11.11.2014 Views

The genus Stephania - Dr. DS Kothari Postdoctoral Fellowship ...

The genus Stephania - Dr. DS Kothari Postdoctoral Fellowship ...

The genus Stephania - Dr. DS Kothari Postdoctoral Fellowship ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal of Ethnopharmacology 132 (2010) 369–383<br />

Contents lists available at ScienceDirect<br />

Journal of Ethnopharmacology<br />

journal homepage: www.elsevier.com/locate/jethpharm<br />

Review<br />

<strong>The</strong> <strong>genus</strong> <strong>Stephania</strong> (Menispermaceae): Chemical and pharmacological<br />

perspectives<br />

Deepak Kumar Semwal a,∗ , Ruchi Badoni b , Ravindra Semwal c , Sudhir Kumar Kothiyal b ,<br />

Gur Jas Preet Singh a , Usha Rawat b<br />

a Department of Chemistry, Punjab University, Sector-14, Chandigarh 160014, Punjab, India<br />

b Department of Chemistry, University of Garhwal, Srinagar 246174, Uttarakhand, India<br />

c Faculty of Pharmacy, Dehradun Institute of Technology, Dehradun 248009, Uttarakhand, India<br />

article<br />

info<br />

abstract<br />

Article history:<br />

Received 13 June 2010<br />

Received in revised form 22 August 2010<br />

Accepted 22 August 2010<br />

Available online 27 August 2010<br />

Key words:<br />

<strong>Stephania</strong> species<br />

S. cepharantha<br />

S. glabra<br />

S. japonica<br />

S. venosa<br />

Berberines<br />

Antiproliferative<br />

Hyperglycemia<br />

<strong>The</strong> plants of the <strong>genus</strong> <strong>Stephania</strong> (Menispermaceae) are widely distributed, and have long been used<br />

in folk medicine for the treatment of various ailments such as asthma, tuberculosis, dysentery, hyperglycemia,<br />

malaria, cancer and fever. Over 150 alkaloids together with flavonoids, lignans, steroids,<br />

terpenoids and coumarins have been identified in the <strong>genus</strong>, and many of these have been evaluated<br />

for biological activity. This review presents comprehensive information on the chemistry and pharmacology<br />

of the <strong>genus</strong> together with the traditional uses of many of its plants. In addition, this review<br />

discusses the structure–activity relationship of different compounds as well as recent developments and<br />

the scope for future research in this aspect.<br />

© 2010 Elsevier Ireland Ltd. All rights reserved.<br />

Contents<br />

1. Introduction .......................................................................................................................................... 370<br />

2. Traditional uses ...................................................................................................................................... 370<br />

3. Chemical constituents ............................................................................................................................... 371<br />

3.1. <strong>Stephania</strong> abyssinica Walp. ................................................................................................................... 371<br />

3.2. <strong>Stephania</strong> aculeata F. M. Bailey ............................................................................................................... 371<br />

3.3. <strong>Stephania</strong> bancroftii F. M. Bailey .............................................................................................................. 371<br />

3.4. <strong>Stephania</strong> brachyandra Diels .................................................................................................................. 371<br />

3.5. <strong>Stephania</strong> cepharantha Hayata ................................................................................................................ 371<br />

3.6. <strong>Stephania</strong> dinklagei Diels ..................................................................................................................... 372<br />

3.7. <strong>Stephania</strong> delovayi Diels ...................................................................................................................... 372<br />

3.8. <strong>Stephania</strong> elegans Hook.f. & Thoms. .......................................................................................................... 372<br />

3.9. <strong>Stephania</strong> erecta Craib ........................................................................................................................ 373<br />

3.10. <strong>Stephania</strong> excentrica H.S.Lo................................................................................................................. 373<br />

3.11. <strong>Stephania</strong> glabra (Roxb.) Miers .............................................................................................................. 373<br />

3.12. <strong>Stephania</strong> hernandifolia (Willd.) Walp. ...................................................................................................... 373<br />

3.13. <strong>Stephania</strong> intermedia H.S.Lo................................................................................................................ 374<br />

3.14. <strong>Stephania</strong> japonica (Thunb.) Miers .......................................................................................................... 374<br />

3.15. <strong>Stephania</strong> longa Lour ........................................................................................................................ 374<br />

3.16. <strong>Stephania</strong> miyiensis S.Y.Zhao&H.S.Lo.................................................................................................... 374<br />

∗ Corresponding author. Tel.: +91 9412947995.<br />

E-mail address: dr dks.1983@yahoo.co.in (D.K. Semwal).<br />

0378-8741/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights reserved.<br />

doi:10.1016/j.jep.2010.08.047


370 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.17. <strong>Stephania</strong> pierrei Diels ....................................................................................................................... 375<br />

3.18. <strong>Stephania</strong> gracilenta Miers .................................................................................................................. 375<br />

3.19. <strong>Stephania</strong> rotunda Lour. ..................................................................................................................... 375<br />

3.20. <strong>Stephania</strong> sasakii Hayata .................................................................................................................... 375<br />

3.21. <strong>Stephania</strong> sinica Diels........................................................................................................................ 375<br />

3.22. <strong>Stephania</strong> suberosa L. L. Forman ............................................................................................................. 375<br />

3.23. <strong>Stephania</strong> succifera H. S. Lo & Y. Tsoong ..................................................................................................... 375<br />

3.24. <strong>Stephania</strong> sutchuenensis H.S.Lo............................................................................................................. 376<br />

3.25. <strong>Stephania</strong> tetrandra S. Moore ................................................................................................................ 376<br />

3.26. <strong>Stephania</strong> venosa (Blume) Spreng. .......................................................................................................... 376<br />

4. Biological activities................................................................................................................................... 376<br />

4.1. Anti-malarial activity ......................................................................................................................... 376<br />

4.2. Antimicrobial activity ........................................................................................................................ 376<br />

4.3. Anthelmintic activity ......................................................................................................................... 377<br />

4.4. Anti-viral activity ............................................................................................................................. 377<br />

4.5. Anti-proliferative/anti-cancer activity ....................................................................................................... 377<br />

4.6. Antipsychotic activity ........................................................................................................................ 377<br />

4.7. Apoptosis inducing effect .................................................................................................................... 377<br />

4.8. Multidrug resistance reversing activity ...................................................................................................... 377<br />

4.9. Anti-inflammatory and analgesic activity ................................................................................................... 378<br />

4.10. Immunomodulating activity ................................................................................................................ 378<br />

4.11. Antifibrotic effect ........................................................................................................................... 378<br />

4.12. Anti-hyperglycemic effect .................................................................................................................. 378<br />

4.13. Ca 2+ channel blocking activity .............................................................................................................. 378<br />

4.14. Acetylcholinesterase (AChE) inhibitory activity ............................................................................................ 379<br />

4.15. Vasodilating and hypotensive activities .................................................................................................... 379<br />

4.16. Inhibition of antinociceptive effect ......................................................................................................... 379<br />

4.17. Acute hemodynamic effect ................................................................................................................. 379<br />

4.18. Histamine release inhibition activity ....................................................................................................... 379<br />

4.19. Antioxidant activity ......................................................................................................................... 379<br />

4.20. Miscellaneous uses .......................................................................................................................... 379<br />

4.21. Toxic effects ................................................................................................................................. 380<br />

5. Future perspectives and conclusion ................................................................................................................. 380<br />

Acknowledgements .................................................................................................................................. 380<br />

References ........................................................................................................................................... 380<br />

1. Introduction<br />

<strong>The</strong> <strong>genus</strong> <strong>Stephania</strong> belongs to family Menispermaceae, a large<br />

family of about 65 genera and 350 species, distributed in warmer<br />

parts of the world. <strong>The</strong> members of this family are mostly herbs<br />

or shrubs but rarely trees. <strong>The</strong> plants of the <strong>genus</strong> <strong>Stephania</strong> are<br />

slender climbers with peltate and membranous leaves. <strong>The</strong> flowers<br />

are umbelliform cymes while inflorescence are axillary and arising<br />

from old leafless stem. <strong>The</strong>se plants have recognized medicinal values<br />

and traditionally have been used for the treatment of asthma,<br />

tuberculosis, dysentery, hyperglycemia, cancer, fever, intestinal<br />

complaints, sleep disturbances and inflammation (Chopra et al.,<br />

1958; Gaur, 1999; Kirtikar and Basu, 2004).<br />

Over the last five decades, an extensive amount of chemical<br />

work has been done on many of these plants because of their traditional<br />

uses which are of interest to researchers. <strong>The</strong>se plants are<br />

major sources of bioactive alkaloids such as morphines, hasubanalactams,<br />

hasubanans, aporphines and berberines. <strong>The</strong> majority<br />

of the chemical work has been reported on S. tetrandra S. Moore,<br />

S. cepharantha Hayata, S. glabra (Roxb.) Miers, S. japonica (Thunb.)<br />

Miers and S. venosa (Blume) Spreng, and more than 70 alkaloids<br />

along with other minor constituents have been reported from these<br />

five species alone. Many of these plants are known for their distinct<br />

biological importance including antitumor and emetine type<br />

activity (Kuroda et al., 1976; Gupta et al., 1980).<br />

In past decade, Chinese-herb nephropathy, a progressive interstitial<br />

nephropathy has been observed among women in Belgium<br />

after the intake of weight-reducing pills containing S. tetrandra<br />

S. Moore. Phytochemical analyses of these pills resulted in the<br />

identification of aristolochic acids (responsible for nephropathy)<br />

instead of tetrandrine (responsible for weight reduction), confirming<br />

the replacement of S. tetrandra (han fangji) by Aristolochia<br />

fangchi (guang fangji/fangchi). <strong>The</strong>se are different plants and the<br />

chemical composition also different. Similarity in the nomenclature<br />

of both these plants was only reason behind the substitution<br />

(Vanherweghem et al., 1993; Debelle et al., 2002; Mosihuzzaman<br />

and Choudhary, 2008).<br />

This study is an attempt to compile an up-to-date and comprehensive<br />

review of the <strong>genus</strong> <strong>Stephania</strong> that covers its traditional<br />

medicinal uses, chemistry and pharmacology. Many plants of this<br />

<strong>genus</strong> are pharmacologically known but chemically unknown and<br />

vice-versa. <strong>The</strong>refore, the scope of future research in this aspect is<br />

also discussed here.<br />

2. Traditional uses<br />

In traditional medicine, most of the plants of the <strong>genus</strong> <strong>Stephania</strong><br />

have been used to treat a wide variety of ailments such as dysentery,<br />

pyrexia, tuberculosis, diarrhea, dyspepsia, urinary diseases,<br />

abdominal ills, asthma, ascariasis, dysmenorrhea, indigestion,<br />

wounds, head-ache, sore-breasts and leprosy. <strong>The</strong> rhizome extract<br />

of S. glabra (Roxb.) Miers has long been used as antidysenteric,<br />

antipyretic, antiasthamatic and antituberculosis agent (Chopra et<br />

al., 1958; Kirtikar and Basu, 2004). <strong>The</strong> aqueous concoction of the<br />

powders of the dried rhizome of S. glabra (Roxb.) Miers and aerial<br />

root of Trichosanthes multiloba are used as an anthelmintic against<br />

intestinal worms in Meghalaya (Northeast India) (Das et al., 2004).<br />

S. venosa (Blume) Spreng is often used as a bitter tonic (Pharadai et<br />

al., 1985). <strong>The</strong> stems of S. dinklagei Diels possess vermifuge, aphrodisiac,<br />

analgesic and sedative effects whereas the leaves has been


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 371<br />

used to treat infertility in the female and impotence in the male. <strong>The</strong><br />

roots of S. hernandifolia (Willd.) Walp. were used in fever, diarrhea,<br />

dyspepsia and urinary diseases (Chopra et al., 1958). S. rotunda Lour.<br />

has been used to treat pulmonary consumption, dysentery, fever,<br />

abdominal ills (tubers), asthma (tubers and stems), ascariasis, dysmenorrhea<br />

(stems), indigestion, wounds, head-ache, sore-breasts<br />

(leaves) and leprosy (flowers) (Chopra et al., 1958; Burkill, 1966;<br />

Phaet-thanesuara, 1967; Khasiphand and Suksah, 1968; Perry,<br />

1980). <strong>The</strong> root of S. tetrandra S. Moore have been used in hepatofibrogenic<br />

disease (Chen et al., 2005), it also used as diuretic,<br />

antiphlogistic, antirheumatic (Joshi et al., 2008), antipyretic and<br />

analgesic in China for centuries (Achike and Kwan, 2002). S. cepharantha<br />

Hayata has been used to treat many acute and chronic diseases,<br />

including venomous snakebites in Japan (Kimoto et al., 1997).<br />

In Bangladesh, the vines of S. japonica (Thunb.) Miers were used for<br />

leucorrhoea, presence of semen in urine, burning sensations during<br />

urination by Chakma and Tonchonga tribes (Hossan et al., 2010).<br />

3.3. <strong>Stephania</strong> bancroftii F. M. Bailey<br />

(−)-Tetrahydropalmatine (5), (−)-stephanine (6), (−)-crebanine<br />

(7), ayuthianine (8), (+)-sebiferine and (+)-stepharine (9)<br />

(Blanchfield et al., 1993, 2003; Bartley et al., 1994).<br />

3. Chemical constituents<br />

<strong>The</strong> reported data showed that alkaloids are the main and<br />

common phytochemicals of the <strong>genus</strong> <strong>Stephania</strong>. More than<br />

