaven National Laboratory, Upton, New-York, February 1992.<br />

Meade, D. (1996) ―LIFT User‘s Guide‖, Technical report, INFORUM, IERF, College Park, Md (July 1996).<br />

Jaccard, M., J. Nyboer, C. Bataille, <strong>and</strong> B. Sadownik (2003), "Model<strong>in</strong>g the Cost <strong>of</strong> Climate Policy:<br />

Dist<strong>in</strong>guish<strong>in</strong>g between alternative cost def<strong>in</strong>itions <strong>and</strong> long-run cost dynamics." Energy Journal 24(1): 49-73.<br />

28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!