200 alkaloids have been isolated from this <strong>genus</strong> together<br />

with flavonoids, lignans, steroids, terpenoids and coumarins. <strong>The</strong><br />

reported phytochemicals from different plants of the <strong>genus</strong> are<br />

given as following.<br />

3.4. <strong>Stephania</strong> brachyandra Diels<br />

Sinoacutine, stephanine (6), crebanine (7) and (−)-dicentrine<br />

(10) (Shulin et al., 1992).<br />

3.1. <strong>Stephania</strong> abyssinica Walp.<br />

4 ′ -O-methylstephavanine (1) and stephavanine (2) (Dagne et<br />

al., 1993).<br />

3.5. <strong>Stephania</strong> cepharantha Hayata<br />

3.2. <strong>Stephania</strong> aculeata F. M. Bailey<br />

7-Hydroxyaporphine, (+)-laudanidine (3) and (−)-amurine (4)<br />

(Blanchfield et al., 1993, 2003).<br />

Stephaoxocanine, stephaoxocanidine, romorphinane, cepharanthine,<br />

cepharanoline, steponine, isotetrandrine, berbamine,<br />

stecepharine, dehydroreticuline (11), magnoflorine, menisperine,<br />

oblongine, cyclanoline, cis-N-methylcapaurine, sinomenine,<br />

cephamerphinanine, D-glucopyranoside, 2 ′ -N-methylisotetrandrine,<br />

N-methyl stesakine chloride (12), stesakine 9-O--Dglucoside<br />

(13), N-methylasimilobine-2-O--D-glucopyranoside<br />

(14), cephamonine, aromoline, zippelianine, cepharamine, aknadinine<br />

(15), aknadicine (16), cephatonine, (−)-cycleanine (28),<br />

obamegine, berbamine, isocorydine, anolobine, cotypalline,<br />

stepharine (9), (+)-reticuline (17), obaberine, homoaromoline,<br />

fangchinoline, tetrandrine (18), cephamuline (Deng et al., 1992;<br />

Nakamura et al., 1992; Sugimoto et al., 1993, 1988; Kashiwaba et<br />

al., 1996, 1997, 2000, 1998, 1994; Nakaoji et al., 1997; Tanahashi<br />

et al., 2000), berbamine and aromorine (Akasu et al., 1976).


372 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.6. <strong>Stephania</strong> dinklagei Diels<br />

Liriodenine (19), dicentrinone (20), (+)-corydine (21), (+)-<br />

idocorydine, (−)-roemerine, N-methylliriodendronine (22),<br />

2-O,N-dimethylliriodendronine (23), aloe-emodin (24), isocorydine,<br />

aporphines, atheroospermidine, tephalagine and<br />

dehydrostephalagine (Dwuma et al., 1980; Camacho et al.,<br />

2000; Goren et al., 2003).<br />

3.7. <strong>Stephania</strong> delovayi Diels<br />

Stephodeline (Il’inskaya et al., 1973), 16-oxodelavayine<br />

(Il’inskaya et al., 1972), delavayine (25) (Fadeeva et al., 1971a) and<br />

isostephodeline (Perel’son et al., 1975).<br />

3.8. <strong>Stephania</strong> elegans Hook.f. & Thoms.<br />

Epihernandolinol (26), N-methylcorydalmine (27), hasubanonin,<br />

aknadinin (15), cyclanoline, magnoflorine, isotetrandrine,<br />

isochondodendrine and cycleanine (28) (Singh et al., 1981).


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 373<br />

3.9. <strong>Stephania</strong> erecta Craib<br />

Cepharanthine, (+)-2-N-methyltelobine (29), (+)-1,2-<br />

dehydrotelobine (30), (+)-2-nor-isotetrandrine, (+)-isotetrandrine,<br />

(+)-2-nor-thalrugosine, (+)-thalrugosine, (+)-homoaromoline,<br />

(+)-stephibaberine, (+)-dephnandrine, (+)-2-nor-cepharanthine,<br />

(+)-nor-obaberine, (+)-obaberine (Likhitwitayawuid et al., 1993b;<br />

Tamez et al., 2005).<br />

3.11. <strong>Stephania</strong> glabra (Roxb.) Miers<br />

(+)-Pronuciferine (33), gindarine, gindaricine, gindarinine,<br />

hyndarine, magnoflorine, N-thyloxystephanine,<br />

N-methylhydoxystepharine, remerine, stephararine, cycleanine<br />

(28), rotundine, capaurine (34), corydalmine (35), stepholidine<br />

(36), stepharine (9), protoberberine, palmatine (37), dehydrocorydalmine<br />

(38), jatrorrhizine (39), stepharanine (40), columbamine<br />

(41), N-desmethycycleanine (42), corynoxidine (43) (Chaudhary<br />

and Siddiqui, 1950; Chaudhary et al., 1952; Chopra et al., 1956;<br />

Cava et al., 1964, 1968; Kin et al., 1965; Robinovich et al., 1965;<br />

Shchelchkova et al., 1965; Doskotch et al., 1967; Dhar et al.,<br />

1968; Thu and Nuhn, 1971; Khanna et al., 1972; Patra et al.,<br />

1980; Bhakuni and Gupta, 1982; Bhakuni, 1984; Mahatma et<br />

al., 1987; Anonymous, 1989; Rastogi and Mehrotra, 1991; Duke,<br />

1992; Das et al., 2004), 11-hydroxypalmatine (44) (Semwal et al.,<br />

2010b), glabradine (45) and gindarudine (46) (Semwal and Rawat,<br />

2009a,b).<br />

3.10. <strong>Stephania</strong> excentrica H. S. Lo<br />

Excentricine (31), N-methylexcentricine (32), roemerine, 4-<br />

demethylhasubanonine, oxoputerine, oxoanolobine, isoboldine,<br />

homoaromoline, (+)-coclaurine and sinococuline (Deng and Zhao,<br />

1997; Miu et al., 1998).<br />

3.12. <strong>Stephania</strong> hernandifolia (Willd.) Walp.<br />

(+)-3 ′ ,4 ′ -Dihydrostephasubine (47), (+)-epistephanine (48),<br />

(+)-stephasubine (49) (Patra et al., 1988), l-quercitol, isotrilobine,<br />

-sitosterol, aknadine, aknadinine (15), 4-demethylhasubanonine,<br />

dl-tetrandrine, fangchinoline (50), d-tetrandrine (18), d-<br />

isochondrodendrine, aknadicine (16) (Chopra et al., 1956; Moza,<br />

1960; Kupchan et al., 1961; Kunitomo et al., 1966, 1967, 1969;<br />

Moza and Basu, 1966; Moza and Bose, 1967; Kupchan et al.,<br />

1968; Moza et al., 1968; Moza et al., 1970; Anonymous, 1994),<br />

hernandoline (Fadeeva et al., 1967), hernandine (Il’inskaya et al.,<br />

1971), hernandolinol (Fadeeva et al., 1970), methylhernandine<br />

(Fadeeva et al., 1971b), 3-O-demethylhernandifoline (51)(Fadeeva<br />

et al., 1972) and hernandifoline (Fesenko et al., 1971).


374 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.13. <strong>Stephania</strong> intermedia H. S. Lo<br />

(−)-Stepholidine (36) (Xin et al., 1992; Ellenbroek et al., 2006).<br />

3.14. <strong>Stephania</strong> japonica (Thunb.) Miers<br />

16-Oxohasubonine, aknadicine (16), aknadine, 16-oxoprotometaphanine,<br />

aknadinine (15), cyclanoline, cycleanine (28),<br />

d-fangchinoline (50), oxostephabenine (52), stephabenine<br />

(53), lanuginosine (54), epistephanine, dehydroepistephanine,<br />

d-tetrandrine (18), trilobine, epistephamiersine, insularine,<br />

hasubanonine, hernandoline, obamegine, homoepistephanine,<br />

steponine, stephasunoline, oxostephasunoline (55), homostephanoline,<br />

hypoepistephanine, isochondrodendrine, oxostephamiersine,<br />

isotrilobine, l-quercitol, metaphanine, n-nor-1,<br />

2-dehydroepistephanine, oxostephanine, plastoquinone, protostephanaberrine,<br />

prometaphanine, stepinonine, stebisimine,<br />

oxostephasunodine, stephanaberrine, stephanine (6), prostephanaberrine<br />

(56), stephamiersine, stephanoline, stepholine,<br />

stepisimine, viburnitol, protostephanine (57), oxoepistephamiersine<br />

(58), oxostephamiersine, stephadiamine (Inubushi and Ibuka,<br />

1977; Matsui and Watanabe, 1984; Matsui et al., 1984, 1973,<br />

1982a,b; Matsui et al., 1975; Kondo et al., 1983; Taga et al., 1984;<br />

Yamamura and Matsui, 1985; Matsui and Yamamura, 1986; Duke,<br />

1992; Hall and Chang, 1997) and bebeerine (59) (Hullatti and<br />

Sharada, 2010).<br />

3.15. <strong>Stephania</strong> longa Lour<br />

Longitherine (60), stephabyssine, stephaboline (Deng and Zhao,<br />

1993), isostephaboline, stephalonines A-I, norprostephabyssine<br />

(61), isoprostephabyssine (62), isoprostephabyssine and isolonganone<br />

(Zhang and Yue, 2005).<br />

3.16. <strong>Stephania</strong> miyiensis S. Y. Zhao & H. S. Lo<br />

Tetrahydropalmatine (5), stepharine (9), corydalmine (35), jatrorrhizine<br />

(39), stepharanine (40) and 4-O-demethyljatrorrhizine<br />

(63) (Anonymous, 1999).


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 375<br />

3.20. <strong>Stephania</strong> sasakii Hayata<br />

Obaberine, thalrugosine, aknadinine (15), secocepharanthine,<br />

aknadilactam (70) and O-methylpunjabine (Moza et al., 1970;<br />

Kunitomo, 1985).<br />

3.17. <strong>Stephania</strong> pierrei Diels<br />

(−)-Asimilobine (64), (−)-asimilobine 2-O--D-glucoside,<br />

(−)-anonaine, (−)-isolaureline, (−)-xylopine, (−)-roemeroline,<br />

(−)-dicentrine (10), (−)-nordicentrine, (−)-phanostenine,<br />

cassythicine, magnoflorine, (−)-tetrahydropalmatine (5),<br />

(−)-capaurine (34), (−)-thaicanine, (−)-corydalmine (35),<br />

(−)-N-methyltetrahydropalmatine (65), (−)-xylopinine,<br />

(−)-tetrahydrostephabine, (+)-reticuline (17), (+)-codamine, (±)-<br />

oblongine, (−)-delavaine and (−)-salutaridine (Likhitwitayawuid<br />

et al., 1993a; Angerhofer et al., 1999).<br />

3.21. <strong>Stephania</strong> sinica Diels<br />

Cepharanthine (69), runanine (71) and -sitosterol (Min et al.,<br />

1985).<br />

3.18. <strong>Stephania</strong> gracilenta Miers<br />

Sinoacutine, isosinoacutine (66), magnoflorine and papaverine<br />

(67) (Khosa et al., 1987).<br />

3.22. <strong>Stephania</strong> suberosa L. L. Forman<br />

3.19. <strong>Stephania</strong> rotunda Lour.<br />

Cepharamine (68), cycleanine (28), (+)-stepharine (9), (−)-<br />

tetrahydropalmatine (5)(Chopra et al., 1958; Burkill, 1966; Tomita<br />

et al., 1966; Tomita and Kozuka, 1966, 1967; Phaet-thanesuara,<br />

1967; Perry, 1980; Kozuka et al., 1985; Luger et al., 1998), coclaurine,<br />

dehassiline, stepholidine (36), corynoxidine (43) (Thuy et<br />

al., 2006), stepharotudine (Hung et al., 2010), cepharanthine (69),<br />

fangchinoline (50)(Gulcin et al., 2010), 5-hydroxy-6,7-dimethoxy-<br />

3,4-dihydroisoquinolin-1(2H)-one, thaicanine 4-O--D-glucoside<br />

and (−)-thaicanine N-oxide (4-hydroxycorynoxidine) (Thuy et al.,<br />

2005).<br />

(+)-Cepharanthine (69), (+)-2-norcepharanthine (72),<br />

(+)-cepharanthine 2 ′ --N-oxide, (+)-stephasubine, (+)-<br />

norstephasubine, stephasubimine (73) (Patra et al., 1986),<br />

(−)-tetrahydrostephabine, (−)-kikemanine, (−)-stephabinamine,<br />

tephabine, stephnubine, (−)-discretine, 8-oxypseudopalmatine,<br />

(−)-tetrahydropalmatrubine, (−)-stepholidine (36), (−)-<br />

capaurimine, pseudopalmatine, (−)-coreximine, stephaphylline<br />

(−)-ctytenchine, (−)-xylopinine and nordelavaine (Patra et al.,<br />

1987; Patra, 1987).<br />

3.23. <strong>Stephania</strong> succifera H. S. Lo & Y. Tsoong<br />

Cepharanone D, N-formyl-asimilobine, N-formyl-annonain<br />

(Yang et al., 2010a,b), crebanine (7), crebanine-N-oxide, dehydrocrebanine,<br />

tetrahydropalmatine (5), schefferine, asimilobine (Xue<br />

et al., 1986), 7-oxodehydrocaaverine, 7-oxocrebanine and aristololactam<br />

I (Yang et al., 2010a,b).


376 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.24. <strong>Stephania</strong> sutchuenensis H. S. Lo<br />

1-Nitroaknadinine (74) and aknadinine (15)(Wang et al., 1994).<br />

3.25. <strong>Stephania</strong> tetrandra S. Moore<br />

Stephadione (75), oxonantenine (76), cassameridine, nantenine,<br />

cassythicine, corydione, aristolochic acid I and II, fangchinoline<br />

A-D (Chen and Chen, 1935; Chen et al., 1937; Si et al., 1992; Zhu<br />

and Philipson, 1996; Kwan et al., 1996; Kim et al., 1997; Ogino et<br />

al., 1998b; Wong, 1998; Kim et al., 1999; Nan et al., 2000; Liang<br />

et al., 2002; Tsutsumi et al., 2003; Fang et al., 2005; Chiou et al.,<br />

2006), fenfangjine A-C (Ogino et al., 1998a), stephaflavone A and<br />

B(Si et al., 2001), fangchinoline (50), tetrandrine (18) (Lijin et al.,<br />

2009), 2-N-methyltetrandrine and (+)-2-N-merhylfangchinoline<br />

(77) (Deng et al., 1990).<br />

well as aqueous extract (SA) and dichloromethane extracts (SD1<br />

and SD2) from S. rotunda Lour. were tested against Plasmodium falciparum<br />

W2 in vitro. DN, CN and SD1 were the most active against W2<br />

with IC 50 values of 0.36, 0.61 M and 0.7 g/mL, respectively. <strong>The</strong>ir<br />

IC 50 values on human monocytic THP1 cells were 10.8, 10.3 M<br />

and >250 g/mL, respectively. CN, SD1 and SA were selected for in<br />

vivo antimalarial testing against Plasmodium berghei in mice. <strong>The</strong><br />

results of SD1 and SA at a dose of 150 mg/kg showed a decrease of<br />

89 and 74% of parasitaemia by intra-peritoneal injection and 62.5<br />

and 46.5% of parasitaemia by oral administration, respectively. <strong>The</strong><br />

results for CN at a dose of 10 mg/kg showed a decrease of 47% of<br />

parasitaemia by intra-peritoneal injection and 50% of parasitaemia<br />

by oral administration. <strong>Dr</strong>ug interaction of chloroquine (CL) and<br />

major alkaloids indicates that CN–CL and TN–XN associations<br />

are synergistic (Chea et al., 2007). <strong>The</strong> bisbenzylisoquinoline<br />

alkaloids from S. erecta Craib and tetrahydroprotoberberine alkaloids<br />

from S. pierrei Diels showed anti-malarial activity against<br />

the D6 (ED, 1540 ng/mL) and W2 (ED, 3130 ng/mL) strains of<br />

Plasmodium falciparm having ED values of 950 and 470 ng/mL<br />

in the D6 and W2 strains, respectively. <strong>The</strong> antimalarial activity<br />

of S. pierrei Diels was attributed to the nonquaternary aporphine<br />

alkaloids and the tetrahydroprotoberberines possessing a<br />

phenolic functionality. None of the isolates showed a degree of<br />

selectivity comparable to that of antimalarial drugs such as chloroquine,<br />

quinine, mefloquine, and artemisinin (Likhitwitayawuid<br />

et al., 1993a,b). Six compounds from S. dinklagei Diels<br />

3.26. <strong>Stephania</strong> venosa (Blume) Spreng.<br />

(−)-O-acetylsukhodianine (78), kamaline, oxoaporphin,<br />

oxostephanosine (79), (−)-crebanine (7), dehydrocrebanine,<br />

(+)-N-carboxamidostepharine (80), (−)-kikemanine,<br />

(−)-tetrahydropalmatine (5), (−)-stepharinosine (81), (+)-<br />

stepharine (9), liriodenine (19), (−)-O-methylstepharinosine,<br />

oxocrebanine, dehydrostephanine, (−)-ushinsunine, oxostephanine,<br />

(−)-sukhodiamine, (−)-sukhodianine--N-oxide,<br />

(−)-stephadiolamine--N-oxide (Guinaudeau et al., 1981, 1982;<br />

Pharadai et al., 1985; Charles et al., 1987; Banerji et al., 1994;<br />

Likhitwitayawuid et al., 1999), stepharanine, cyclanoline and<br />

N-methyl stepholidine (Ingkaninan et al., 2006).<br />

including, two zwitterionic oxoaporphine alkaloids [Nmethylliriodendronine<br />

(22) and 2-O,N-dimethylliriodendronine<br />

(23)], two oxoaporphine alkaloids [liriodenine (19) and dicentrinone<br />

(20)], one aporphine alkaloid [corydine (21)] and one<br />

anthraquinone [aloe-emodine (24)] were tested for antiprotozoal<br />

and cytotoxic activity in vitro. N-methylliriodendronine was most<br />

active against Leishmania donovani amastigotes (IC 50 = 36.1 M).<br />

Liriodenine showed the highest activity against L. donovani, and<br />

P. falciparum with IC 50 values of 26.16 and 15 M, respectively.<br />

Aloe-emodin (24) was the only compound active (IC 50 =14M)<br />

against T.b. brucei (Camacho et al., 2000). <strong>The</strong> aqueous extract of<br />

leaves of S. abyssinica Walp. showed significant anti-plasmodial<br />

activity in vitro against chloroquine sensitive and resistant laboratory<br />

adapted strains of P. falciparum with IC 50 values >30 gmL −1<br />

(Muregi et al., 2004).<br />

4.2. Antimicrobial activity<br />

4. Biological activities<br />

4.1. Anti-malarial activity<br />

Four major alkaloids dehydroroemerine (DN), tetrahydropalmatine<br />

(TN) (5), xylopinine (XN) and cepharanthine (CN) (69) as<br />

A hasubanalactam alkaloid, glabradine (45) isolated from the<br />

tubers of S. glabra (Roxb.) Miers was evaluated for antimicrobial<br />

activity against Staphylococcus aureus, S. mutans, Microsporum<br />

gypseum, M. canis and Trichophyton rubrum and displayed potent<br />

antimicrobial activity superior to those of novobiocin and erythromycin<br />

with IZD values of 19–27 cm (Semwal and Rawat,<br />

2009a,b). An ethanolic extract was also evaluated for its antimicrobial<br />

activity against five bacterial species (S. aureus, S. mutans, S.<br />

epidermidis, Escherichia coli and Klebsiella pneumonia) and six fungal<br />

species (Aspergillus niger, A. fumigatus, Penicillum citranum, M. gypseum,<br />

M. canis and T. rubrum) and found to be active against most


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 377<br />

of the tested microorganisms with MIC range of 50–100 g/mL<br />

(Semwal et al., 2009). <strong>The</strong> methanolic root extract of S. japonica<br />

(Thunb.) Miers showed significant in vitro activity together with<br />

Cissampelos pareira and Cyclea peltata (Hullatti and Sharada, 2007).<br />

Cepharanone D, N-formyl-asimilobine and N-formylannonain isolated<br />

from S. succifera H. S. Lo & Y. Tsoong showed significant<br />

antimicrobial activity in vitro (Yang et al., 2010a,b).<br />

4.3. Anthelmintic activity<br />

<strong>The</strong> alcoholic extract of the dried rhizome of S. glabra (Roxb.)<br />

Miers was tested against various helminth parasites, i.e. nematode<br />

(Heterakis gallinarum, Ascaridia galli, Ancylostoma ceylanicum and<br />

Ascaris suum), cestode (Raillietina echinobothrida) and trematode<br />

(Fasciolopsis buski) in dosages ranging between 25 and 100 mg/mL<br />

in 0.9% phosphate buffered saline (PBS, pH 7.2) at 38 ± 1 ◦ C. <strong>The</strong><br />

controls, kept in PBS, survived for an average 22 h (trematode),<br />

72 h (cestode) and 55 > 380 h (nematodes). <strong>The</strong> results showed pronounced<br />

effect on the cestode and trematode, i.e. a dose-dependent<br />

gradual decline in physical motility was observed in R. echinobothrida<br />

and F. buski (Das et al., 2004).<br />

4.4. Anti-viral activity<br />

<strong>The</strong> antiviral activity of methanolic extract of S. cepharantha<br />

Hayata tubers, its chloroform soluble fraction (alkaloid fraction)<br />

and the major alkaloid FK-3000 were investigated in BALB/c mice<br />

cutaneously infected with HSV-1 strain 7401H. At oral doses of<br />

125 and 250 mg/kg body weight, the methanol extract significantly<br />

delayed skin lesions on score 2 (vesicles in the local region), limited<br />

the development of further lesions on score 6 (mild zosteriform<br />

lesion) and prolonged the mean survival time of HSV-1 infected<br />

mice. After administration of the alkaloid fraction at doses of 25<br />

and 50 mg/kg or FK-3000 at 10 and 25 mg/kg, similar results were<br />

obtained. Although the alkaloid improved the survival of infected<br />

mice, it had a narrow therapeutic index (Nawawi et al., 2001; Liu<br />

et al., 2004; Zhang et al., 2005).<br />

4.5. Anti-proliferative/anti-cancer activity<br />

Four alkaloids (dl-tetrandrine, fangchinoline (50), d-tetrandrine<br />

and d-isochondrodendrine) isolated from S. hernandifolia (Willd.)<br />

Walp. showed significant cytotoxicity against human carcinoma<br />

of the nasopharynx carried in tissue culture (KB), and that dltetradrine<br />

and d-tetrandrine showed significant inhibitory activity<br />

in vivo against the Walker 256 intramuscular carcinosarcoma in the<br />

rat (Kupchan et al., 1968). Ethanolic extract of S. venosa (Blume)<br />

Spreng. bulb was tested for antiproliferative activity against SKBR3<br />

human breast adenocarcinoma cell line using MTT assay and<br />

showed activity in potential range for further investigation on cancer<br />

cells (Moongkarndi et al., 2004). Aporphine alkaloid isolated<br />

from S. venosa (Blume) Spreng. exhibited antiproliferation activity<br />

on SKOV3 human ovarian cancer cell line using MTT assay.<br />

Aporphine showed strong inhibition activity with an ED 50 value<br />

of 6 g/mL (Montririttigri et al., 2008). Four bisbenzylisoquinoline<br />

alkaloids (cepharanthine (69), cepharanoline, isotetrandrine<br />

and berbamine) from S. cepharantha Hayata showed significant<br />

effects on proliferation of culture cell from the murine skin in<br />

the range of 0.01–0.1 g/mL (Nakaoji et al., 1997). Cepharanthine<br />

(CN) inhibits tumor promotion after topical application<br />

in two-stage carcinogenesis in mouse skin. Epidermal ornithine<br />

decarboxylase activities inhibited by topical application of CN,<br />

with 5 mg/mouse) and mezerein (5 mg/mouse) were found to<br />

be inhibited by topical application of CN, with a ED 50 values of<br />

1.2 mM and 1.4 mM, respectively. A diet containing 0.005% CN<br />

slightly suppressed the two-stage promotion of skin tumors by<br />

twice-weekly applications of 2.5 Mg TPA for 2 weeks (first stage)<br />

followed by twice-weekly applications of 2.5 Mg mezerein for<br />

23 weeks (second stage) in ICR mice following initiation by 50<br />

Mg 7,12-dimethylbenz[a]anthracene. Oral administration of CN<br />

inhibits the tumor promotion in two-stage carcinogenesis in mouse<br />

skin (Yasukawa et al., 1991). S. tetrandra S. Moore demonstrated<br />

antiproliferative and proapoptotic activities in a rat hepatic stellate<br />

cell line, HSC-T6 (Chor et al., 2005). <strong>The</strong> extract, as well as<br />

two aporphine alkaloids, (−)-asimilobine-2-O--D-glucoside and<br />

(−)-nordicentrine from S. pierrei Diels, and (+)-2-N-methyltelobine<br />

from S. errecta Craib showed potent cytotoxic activity against<br />

the KB (ED 50 3.6 g/mL) and P-388 (ED 50 0.8 g/mL) cell systems.<br />

It was found that the cytotoxicity of S. pierrei Diels was<br />

mainly due to the presence of the aporphine alkaloids containing<br />

the 1,2-methylenedioxy group (Likhitwitayawuid et al., 1993a,b;<br />

Angerhofer et al., 1999). Five compounds (7-oxodehydrocaaverine,<br />

7-oxocrebanine, dehydrocrebanine, crebanine and aristololactam<br />

I) from the tuber of S. succifera H. S. Lo & Y. Tsoong were evaluated<br />

for their cytotoxic activity by MTT assay. Dehydrocrebanine<br />

and crebanine showed inhibitory activity towards chronic myelogenous<br />

leukemia (K562), human gastric carcinoma (SGC-7901)<br />

and human hepatoma (SMMC-7721) cell lines (Yang et al., 2010a,b).<br />

Aqueous extract of S. venosa (Blume) Spreng. tubers was studied for<br />

cytotoxic activity on human peripheral blood mononuclear cells<br />

(PBMCs) and showed activity with IC 50 value of 300 mg/mL. <strong>The</strong><br />

effect of the extract on apoptotic induction was also evaluated at the<br />

concentration of 300 mg/mL on PMBCs from healthy subjects and<br />

from cervical cancer patients and significantly induced apoptosis of<br />

the PBMCs from both healthy subjects and from the patients. <strong>The</strong><br />

antiproliferative effect was also evaluated on the cells from healthy<br />

subjects and demonstrated activity with IC 50 value of 40 mg/mL<br />

(Sueblinvong et al., 2007).<br />

4.6. Antipsychotic activity<br />

(−)-Stepholidine (SPD) isolated from S. intermedia H. S. Lo, which<br />

binds to the dopamine D 1 and D 2 like receptors has been evaluated<br />

for its antipsychotic effects in animal models. <strong>The</strong> effects of<br />

SPD, clozapine and haloperidol in increasing forelimb and hindlimb<br />

retraction time in the paw test and in reversing the apomorphine<br />

and MK801-induced disruption of prepulse inhibition was investigated.<br />

In the paw test, clozapine and SPD increased the hind limb<br />

retraction time. In the prepulse inhibition paradigm, all three drugs<br />

reverse the apomorphine-induced disruption in prepulse inhibition,<br />

while none of the drugs could reverse the MK801-induced<br />

disruption. SPD even slightly, but significantly potentiated the<br />

effects of MK801 (Ellenbroek et al., 2006).<br />

4.7. Apoptosis inducing effect<br />

Apoptosis inducing effect of tetrandrine (TN), a bisbenzylisoquinoline<br />

alkaloid derived from S. tetrandra S. Moore on activated<br />

hepatic stellate cells of rat has been examined. <strong>The</strong> hepatic stellate<br />

cells transformed by Simian virus 4 (T-HSC/CL-6) to overcome<br />

the limitations inherent in studying primary cultures of hepatic<br />

stellate cells. TN treatment at doses of 25 and 50 g/mL for<br />

12 h induced apoptosis as confirmed by DNA fragmentation and<br />

increased sub-G1 DNA content. TN also induced the activation<br />

of capase-3 protease and subsequent proteolytic cleavage of poly<br />

(ADP-ribose) polymerase (Zhao et al., 2004).<br />

4.8. Multidrug resistance reversing activity<br />

An alkaloidal extract of the vines of S. japonica (Thunb.) Miers<br />

showed multidrug resistance reversing activity as demonstrated<br />

by the bicinchoninic acid assay. Insotrilobine and trilobine from


378 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

the plant were shown to be as active as verapamil (standard)<br />

in reversing doxorubicin resistance in human breast cancer cells<br />

(MCF-7 cells). Isotrilobine has MDR-reversing activity comparable<br />

to verapamil at concentrations less than the ED 20 of isotrilobine<br />

on MCF-7/ADR cells. Trilobine has low activity with a slope of 28<br />

as compared with slopes of 211 and 232 for isotrilobine and verapamil,<br />

respectively. <strong>The</strong> greater efficacy of isotrilobine to trilobine<br />

appears to be a result of the methyl group at N-2 ′ . This is the only<br />

structural difference between the two compounds and suggests<br />

that a tertiary amine is preferred at this position to a secondary<br />

amine. <strong>The</strong> slightly increased lipophilicity induced by the addition<br />

of another methyl group may also contribute to the increased<br />

activity (Hall and Chang, 1997).<br />

4.9. Anti-inflammatory and analgesic activity<br />

To investigate the anti-inflammatory effects of S. tetrandra<br />

S. Moore in vitro and in vivo, its effects on the production of<br />

IL-6 and inflammatory mediators were analyzed. When human<br />

monocytes/macrophages (stimulated with silica) were treated<br />

with 0.1–10 g/mL the plant, the production of IL-6 was inhibited<br />

up to 50%. It also suppressed the production of IL-6 by<br />

alveolar macrophages. In addition, it inhibited the release of<br />

superoxide anion and hydrogen peroxide from human monocytes/macrophages.<br />

To assess the anti-fibrosis effects of S. tetrandra,<br />

its effects on in vivo experimental inflammatory models were evaluated.<br />

In the experimental silicosis model, IL-6 activities in the<br />

sera and in the culture supernatants of pulmonary fibroblasts were<br />

also inhibited by it. In vitro and in vivo treatment with S. tetrandra<br />

reduced collagen production by rat lung fibroblasts and lung<br />

tissue. It also reduced the levels of serum GOT and GPT in the<br />

rat cirrhosis model induced by CCl 4 , and was effective in reducing<br />

hepatic fibrosis and nodular formation (Kang et al., 1996). <strong>The</strong> antiinflammatory<br />

constituents, tetrandrine (18) and fangchinoline (50)<br />

from S. tetrandra have been shown to decrease IL-1beta, IL-6, IL-8<br />

and TNF-alpha as well as decrease leukotriene and prostaglandin<br />

generation. Furthermore, tetrandrine has been shown to inhibit the<br />

production of TNF-alpha and IL-6 by microglial cells (Teh et al.,<br />

1990; Xue et al., 2008). <strong>The</strong> combined analgesic effect of aconitum<br />

(Ac) and S. tetrandra (St) was found superior to that of Ac and St<br />

when used alone. <strong>The</strong> combined Ac-St showed remarkable analgesic<br />

activity within 3 h (p < 0.01) in rabbits and mice models (Li et<br />

al., 2000).<br />

4.10. Immunomodulating activity<br />

S. tetrandra S. Moore has been used to treat autoimmune<br />

diseases such as rheumatoid arthritis and systemic lupus erythe<br />

matosus. Tetrandrine (18) has potential immunomodulating<br />

and anti-inflammatory effects. T-lymphocytes play a critical<br />

role as autoactive and pathogenic population in autoimmune<br />

and inflammatory diseases. Some experimental data showed<br />

that, through down-regulating the protein kinase C (PKC) signaling,<br />

interleukin-2 secretion and the expression of the T<br />

cell activation antigen (CD71), tetrandrine inhibited phorbol<br />

12-myristate 13-acetate (PMA)+ionomycin-induced T cell proliferation<br />

dependent on interleukin-2 receptor chain and CD69,<br />

such an action was unrelated to Ca 2+ channel blockade (Ho<br />

et al., 1999). Tetrandrine (0.1–10 ML −1 ) significantly inhibited<br />

neutrophil-monocyte chemotactic factor-1 upregulation and<br />

adhesion to fibrinogen induced by N-formyl-methionyl-leucylphenylalanine<br />

and PMA. Tetrandrine at 0.1–100 ML −1 caused<br />

dose and time-dependent loss of cell viability of mouse peritoneal<br />

macrophages, guinea-pig alveolar macrophages and mouse<br />

macrophage-like J774 cells, reduced production of oxygen free<br />

radical, down-regulated synthesis and release of some proinflammatory<br />

cytokines (Pang and Hoult, 1997; Shen et al.,<br />

1999).<br />

4.11. Antifibrotic effect<br />

Antifibrotic effect of a methanol extract from S. tetrandra S.<br />

Moore on experimental liver fibrosis has been investigated. Liver<br />

fibrosis was induced by bile duct ligation and scission (BDL/S) in<br />

rats. In BDL/S rats, activity levels of aspirate transaminase, alanine<br />

transaminase, alkaline phosphatase, concentration of total<br />

bilirubin in serum, and 100 mg/kg/day or 200 mg/kg/day, (p.o. for<br />

4 weeks) in BDL/S rats reduced the serum aspirate transaminase,<br />

alanine transaminase, alkaline phosphatase activity levels significantly<br />

(p < 0.01) (Nan et al., 2000).<br />

4.12. Anti-hyperglycemic effect<br />

<strong>The</strong> ethanolic extract of the tubers of S. glabra (Roxb.) Miers<br />

was evaluated for its hyperglycemic effects against alloxan-induced<br />

diabetic and significantly decreased the blood sugar level in experimental<br />

animals (Semwal et al., 2010a). A palmatine derivative,<br />

11-hydroxypalmatine (44) isolated from this plant was also evaluated<br />

for its anti-hyperglycemic activity. <strong>The</strong> test compound was<br />

administered at doses of 25, 50, and 100 mg/kg, p.o., 36 h after<br />

alloxan injection (60 mg/kg, i.v.). <strong>The</strong> alloxan-induced diabetic mice<br />

showed significant reduction in blood glucose after treatment with<br />

the test compound by 52% as compared to the positive control<br />

glibenclamide (54%) and the diabetic control (27%) (Semwal et al.,<br />

2010b). S. tetrandra S. Moore roots increases the blood insulin level<br />

and reduces the blood glucose level in streptozotocin diabetic mice.<br />

Actions of bisbenzylisoquinoline alkaloids isolated from the plant<br />

were investigated in the hyperglycemia of diabetic mice. A main<br />

bisbenzylisoquinoline alkaloid fangchinolin (0.3–3 mg/kg) significantly<br />

reduced blood glucose level of the diabetic mice. <strong>The</strong> effect<br />

of fangchinoline was 3.9 fold greater than that of water extract<br />

(Tsutsumi et al., 2003). S. tetrandra has a direct effect on the retinal<br />

capillary of posterior ocular region and suppressed neovascularization<br />

of retinal capillary in streptozotocin diabetic rats through<br />

the activation of tetrandrine (Liang et al., 2002). <strong>The</strong> oral administration<br />

of ethanol and aqueous extract (400 mg/kg body weight) of<br />

powdered corm of S. hernandifolia significantly (p < 0.05) decreased<br />

the blood glucose of normal and Streptozotocin-induced diabetic<br />

rats up to 12 h. Glibenclamide was used as a standard drug at a dose<br />

of 0.25 mg/kg (Sharma et al., 2010).<br />

4.13. Ca 2+ channel blocking activity<br />

Abnormal Ca 2+ signaling and elevated concentration of intracellular<br />

free Ca 2+ are the basic pathophysiological events involved<br />

in various diseases. As a Ca 2+ antagonist, tetrandrine (S. tetrandra)<br />

can inhibit extracellular Ca 2+ entry, int ervene in the distribution<br />

of intracellular Ca 2+ , maintain intracellular Ca 2+ homeostasis, and<br />

then disrupt the pathological processes. As shown in whole cell<br />

patch-clamp recordings, tetrandrine blocked bovine chromaffin<br />

cells voltage-operated Ca 2+ channel current in a time and concentration<br />

dependently manner. In rat phaeochromocytoma PC 12<br />

cells, 100 mol L −1 tetrandrine abolished high K + (30 mmol L −1 )<br />

-induced sustained increase in cytoplasmic Ca 2+ concentration,<br />

inhibited bombesin-induced inositol triphosphate accumulation in<br />

NIH/3T3 fibroblast and abolished Ca 2+ entry (Takemura et al., 1996).<br />

Tetrandrine can affect cardiovascular electrophysiologic properties<br />

by inhibit the contractility, ±dt/dp max , and automaticity of<br />

myocardium, prolong the FRP, and exert concentration-dependent<br />

negative inotropic and chronotropic effects without altering cardiac<br />

excitability. Tetrandrine directly blocks both T-type and L-type<br />

calcium current in ventricular cells and vascular smooth muscle


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 379<br />

cells, but it does not shift the I–V relationship curve of I Ca . All its<br />

effects would be beneficial in the treatment of angina, arrhythmias,<br />

and other cardiovascular disorders. It also directly inhibits<br />

the activity of BK Ca channel in endothelial cell line and also inhibits<br />

Ca 2+ -release-activated channels in vessel endothelial cells, which<br />

might significantly contribute to the change of endothelial cell<br />

activity (Qian, 2002; Yao and Jiang, 2002).<br />

4.14. Acetylcholinesterase (AChE) inhibitory activity<br />

Three quaternary protoberberine alkaloids, stepharanine,<br />

cyclanoline and N-methyl stepholidine from S. venosa (Blume)<br />

Spreng. tuber expressed inhibitory activity on AChE with IC 50 values<br />

of 14.10, 9.23 and 31.30 M, respectively. <strong>The</strong> AChE inhibitory<br />

(potential drugs for Alzheimer’s disease) activity of these compounds<br />

was compared with those of the related compounds,<br />

palmatine, jatrorrhizine and berberine, as well as with tertiary protoberberine<br />

alkaloids, stepholidine and corydalmine isolated from<br />

the same plant. <strong>The</strong> results suggest that the positive charge at the<br />

nitrogen of the tetrahydroisoquinoline portion, steric substitution<br />

at the nitrogen, planarity of the molecule or substitutions at C-2,<br />

-3, -9, and -10 affect the AChE inhibitory activity of protoberberine<br />

alkaloids (Ingkaninan et al., 2006). <strong>The</strong> ethanolic extract of roots<br />

along with the alkaloids isolated from S. rotunda Lour. showed significant<br />

AChE inhibitory activity (in vitro) using a rat cortex AChE<br />

enzyme (Hung et al., 2010).<br />

4.15. Vasodilating and hypotensive activities<br />

Comparative studies of the effects of tetrandrine (TN) and<br />

fangchinoline (FN), two major components of the Radix of S.<br />

tetrandra S. Moore, on vasodilations and on calcium movement<br />

in vascular smooth muscle, and studies of hypotensive effects<br />

on stroke-prone spontaneously hypertensive rats (SHRSP) were<br />

performed. TN and FN inhibited high K + (65.4 mM) and induced<br />

sustained contraction in the rat aorta smooth muscle strips. IC 50<br />

values for TN and FN were 0.27 ± 0.05 M and 9.53 ± 1.57 m,<br />

respectively, and this inhibition was antagonized by increasing<br />

the Ca 2+ concentration in the medium. <strong>The</strong> IC 50 of TN<br />

for norepinephrine (NE)-induced contraction (0.86 ± 0.04 g) was<br />

3.08 ± 0.05 m, and the IC 50 of FN for NE-induced contraction<br />

(0.88 ± 0.07 g) was 14.20 ± 0.40 M. At the molecular level, radiolabelled<br />

45 Ca 2+ uptake tests revealed that TN and FN also inhibited<br />

high K + (65.4 mM) and 1 M NE-stimulated Ca 2+ influx in rat aorta<br />

strips at the maximal concentration was needed to inhibit the<br />

contraction. TN (3 mg/kg) and FN (30 mg/kg) administered by i.v.<br />

bolus injection also lowered the mean arterial pressure (MAP) significantly<br />

during the period of observation in conscious SHRSP,<br />

respectively. <strong>The</strong>se results showed that TN was more potent than<br />

FN in blocking calcium channels and antihypertensive activity. <strong>The</strong><br />

compounds were also shown to have hypotensive effects on stroke<br />

prone spontaneously hypertensive rats (Kim et al., 1997).<br />

4.16. Inhibition of antinociceptive effect<br />

Fangchinoline (FN), a non-specific calcium antagonist, from S.<br />

tetrandra S. Moore showed antagonistic activity on morphineinduced<br />

antinociception in mice. It has been found that FN (IP)<br />

attenuated morphine (SC)-induced antinociception in a dosedependent<br />

manner with significant effect at doses of 30 and<br />

60 mg/kg body wt (IP) in the tail-flick test but not the tailpinch<br />

tests. This antagonism was abolished by pretreatment<br />

with a serotonin precursor, 5-hydroxytryptophan (5-HTP, IP),<br />

but not by pretreatment with a noradrenaline precursor, L-<br />

dihydroxyphenylalanine (L-DOPA, IP) in the tail-flick test. <strong>The</strong><br />

serotonergic pathway may be involved in the antagonism of<br />

morphine-induced antinociception by FN and, in agreement with<br />

other reports, also indicates the possible dissociation of the morphine<br />

analgesic effect from its tolerance-development mechanism<br />

(Fang et al., 2005).<br />

4.17. Acute hemodynamic effect<br />

Acute hemodynamic effect of tetrandrine, isolated from S.<br />

tetrandra was assessed in anesthetized cirrhotic rats. Tetrandrine<br />

decreases of PVP and MAP, the maximum percentage reduction of<br />

PVP after drug was 5.4 ± 1.0%, 9.2 ± 0.8% and 23.7 ± 1.2% of base<br />

line, respectively, for the doses given 2.0, 6.6 and 20.0 mg/kg. Total<br />

peripheral resistance was also reduced by the drug (Huang et al.,<br />

1999).<br />

4.18. Histamine release inhibition activity<br />

Bisbenzylisoquinoline alkaloids from S. cepharantha Hayata<br />

roots and tubers were tested for histamine release inhibition<br />

assay. <strong>The</strong> order of the potency of inhibitory effect was ranked<br />

as homoaromoline, aromoline, isotetrandrine, cepharanthine (69),<br />

fangchinoline (50), obaberine and tetrandrine (Nakamura et al.,<br />

1992).<br />

4.19. Antioxidant activity<br />

Fangchinoline (50) and cepharanthine (69) isolated from S.<br />

rotunda Lour. performing different in vitro antioxidant assays,<br />

including 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical<br />

scavenging, 2,2 ′ -azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)<br />

(ABTS) radical scavenging, N,N-dimethyl-p-phenylenediamine<br />

dihydrochloride (DMPD) radical scavenging, superoxide anion<br />

(O 2 •− ) radical scavenging, hydrogen peroxide scavenging, total<br />

antioxidant activity, reducing power, and ferrous ion (Fe 2+ ) chelating<br />

activities. Cepharanthine and fangchinoline showed 94.6 and<br />

93.3% inhibition on lipid peroxidation of linoleic acid emulsion<br />

at 30 g/mL concentration, respectively. On the other hand,<br />

butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT),<br />

-tocopherol, and trolox indicated inhibitions of 83.3, 92.2, 72.4,<br />

and 81.3% on peroxidation of linoleic acid emulsion at the same<br />

concentration (30 g/mL), respectively (Gulcin et al., 2010). <strong>The</strong><br />

ethanol and aqueous extracts (400 mg/kg body weight) of powdered<br />

corm of S. hernandifolia (Willd.) Walp. strongly scavenged<br />

DPPH radicals with IC 50 values of 265.33 and 217.90 g/mL, respectively<br />

in vitro whereas the superoxide radical were scavenged with<br />

IC 50 values of 526.87 and 440.89 g/mL, respectively. Ascorbic acid,<br />

a natural antioxidant, was used as positive control (Sharma et al.,<br />

2010).<br />

4.20. Miscellaneous uses<br />

Tetrandrine (TN) from the root of S. tetrandra S Moore has been<br />

used to treat silicosis. Except for its antiinflammatory, antifibrogenetic,<br />

immunomodulating effects and antioxidant effects, TN<br />

shows antiallergic effects, inhibitory effects on pulmonary vessels<br />

and airway smooth muscle contraction, and platelet aggregation<br />

via its nonspecific calcium channel antagonism that suggested its<br />

potential in the treatment of asthma, pulmonary hypertension and<br />

chronic obstructive pulmonary disease (Xie et al., 2002). TN has<br />

been used to treat silicosis, autoimmune disorders, and hypertension<br />

in Mainland China for decades. <strong>The</strong> accumulated studies<br />

both in vitro and in vivo reveal that it preserves a wide variety<br />

of immunosuppressive effects. Importantly, the TN-mediated<br />

immunosuppressive mechanisms are evidently different from<br />

some known DMARDs. <strong>The</strong> synergistic effects have also been<br />

demonstrated between TN and other DMARDs like FK506 and


380 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

cyclosporin. TN is a very potential candidate to be considered as one<br />

of DMARDs in the treatment of autoimmune diseases, especially<br />

rheumatoid arthritis (Lai, 2002). <strong>The</strong> stem extract of S. cepharantha<br />

Hayata (SC) was evaluated for its toxicity, bacteriostatic, antiphlogistic<br />

and antalgic activity. For toxicity, SC administered to mice by<br />

i.v. and i.p. routes in solution in physiological serum (water containing<br />

9 g/L of NaCl) is well tolerated and LD 0 (maximum non-lethal<br />

dose) was found higher than 500 mg/kg. SC exhibits a bacteriostatic<br />

activity against Gram (+) and Gram (−) bacteria. For instance<br />

the MIC values are 2 mg/mL on Staphylococcus aureus London and<br />

44 mg/mL on a strain of Proteus. <strong>The</strong> antiphlogistic activity of SC<br />

was studied on female rats by using phenylbutazone as a positive<br />

control and inhibits in a statistically significant manner the development<br />

of the carrageen oedema at 100 mg/kg, the action being<br />

maximum 3 h after administration. <strong>The</strong> antalgic activity was carried<br />

out by i.p. administration of SC and aspirin (standard) to male<br />

mice of 0.2 mL of an aqueous solution of acetic acid (30 g/L) and<br />

showed significant results (Debat et al., 1980). Two aporphine alkaloids,<br />

corydine (21) and atherospermidine isolated from ethanolic<br />

extract of the stems of S. dinklagei Diels showed DNA damaging<br />

activity (Goren et al., 2003). Levo-tetrahydropalmatine (l-THP), an<br />

alkaloid constituent found in many plants of <strong>genus</strong> <strong>Stephania</strong> produced<br />

a rightward and downward shift in the dose–response curve<br />

for cocaine self-administration and attenuated cocaine-induced<br />

reinstatement. l-THP also reduced food-reinforced responding and<br />

locomotor activity (Mantsch et al., 2007). <strong>The</strong> effects of a leaf extract<br />

of S. hernandifolia on testicular activities in albino rats at the dose<br />

of 2 g or 4 g of leaves/mL distilled water/100 g body weight/day<br />

for 28 days was studied. Treatment with both doses resulted in<br />

significant reduction in relative weight in the testis, the seminal<br />

vesicles, the prostate, and the epididymis without any significant<br />

change in the liver and kidney weight. <strong>The</strong> extract reduced the<br />

activities of testicular androgenic key enzymes and plasma level of<br />

testosterone along with inhibition of spermatogenesis without any<br />

induction of hepatic and renal toxicity (Ghosh et al., 2002; Jana et al.,<br />

2003).<br />

4.21. Toxic effects<br />

Apart from various medicinal uses, rare plants of the <strong>genus</strong><br />

<strong>Stephania</strong> have been reported for their acute toxic effects. <strong>The</strong><br />

oral administration of aqueous extract of wet and dry root tuber<br />

of <strong>Stephania</strong> cepharantha Hayata showed acute toxicity with LD 50<br />

value of 41.4 g/kg and 22.9 g/kg, respectively (Chen et al., 1999). S.<br />

cephalantha Hayata (root tubers) and S. epigaea H.S. Lo (root tubers)<br />

have been recognized as toxic plants in China (Huai et al., 2010). S.<br />

sinica (an shu ling) was shown to have hepatotoxicity (Haller et al.,<br />

2002).<br />

5. Future perspectives and conclusion<br />

Although, an extensive amount of research work has been done<br />

on some plants of this <strong>genus</strong> to date, but a large number of species<br />

are still chemically and/or pharmacologically unknown such as<br />

S. brevipes Craib, S. tomentella Forman, S. glandulifera Miers and<br />

S. capitata (Blume) Spreng. Consequently, a broad field of future<br />

research remains possible in which the isolation of new active principles<br />

from these species would be of great scientific merit. <strong>The</strong><br />

alkaloids are of particular interest as many are highly potent bioactives<br />

and perhaps responsible for most of activities shown by<br />

the plants of this <strong>genus</strong>. However, the mechanism of their action<br />

is still unknown. Hence, a detailed study is required to understand<br />

the structure–activity relationship of these constituents. As literature<br />

showed, many plant extracts having cytotoxic activity, hence,<br />

the particular constituent responsible for the activity may be isolated<br />

for further process. In addition, some plant extracts were only<br />

screened for their preliminary in vitro activities, so, the advance<br />

clinical trial of them deserves to be further investigated. Herein,<br />

we described the possible applications in clinical research but further<br />

investigations on phytochemical discovery and subsequent<br />

screening are needed for opening new opportunities to develop<br />

pharmaceuticals based on <strong>Stephania</strong> constituents.<br />

Acknowledgements<br />

This work was financially supported by UGC New Delhi under<br />

the <strong>Dr</strong>. D.S. <strong>Kothari</strong> Post Doctoral <strong>Fellowship</strong> Scheme. <strong>The</strong> authors<br />

pay their sincere thanks to editor and referees of the journal, for<br />

their valuable suggestions to improve this article.<br />

References<br />

Achike, F.I., Kwan, C.Y., 2002. Characterization of a novel tetrandrine-induced contraction<br />

in rat tail artery. Acta Pharmacologica Sinica 23, 698–704.<br />

Akasu, M., Itokawa, H., Fujita, M., 1976. Biscoclaurine alkaloids in callus tissues of<br />

<strong>Stephania</strong> cepharantha. Phytochemistry 15, 471–473.<br />

Angerhofer, C.K., Guinaudeau, H., Wongpanich, V., Pezzuto, J.M., Cordell, G.A., 1999.<br />

Antiplasmodial and cytotoxic activity of natural bisbenzylisoquinoline alkaloids.<br />

Journal of Natural Products 62, 59–66.<br />

Anonymous, 1989. <strong>The</strong> Wealth of India, Row Materials vol. X (Sp-W), Publication<br />

and Information Directorate CSIR, New Delhi, India, p. 41.<br />

Anonymous, 1994. Indian Medicinal Plants, vol. 2, Arya Vaidya Sala, Orient Longman,<br />

India, p. 280.<br />

Anonymous, 1999. Zhongcaoyao, 30, 250.<br />

Banerji, J., Chatterjee, A., Patra, A., Bose, P., Das, R., Das, B., Shamma, M., Tantisewie,<br />

B., 1994. Kamaline, an unusual aporphine alkaloid, from <strong>Stephania</strong> venosa. Phytochemistry<br />

36, 1053–1056.<br />

Bartley, J.P., Baker, L.T., Carvalho, C.F., 1994. Alkaloids of <strong>Stephania</strong> bancroftii. Phytochemistry<br />

36, 1327–1331.<br />

Bhakuni, D.S., 1984. Some aspects of protoberberine alkaloids. Journal of the Indian<br />

Chemical Society 61, 1016–1022.<br />

Bhakuni, D.S., Gupta, S., 1982. <strong>The</strong> alkaloids of <strong>Stephania</strong> glabra. Journal of Natural<br />

Products 45, 407–411.<br />

Blanchfield, J.T., Kitching, W., Sands, D.P.A., Thong, Y.H., Kennard, C.H.L., Byriel, K.A.,<br />

1993. Alkaloids from some Australian <strong>Stephania</strong> (Menispermaceae) species. Natural<br />

Product Letters 3, 305–312.<br />

Blanchfield, J.T., Sands, D.P.A., Kennard, C.H.L., Byriel, K.A., Kitching, W., 2003.<br />

Charecterisation of alkaloids from some Australian <strong>Stephania</strong> (Menispermaceae)<br />

species. Phytochemistry 63, 711–720.<br />

Burkill, I.H., 1966. A Dictionary of the Economic Products of the Malay Peninsula,<br />

Kuala Lumpur. <strong>The</strong> Ministry of Agriculture and Co-operatives, Malaysia, p. 2113.<br />

Camacho, M.R., Kirby, G.C., Warhurst, D.C., Croft, S.L., Phillipson, J.D., 2000. Oxoaporphine<br />

alkaloids and quinines from <strong>Stephania</strong> dinklagei and evalution of their<br />

antiprotozoal activity. Planta Medica 66, 478–480.<br />

Cava, M.P., Nomura, K., Schlessinger, R.H., Buck, K.T., Douglas, B., Raffauf, R.F.,<br />

Weisbach, J.A., 1964. Chemical determination of the absolute configuration of<br />

aporphines-reductive cleavage of proaporphines. Chemistry and Industry (London),<br />

282–283.<br />

Cava, M.P., Nomura, K., Talapatra, S.K., Mitchell, M.J., Schlessinger, R.H., Buck, K.T.,<br />

Beal, J.L., Douglas, B., Raffauf, R.F., Weisbach, J.A., 1968. Alkaloids of <strong>Stephania</strong><br />

glabra. Direct chemical correlation of the absolute configuration of some<br />

benzyltetrahydroisoquinoline, proaporphine, and aporphine alkaloids, New<br />

protoberberine alkaloid. Journal of Organic Chemistry 33, 2785–2788.<br />

Charles, B., Bruneton, J., Pharadai, K., Tantisewie, B., Guinaudeau, H., Shamma, M.,<br />

1987. Some unusual proaporphine and aporphine alkaloids from <strong>Stephania</strong><br />

venosa. Journal of Natural Products 50, 1113–1117.<br />

Chaudhary, G.R., Sharma, V.N., Dhar, M.L., 1952. <strong>The</strong> alkaloid of <strong>Stephania</strong> glabra<br />

Miers. Identity of aindarine and gindarimine with tetrahydropalmatine (5) and<br />

palmatine respectively. Journal of Scientific and Industrial Research B 11, 337.<br />

Chaudhary, G.R., Siddiqui, S., 1950. <strong>The</strong> alkaloids of Indian <strong>Stephania</strong>s. Pt. I. Isolation<br />

of three crystalline alkaloids from the tubers of <strong>Stephania</strong> glabra Miers. Journal<br />

of Scientific and Industrial Research B 9, 79.<br />

Chea, A., Hout, S., Bun, S.S., Tabatadze, N., Gasquet, M., Azas, N., Elias, R., 2007.<br />

Antimalarial activity of alkaloids isolated from <strong>Stephania</strong> rotunda. Journal of<br />

Ethnopharmacology 102, 132–137.<br />

Chen, J., Tong, Y., Zhang, X., Tian, H., Chang, Z., 1999. Acute toxicity of <strong>Stephania</strong><br />

cepharantha. Journal of Chinese Medicinal Materials 22, 468–469.<br />

Chen, K., Chen, A., 1935. <strong>The</strong> alkaloids of han-fang-chi. <strong>The</strong> Journal of Biological<br />

Chemistry 109, 681–685.<br />

Chen, K., Chen, A., Anderson, R., Rose, C., 1937. <strong>The</strong> pharmacological action of tetrandrine,<br />

an alkaloid of han-fang-chi. Chinese Journal of Physiology 11, 13–34.<br />

Chen, Y.W., Li, D.G., Wu, Z.X., Chen, Y.W., Lu, H.M., 2005. Tetrandrine inhibits<br />

activation of rat hepatic stellate cells stimulated by transforming growth factorbeta<br />

in-vitro via up-regulation of Smad 7. Journal of Ethnopharmacology 100,<br />

299–305.


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 381<br />

Chiou, W.F., Lee, W.S., Yeh, P.H., 2006. Tetrandrine selectively protects against<br />

amyloid--protein but not against MPTP-induced cytotoxicity in SK-N-SH neuroblastoma<br />

cells. Planta Medica 72, 1300–1304.<br />

Chopra, R.N., Chopra, I.C., Handa, K.L., Kapur, L.D., 1958. Chopra’s Indigenous <strong>Dr</strong>ugs<br />

of India, 2nd ed. Char UN and Sons, Ltd., Calcutta, India, p. 412.<br />

Chopra, R.N., Nayar, S.L., Chopra, I.C., 1956. Supplementary to Glossary of Indian<br />

Medicinal Plants. PID, New Delhi, India.<br />

Chor, S.Y., Hui, A.Y., To, K.F., 2005. Antiproliferative and proapoptotic effects of herbal<br />

medicine on hepatic stellate cells. Journal of Ethanapharmacology 100, 180–186.<br />

Dagne, E., Gunatilaka, A.A.L., Kingston, D.G.I., Alemu, M., 1993. 4 ′ -O-<br />

Methylstephavanine from <strong>Stephania</strong> abyssinica. Journal of Natural Products 56,<br />

2022–2025.<br />

Das, B., Pal, P., Tandon, V., Lyndem, L.M., Kar, P.K., Rao, H.S.P., 2004. Anthelmintic<br />

efficacy of extract of <strong>Stephania</strong> glabra and aerial root extract of Trichosanthes<br />

multiloba in vitro: two indigenous plants in Shillong, India. Journal of Parasitic<br />

Diseases 28, 37–44.<br />

Debat, J., Lemoine, J., Gabillault, F.L., 1980. <strong>Stephania</strong> cepharantha extract, its method<br />

of preparation and its use as pharmaceutical. United States Patent 4235890.<br />

Debelle, F.D., Nortier, J.L., De Prez, E.G., Garbar, C.H., Vienne, A.R., Salmon, I.J.,<br />

Deschodt-Lanckman, M.M., Vanherweghem, J.L., 2002. Aristolochic acids induce<br />

chronic renal failure with interstitial fibrosis in salt-depleted rats. Journal of the<br />

American Society of Nephrology 13, 431–436.<br />

Deng, J.Z., Zhao, S.X., 1993. Alkaloids from aerial parts of <strong>Stephania</strong> longa. Phytochemistry<br />

33, 941–942.<br />

Deng, J.Z., Zhao, S.X., 1997. 2-N-methylexcentricine, a new alkaloid from root of<br />

<strong>Stephania</strong> excentrica. Journal of Natural Products 60, 294–295.<br />

Deng, J.Z, Zhao, S.X., Lou, F., 1990. A new monoquaternqry bisbenzylisoquinoline<br />

alkakoid from <strong>Stephania</strong> testrandra. Journal of Natural Products 53, 993–994.<br />

Deng, J.Z., Zhao, S.X., Miu, Z.C., 1992. Morphinane alkaloid from roots of <strong>Stephania</strong><br />

cepharantha. Phytochemistry 31, 1448–1450.<br />

Dhar, M.L., Dhar, M.M., Dhawan, B.N., Ray, C., 1968. Screening of Indian plants for<br />

biological activity: Part I. Indian Journal of Experimental Biology 6, 232–247.<br />

Doskotch, R.W., Malik, M.Y., Beal, J.L., 1967. <strong>The</strong> identification of dehydrocorydalmine<br />

and a new protoberberine alkaloid, Stepharanine, in Stephnnia glabra<br />

tubers. Journal of Organic Chemistry 32, 3253.<br />

Duke, J.A, 1992. Handbook of Phytochemical Constituents of GRAS Herbs and Other<br />

Economic Plants. CRC Press, Boca Raton, FL, USA.<br />

Dwuma, B.D., Ayim, J.S.K., Withers, S.F., Agyemang, N.O., Ateya, A.M., El-Azizi, M.M.,<br />

Knapp, J.E., Slatkin, D.J., Schiff, P.L., 1980. Constituents of West African Medicinal<br />

Plants. XXVII. Alkaloids of Rhigiocarya racemifera and <strong>Stephania</strong> dinklagei. Journal<br />

of Natural Products 43, 123–129.<br />

Ellenbroek, B.A., Zhang, X.X., Jin, G.Z., 2006. Effects of (−)stepholidine in animal<br />

models for schizophrenia. Acta Pharmacologica Sinica 27, 1111–1118.<br />

Fadeeva, I.I., Fesenko, D.A., II’inskaya, T.N., Perel’son, M.E., Tolkachev, O.N., 1971b.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia VIII. Methylhernandine. Chemistry of Natural<br />

Compounds 7, 432–434.<br />

Fadeeva, I.I., Il’inskaya, T.N., Perel’son, M.E., 1970. Alkaloids of <strong>Stephania</strong> hernandifolia<br />

V. Structure of hernandolinol. Chemistry of Natural Compounds 6, 516.<br />

Fadeeva, I.I., Il’inskaya, T.N., Perel’son, M.E., Kuzovkov, A.D., 1971a. <strong>The</strong> structure<br />

of delavayine. An alkaloid from <strong>Stephania</strong> delovayi. Chemistry of Natural Compounds<br />

7, 756–761.<br />

Fadeeva, I.I., Kuzovkov, A.D., Il’inskaya, T.N., 1967. Alkaloids of <strong>Stephania</strong> hernandifolia<br />

III. Chemistry of Natural Compounds 3, 88–89.<br />

Fadeeva, I.I., Perel’son, M.E., Tolkachev, O.N., 1972. Alkaloids of <strong>Stephania</strong> hernandifolia<br />

IX. 3-O-demethylhernandifoline. Chemistry of Natural Compounds 8,<br />

136–137.<br />

Fang, L.H., Zhang, Y.H., Ku, B.S., 2005. Fangchinoline inhibited the antinociceptive<br />

effect of morphine in mice. Phytomedicine 12, 183–188.<br />

Fesenko, D.A., Fadeeva, I.I., Il’inskaya, T.N., Perel’son, M.E., Tolkachev, O.M., 1971.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia VI. Hernandifoline. Chemistry of Natural<br />

Compounds 7, 150–154.<br />

Gaur, R.D., 1999. Flora of District Garhwal North West Himalaya (With ethno botanical<br />

notes), 1st ed. TransMedia Srinagar Garhwal, India, pp. 76–77.<br />

Ghosh, D., Jana, D., Debnath, J.M., 2002. Effects of leaf extract of <strong>Stephania</strong> hernandifolia<br />

on testicular gametogenesis and androgenesis in albino rats: a<br />

dose-dependent response study. Contraception 65, 379–384.<br />

Goren, A.C., Zhou, B.N., Kingston, D.G.I., 2003. Cytotoxic and DNA damaging activity<br />

of some aporphine alkaloids from <strong>Stephania</strong> dinklagei. Planta Medica 69,<br />

867–868.<br />

Guinaudeau, H., Shamma, M., Tantisewie, B., Pharadai, K., 1981. 4,5,6,6a-<br />

Tetradehydro-N-methyl-7-oxoaporphinium salts. Journal of the Chemical<br />

Society, Chemical Communications, 1118.<br />

Guinaudeau, H., Shamma, M., Tantisewie, B., Pharadai, K., 1982. Aporphine alkaloids<br />

oxygenated at C-7. Journal of Natural Products 45, 355–357.<br />

Gulcin, I., Elias, R., Gepdiremen, A., Chea, A., Topal, F., 2010. Antioxidant activity<br />

of bisbenzylisoquinoline alkaloids from <strong>Stephania</strong> rotunda: cepharanthine<br />

and fangchinoline. Journal of Enzyme Inhibition and Medicinal Chemistry 25,<br />

44–53.<br />

Gupta, R.S., Krepinsky, J.J., Siminovitch, L., 1980. Structural determinants responsible<br />

for the biological activity of (−)-emetine (−)-crytopleurine, and<br />

(−)-tylocrebrine: structure-activity relationship among related compounds.<br />

Molecular Pharmacology 18, 136.<br />

Hall, A.M., Chang, C.J., 1997. Multidrug resistance modulators from <strong>Stephania</strong> japonica.<br />

Journal of Natural Products 60, 1193–1195.<br />

Haller, C.A., Dyer, J.E., Ko, R.J., Olson, K.R., 2002. Making a diagnosis of herbal-related<br />

toxic hepatitis. <strong>The</strong> Western Journal of Medicine 176, 39–44.<br />

Ho, L.J., Chang, D.M., Lee, T.C., Chang, M.L., Lai, J.H., 1999. Plant alkaloid tetrandrine<br />

down reg ulates protein kinase C-dependent signaling pathway in T cells.<br />

European Journal of Pharmacology 367, 389–398.<br />

Hossan, M.S., Hanif, A., Agarwala, B., Sarwar, M.S., Karim, M., Rahman, M.T., Jahan,<br />

R., Rahmatullah, M., 2010. Traditional use of medicinal plants in Bangladesh to<br />

treat urinary tract infections and sexually transmitted diseases. Ethnobotany<br />

Research & Applications 8, 61–74.<br />

Huai, H., Dong, Q., Liu, A., 2010. Ethnomedicinal analysis of toxic plants from five<br />

ethnic groups in China. Ethnobotany Research & Applications 8, 169–179.<br />

Huang, Y.T., Chang, F.C., Chen, K.J., Hong, C.Y., 1999. Acute hemodynamic effects<br />

of tetramethylpyrazine and tetrandrine on Cirrhotic rats. Planta Medica 65,<br />

130–134.<br />

Hullatti, K.K., Sharada, M.S., 2007. Antimicrobial activity of Cissampelos pareira.<br />

Cyclea peltata and <strong>Stephania</strong> japonica methanolic root extracts. Advances in<br />

Pharmacology and Toxicology 8, 105–108.<br />

Hullatti, K.K., Sharada, M.S., 2010. Comparative phytochemical investigation of the<br />

sources of ayurvedic drug Patha: a chromatographic fingerprinting analysis.<br />

Indian Journal of Pharmaceutical Sciences 72, 39–45.<br />

Hung, T.M., Dang, N.H., Kim, J.C., Jang, H.S., Ryoo, S.W., Lee, J.H., Choi, J.S., Bae, K., Min,<br />

B.S. 2010. Alkaloids from roots of <strong>Stephania</strong> rotunda and their cholinesterase<br />

inhibitory activity. Planta Medica. PMID: 20391319, in press.<br />

Il’inskaya, T.N., Perel’son, M.E., Fadeeva, I.I., Fesenko, D.A., Tolkachev, O.N., 1972.<br />

Alkaloids of <strong>Stephania</strong> delovayi II. 16-Oxodelavayine. Chemistry of Natural Compounds<br />

8, 134–135.<br />

Il’inskaya, T.N., Perel’son, M.E., Fesenko, D.A., Tolkachev, O.N., 1973. Alkaloids<br />

of <strong>Stephania</strong> delovayi III. Stephodeline. Chemistry of Natural Compounds 9,<br />

613–615.<br />

Il’inskaya, T.N., Fesenko, D.A., Fadeeva, I.I., Perel’son, M.E., Tolkachev, O.N., 1971.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia VII. Hernandine. Chemistry of Natural Compounds<br />

7, 171–174.<br />

Ingkaninan, K., Phengpa, P., Yuenyongsawad, S., Khorana, N., 2006. Acetylcholinesterase<br />

inhibitors from <strong>Stephania</strong> venosa tuber. <strong>The</strong> Journal of Pharmacy<br />

and Pharmacology 58, 695–700.<br />

Inubushi, Y., Ibuka, T., 1977. In: Manske, R.H.F. (Ed.), <strong>The</strong> Alkaloids, vol. 16. Academic<br />

Press, New York, USA, pp. 393–430.<br />

Jana, D., Maiti, R., Gosh, D., 2003. Effects of <strong>Stephania</strong> hernandifolia leaf extract on<br />

testicular activity in rats. Asian Journal of Andrology 5, 125–129.<br />

Joshi, V.C., Avula, B., Khan, I.A., 2008. Authentication of <strong>Stephania</strong> tetrandra S. Moore<br />

(Fang Ji) and differentiation of its common adulterants using microscopy and<br />

HPLC analysis. Journal of Natural Medicines 62, 117–121.<br />

Kang, H.S., Kim, Y.H., Lee, C.S., Lee, J.J., Choi, I., Pyun, K.H., 1996. Anti-inflammatory<br />

effects of <strong>Stephania</strong> tetrandra S. Moore on interleukin-6 production and<br />

experimental inflammatory disease models. Mediators of Inflammation 5,<br />

280–291.<br />

Kashiwaba, N., Morooka, S., Kimura, M., Murakoshi, Y., Toda, J., Sano, T., 1994. Two<br />

new morphinane alkaloids from <strong>Stephania</strong> cepharantha Hayata (Menispermaceae).<br />

Chemical and Pharmaceutical Bulletin 42, 2452–2454.<br />

Kashiwaba, N., Morooka, S., Kimura, M., Ono, M., 1996. Stephaoxocanine, a noble<br />

dihydroisoquinoline alkaloid from <strong>Stephania</strong> cepharantha. Journal of Natural<br />

Products 59, 803–805.<br />

Kashiwaba, N, Morooka, S., Kimura, M., Ono, M., 1997. Stephaoxocanidine, a new<br />

isoquinolin alkaloid from <strong>Stephania</strong> cepharantha. Natural Products Letters 9,<br />

177–180.<br />

Kashiwaba, N., Ono, M., Toda, J., Suzuki, H., Sano, T., 1998. Alkaloidal constituents of<br />

vines of <strong>Stephania</strong> cepharantha. Natural Medicines 52, 541.<br />

Kashiwaba, N., Ono, M., Toda, J., Suzuki, H., Sano, T., 2000. Aporphine glycosides from<br />

<strong>Stephania</strong> cepharantha seeds. Journal of Natural Products 63, 477–479.<br />

Khanna, N.K., Madan, B.R., Mahatma, O.P., Surana, S.C., 1972. Some psychopharmacological<br />

actions of <strong>Stephania</strong> glabra (Roxb) Miers: an Indian indigenous herb.<br />

Indian Journal of Medical Research 60, 472–480.<br />

Khasiphand, C., Suksah, T.P., 1968. Textbook of Medicinal Education, Thonburi. Ministry<br />

of Public Health, Nakornthon Phaesat, Thailand, p. 239.<br />

Khosa, R.L., Mohan, Y., Wahi, A.K., 1987. Chemical studies on roots of <strong>Stephania</strong><br />

gracilenta. Indian Journal of Natural Products 3, 8–9.<br />

Kim, H.S., Zhang, Y.H., Fang, L.H., Yun, Y.P., Lee, H.K., 1999. Effect of tetrandrine and<br />

fangchinoline on human platelet aggregation and thromboxane B2 formation.<br />

Journal of Ethnopharmacology 66, 241–246.<br />

Kim, H.S., Zhang, Y.H., Oh, K.W., Ahn, H.Y., 1997. Vasodilating and hypotensive effects<br />

of fangchinoline and tetrandrine on the rat aorta and the stroke prone spontaneously<br />

hypertensive rat. Journal of Ethnopharmacology 58, 117–123.<br />

Kimoto, T., Suemitsu, K., Nakayama, H., Komori, E., Ohtani, M., Ando, S., 1997. <strong>The</strong>rapeutic<br />

experience of venomous snakebites by the Japanese viper (Agkistrodon<br />

halys blomhoffii) with low dose of antivenin: report of 43 consecutive cases.<br />

Nippon Geka Hokan [Archiv f r japanische Chirurgie] 66, 71–77.<br />

Kin, F.K., Fadeeva, I.I., Il’inskaya, T.N., 1965. A study of the alkaloids of plants of<br />

the <strong>genus</strong> <strong>Stephania</strong> II. <strong>The</strong> alkaloids of <strong>Stephania</strong> glabra. Chemistry of Natural<br />

Compounds 1, 308–309.<br />

Kirtikar, K.R., Basu, B.D., 2004. Indian Medicinal Plants, vol. 1., 2nd ed. L. M. Basu,<br />

Allahabad, India, p. 94.<br />

Kondo, S., Matsui, M., Watanabe, Y., 1983. Alkaloids from the Fruits of <strong>Stephania</strong><br />

japonica MIERS. I. Structure of stephabenine: a new hasubanan ester-ketal alkaloid.<br />

Chemical and Pharmaceutical Bulletin 31, 2574–2577.<br />

Kozuka, M., Miyaji, K., Sawada, T., Tomita, M., 1985. A major alkaloid of the leaves<br />

and stems of <strong>Stephania</strong> rotunda. Journal of Natural Products 48, 341–342.<br />

Kunitomo, J., 1985. O-methyl deoxopunjabin, a secobisbenzylisoquinoline alkaloid<br />

bearing and aryl methyl group and three other secobisbenzylisoquinoline alka-


382 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

loids O-methylpunjabin secocepharanthine and dihydrosecocepharanthine.<br />

Chemical and Pharmaceutical Bulletin 33, 135–143.<br />

Kunitomo, J., Nagai, Y., Yuge, E., 1967. Studies on the Alkaloids of Menispermaceous<br />

Plants. CCXXXIV: Alkaloids of <strong>Stephania</strong> sasakii Hayata 7, Isolation of water<br />

soluble quaternary base, Steponine. Yakugaku Zasshi 87, 1010–1011.<br />

Kunitomo, J., Okamoto, Y., Yuge, E., Nagai, Y., 1969. <strong>The</strong> characterization and<br />

structures of aknadilactam and steporphine from <strong>Stephania</strong> sasakii, Hayata.<br />

Tetrahedron Letters 10, 3287–3289.<br />

Kunitomo, J., Yuge, E., Nagai, Y., 1966. Studies on the alkaloids of Menispermaceous<br />

plants. CCXXII: Alkaloids of <strong>Stephania</strong> sasakii Hayata 6, isolation of<br />

N-methylpapaveraldinium (N-methylxanthalinium), a new water soluble quaternary<br />

base. Yakugaku Zasshi 86, 456–460.<br />

Kupchan, S.M., Asbun, W.L., Thyagarajan, B.S., 1961. Menispermaceae alkaloids III.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia. Journal of Pharmaceutical Sciences 50,<br />

819–822.<br />

Kupchan, S.M., Suffness, M.I., White, D.N.J., McPhail, A.T., Sim, G.A., 1968. Isolation<br />

and structural elucidation of 4-demethylhasubanonine, a new alkaloid from<br />

<strong>Stephania</strong> hernandifolia. Journal of Organic Chemistry 33, 4529–4531.<br />

Kuroda, H, Nakazawa, S., Katagiri, K., Shiratori, O., Konuka, M., Fujitani, K., Tomita, M.,<br />

1976. Antitumor effect of bisbenzylisoquinoline alkaloids. Chemical and Pharmaceutical<br />

Bulletin 24, 2413–2420.<br />

Kwan, C.Y., Chen, Y.Y., Ma, M.F., Daniel, E.E., Hui, S.C., 1996. Tetrandrine, a calcium<br />

antagonist of Chinese herbal origin, interacts with vescular muscles<br />

-adrenoceptor. Life Sciences 59, 359–364.<br />

Lai, J.H., 2002. Immunomodulatory effects and mechanisms of plant alkaloid tetrandrine<br />

in autoimmune diseases. Acta Pharmacologica Sinica 23, 1093–1101.<br />

Li, X., Zhang, S., Qin, L., Song, Z., Mao, C., Zhang, Q., 2000. Experimental study of<br />

analgesic effect of combined aconitum and <strong>Stephania</strong> tetrandra. Chinese Journal<br />

of Integrative Medicine 6, 111.<br />

Liang, X.C., Hagino, N., Guo, S.S., Tsutsumi, T., Kobayashi, S., 2002. <strong>The</strong>rapeutic<br />

efficacy of <strong>Stephania</strong> tetrandra S. Moore for treatment of neovascularization<br />

of retinal capillary (retinopathy) in diabetes-in-vitro study. Phytomedicine 9,<br />

377–384.<br />

Lijin, Z., Xiao, W., Jianhua, L., Wenjuan, D., Daijie, W., Yanling, G., 2009. Use of<br />

pH-zone refining countercurrent chromatography for preparative separation of<br />

fangchinoline and tetrandrine from <strong>Stephania</strong> tetrandra. Chromatographia 69,<br />

959–962.<br />

Likhitwitayawuid, K., Angerhofer, C.K., Chai, H., Pezzuto, J.M., Cordell, G.A., 1993a.<br />

Cytotoxic and antimalarial alkaloids from the tubers of <strong>Stephania</strong> pierrei. Journal<br />

of Natural Products 56, 1468–1478.<br />

Likhitwitayawuid, K., Angerhofer, C.K., Cordell, G.A., Pezzuto, J.M., Ruangrungsi, N.,<br />

1993b. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from <strong>Stephania</strong><br />

errecta. Journal of Natural Products 56, 30–38.<br />

Likhitwitayawuid, K., Dej-ajisai, S., Jong-bunprasert, V., 1999. Antimalarials from<br />

<strong>Stephania</strong> venosa, Prismatomeris sessiliflora Diospyros montana and Murraya siamensis.<br />

Planta Medica 65, 754–756.<br />

Liu, X.J., Wang, Y.F., Zhang, M.Y., 2004. Study on the inhibitory effect of cepharanthine<br />

on herpes simplex type 1 virus (HSV-1) in vitro. Journal of Chinese Medicinal<br />

Materials (Chin) 27, 107–110.<br />

Luger, P., Weber, M., Dung, N.X., Moi, L.D., Khoi, T.T., Phuong, D.L., 1998. (−)-<br />

Tetrahydropalmatine monohydrate. Acta Crystallographica C 54, 1977–1980.<br />

Mahatma, O.P., Rathore, D.S., Pancholi, N.S., 1987. Further studies on some pharmacological<br />

action of gindarin hydrochloride, an alkaloid of <strong>Stephania</strong> glabra (Rox.)<br />

Miers. Indian <strong>Dr</strong>ugs 24, 537–541.<br />

Mantsch, J.R., Li, S.J., Risinger, R., Awad, S., Katz, E., Baker, D.A., Yang, Z., 2007.<br />

Levo-tetrahydropalmatine attenuates cocaine self-administration and cocaineinduced<br />

reinstatement in rats. Psychopharmacology 192, 581–591.<br />

Matsui, M., Kabashima, T., Ishida, K., Takebayashi, T., Watanabe, Y., 1982a. Alkaloids<br />

of the leaves of <strong>Stephania</strong> japonica. Journal of Natural Products 45,<br />

497–500.<br />

Matsui, M., Watanabe, Y., 1984. Structure of Oxostephasunoline, a new hasubanalactam<br />

alkaloid from <strong>Stephania</strong> japonica. Journal of Natural Products 47, 465–469.<br />

Matsui, M, Watanabe, Y., Hinomoto, T., 1982b. Carbon-13 NMR spectra of some<br />

hasubanan alkaloids. Journal of Natural Products 45, 247–251.<br />

Matsui, M., Watanabe, Y., Ibuka, T., Tanaka, K., 1975. Constitution of four new hasubanan<br />

alkaloids from <strong>Stephania</strong> japonica Miers. Chemical and Pharmaceutical<br />

Bulletin 23, 1323–1335.<br />

Matsui, M., Watanabe, Y., Ibuka, T., Tanaka, K., 1973. Constitution of four new<br />

hasubanan alkaloids from <strong>Stephania</strong> Japonica Miers. Tetrahedron Letters 14,<br />

4263–4266.<br />

Matsui, M., Yamamura, Y., 1986. Alkaloids from the Fruits of <strong>Stephania</strong> japonica.<br />

3. Structures of prostephanaberrine and stephanaberrine, two new hasubanan<br />

alkaloids. Journal of Natural Products 49, 588–592.<br />

Matsui, M., Yamamura, Y., Takebayashi, T., Iwaki, K., Takami, Y., Kunitake, K., Koga,<br />

F., Urasaki, S., Watanabe, Y., 1984. Oxoepistephamiersine, a new hasbanalactam<br />

alkaloid from <strong>Stephania</strong> japonica. Journal of Natural Products 47, 858–861.<br />

Min, Z.D, Lin, G., Xu, G.X., Munekazu, I., Toshiyuki, T., Mizuo, M., 1985. Alkaloids of<br />

<strong>Stephania</strong> sinica. Phytochemistry 24, 3084–3085.<br />

Miu, Z.C., Deng, J.H., Zhao, S.X., Feng, R., Du, Z., 1998. Structural determination and<br />

spectral assignment of an alkaloid with a novel skeleton by selective long-range<br />

DEPT and 1D multiple relay Cosy NMR techniques. Chinese Journal of Organic<br />

Chemistry 18, 243–245.<br />

Montririttigri, K., Moongkarndi, P., Joongsomboonkusol, S., Chitkul, B., Pattanapanyasat,<br />

K., 2008. Apoptotic activity of aporphine from <strong>Stephania</strong> venosa on<br />

human ovarian cancer cells. Mahidol University Journal of Pharmaceutical Sciences<br />

35, 52–56.<br />

Moongkarndi, P., Kosem, N., Luanratana, O., Jongsomboonkusol, S., Pongpan, N.,<br />

2004. Antiproliferative activity of Thai medicinal plant extracts on human breast<br />

adenocarcinoma cell line. Fitoterapia 75, 375–377.<br />

Mosihuzzaman, M., Choudhary, M.I., 2008. Protocols on safety, efficacy, standardization,<br />

and documentation of herbal medicine. Pure and Applied Chemistry 80,<br />

2195–2230.<br />

Moza, B.K., 1960. Investigations on <strong>Stephania</strong> hernandifolia. Indian Journal of Pharmacy<br />

22, 63–65.<br />

Moza, B.K., Basu, D.K., 1966. Investigations on <strong>Stephania</strong> hernandifolia. Indian Journal<br />

of Pharmacy 28, 338.<br />

Moza, B.K., Bhaduri, B., Basu, D.K., Kunitomo, J., Okamoto, Y., Yuge, E.,<br />

Nagai, Y., Ibuka, T., 1970. Constitution of three new alkaloids, aknadinine<br />

(4-demethylhasubanonine), aknadicine (4-demethylnorhasubanonine), and<br />

aknadilactam (4-demethyl-16-oxohasubanonine). Tetrahedron 26, 427–433.<br />

Moza, B.K., Bose, A.K., 1967. Investigations on <strong>Stephania</strong> hernandifolia. Indian Journal<br />

of Pharmacy 29, 342.<br />

Moza, B.K., Bose, A.N., Chaudhry, P.K., 1968. Investigations on <strong>Stephania</strong> hernandifolia.<br />

Indian Journal of Pharmacy 30, 179.<br />

Muregi, F.W., Chhabra, S.C., Njagi, E.N.M., Lang‘at-Thoruwa, C.C., Njue, W.M.,<br />

Orago, A.S.S., 2004. Anti-plasmodial activity of some Kenyan medicinal plant<br />

extracts singly and in combination with chloroquine. Phytotherapy Research<br />

18, 379–384.<br />

Nakamura, K., Tsuchiya, S., Sugimoto, Y., Sugimura, Y., Yamada, Y., 1992. Histamine<br />

release inhibition activity of bisbenzylisoquinoline alkaloids. Planta Medica 58,<br />

505–508.<br />

Nakaoji, K., Nayeshiro, H., Tanahashi, T., Su, Y., Nagakura, N., 1997. Bisbenzylisoquinoline<br />

alkaloid from <strong>Stephania</strong> cepharantha and their effects on<br />

proliferation of culture cell from the Murine hair apparatus. Planta Medica 63,<br />

425–428.<br />

Nan, J.X., Park, E.J., Lee, S.H., Park, P.H., Kim, J.Y., Ko, G., Sohn, D.H., 2000. Antifibrotic<br />

effect of <strong>Stephania</strong> tetrandra on experimental liver fibrosis induced by<br />

bile duct ligation and scission in rats. Archives of Pharmacal Research 23,<br />

501–506.<br />

Nawawi, A., Nakamura, N., Meselhy, M.R., Hattori, M., Kurokawa, M., Shiraki,<br />

K., Kashiwaba, N., Ono, M., 2001. In vivo antiviral activity of <strong>Stephania</strong><br />

cepharantha against herpes simplex virus type-1. Phytotherapy Research 15,<br />

497–500.<br />

Ogino, T., Sato, T., Sasaki, H., Okada, M., Maruno, M., 1998b. Studies on the crude drug<br />

containing angiotensin I converting enzyme inhibitors (III). On the activity of<br />

principle in <strong>Stephania</strong> tetrandra S. moor and their derivatives. Natural Medicines<br />

52, 172–178.<br />

Ogino, T., Sato, T., Sasaki, H., Sugama, K., Okada, M., 1998a. Four new bisbenzylisoquinoline<br />

alkaloids from roots of <strong>Stephania</strong> tetrandra. Natural Medicines 52,<br />

124–129.<br />

Pang, L., Hoult, J.R., 1997. Cytotoxicity to macrophages of tetrandrine, an antisili<br />

cosis alkaloid, accompanied by an overproduction of prostaglandins. Biochemical<br />

Pharmacology 53, 773–782.<br />

Patra, A., 1987. Promorphinane and hasubanane alkaloids of <strong>Stephania</strong> suberosa.<br />

Phytochemistry 26, 2391–2395.<br />

Patra, A., Freyer, A.J., Guinaudeau, H., Shamma, M., Tantisewie, B., Pharadai, K., 1986.<br />

<strong>The</strong> bisbenzylisoquinoline alkaloids of <strong>Stephania</strong> Suberosa. Journal of Natural<br />

Products 49, 424–427.<br />

Patra, A., Ghosh, A., Mitra, A.K., 1980. Alkaloids of <strong>Stephania</strong> glabra. Planta Medica<br />

40, 333–336.<br />

Patra, A., Montgomery, C.T., Freyer, A.J., Guinaudeau, H., Shamma, M., Tantisewie,<br />

B., Pharadai, K., 1987. <strong>The</strong> protoberberine alkaloids of <strong>Stephania</strong> suberosa. Phytochemistry<br />

26, 547–549.<br />

Patra, M., Mandal, T.K., Mukhopadhyay, P.K., Ranu, B.C., 1988. (+)-3 ′ ,4 ′ -<br />

dihydrostephasubine, a bisbenzylisoquinoline alkaloid from <strong>Stephania</strong> hernandifolia.<br />

Phytochemistry 27, 653–655.<br />

Perel’son, M.E., Fadeeva, I.I., Il’inskaya, T.N., 1975. Alkaloids of <strong>Stephania</strong> delavayi IV.<br />

Isostephodeline 11, 197–201.<br />

Perry, L.M., 1980. Medicinal Plants of East and Southeast Asia. MIT Press, Cambridge,<br />

UK, p. 267.<br />

Phaet-thanesuara, P., 1967. Pramua Sapphakhun Ya Thai, (Medicinal Uses of Thai<br />

<strong>Dr</strong>ugs), vol. 2, Samakhon Rongrien Phaet Phaen Boran, Bangkok, Thailand, p.<br />

208.<br />

Pharadai, K., Pharadai, T., Tantisewie, B., Guinaudeau, H., 1985. (−)-O-<br />

Acetylsukhodianine and oxostephanosine: two new aporphinoids from<br />

<strong>Stephania</strong> venosa. Journal of Natural Products 48, 658–659.<br />

Qian, J.Q., 2002. Cardiovascular pharmacological effects of bisbenzylisoquinoline<br />

alkaloid derivatives. Acta Pharmacologica Sinica 23, 1086–1092.<br />

Rastogi, R.P., Mehrotra, B.N., 1991. Compendium of Indian Medicinal Plants, vol. 1.<br />

CDRI Lucknow and PID New Delhi, India, pp. 387–390.<br />

Robinovich, I.M., Kibalchich, P.N., Fadeeva, I.I., 1965. <strong>Stephania</strong> plants as a source of<br />

new drugs. Aptechn Delo 14, 19–23.<br />

Semwal, D.K., Rawat, U., 2009a. Antimicrobial hasubanalactam alkaloid from <strong>Stephania</strong><br />

glabra. Planta Medica 75, 378–380.<br />

Semwal, D.K., Rawat, U., 2009b. Gindarudine, a novel morphine alkaloid from <strong>Stephania</strong><br />

glabra. Chinese Chemical Letters 20, 823–826.<br />

Semwal, D.K., Rawat, U., Badoni, R., Semwal, R., Singh, R., 2010a. Anti-hyperglycemic<br />

activity of <strong>Stephania</strong> glabra tubers in alloxan induced diabetic mice. Journal of<br />

Medicine 11, 17–19.<br />

Semwal, D.K., Rawat, U., Bamola, A., Semwal, R., 2009. Antimicrobial activity of<br />

Phoebe lanceolata and <strong>Stephania</strong> glabra; preliminary screening studies. Journal<br />

of Scientific Research 1, 662–666.


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 383<br />

Semwal, D.K., Rawat, U., Semwal, R., Singh, R., Singh, G.J.P., 2010b. Antihyperglycemic<br />

effect of 11-hydroxypalmatine, a palmatine derivative from<br />

<strong>Stephania</strong> glabra tubers. Journal of Asian Natural Products Research 12, 99–105.<br />

Sharma, U, Sahu, R.K., Roy, A., Golwala, D.K., 2010. In vivo antidiabetic and antioxidant<br />

potential of <strong>Stephania</strong> hernandifolia in streptozotocin-induced-diabetic<br />

rats. Journal of Young Pharmacists 2, 255–260.<br />

Shchelchkova, I.I., Ilinskaya, T.N., Kuzovkov, A.D., 1965. <strong>The</strong> alkaloids of <strong>Stephania</strong><br />

glabra. Chemistry of Natural Compounds 1, 210–212.<br />

Shen, Y.C., Chen, C.F., Wang, S.Y., Sung, Y.J., 1999. Impediment to calcium influx and<br />

reactive oxygen production accounts for the inhibition of neutrophil Mac-1 Upregulat<br />

ion and adhesion by tetrandrine. Molecular Pharmacology 55, 186–193.<br />

Shulin, P., Lei, C., Guolin, Z., 1992. Studies on medicinal isoquinoline alkaloids III:<br />

alkaloids of <strong>Stephania</strong> brachyandra. Natural Product Research and Development<br />

4, 11–15.<br />

Si, D., Zhong, D., Sha, Y., Li, W., 2001. Two biflavonoids from the aerial part of <strong>Stephania</strong><br />

tetrandra. Phytochemistry 58, 563–566.<br />

Si, D.Y., Zhao, S.X., Deng, J.Z., 1992. A 4,5-dioxoaporphine from the aerial parts of<br />

<strong>Stephania</strong> tetrandra. Journal of Natural Products 55, 828–829.<br />

Singh, R.S., Kumar, P., Bhakuni, D.S., 1981. <strong>The</strong> Alkaloids of <strong>Stephania</strong> elegans. Journal<br />

of Natural Products 44, 664–667.<br />

Sueblinvong, T., Plumchai, T., Leewanich, P., Limpanasithikul, W., 2007. Cytotoxic<br />

effects of water extract from <strong>Stephania</strong> venosa tubers. Thai Pharmaceutical and<br />

Health Science Journal 2, 203–208.<br />

Sugimoto, Y., Kawaminami, S., Yamada, Y., 1993. Biosynthetic relationship of aromoline<br />

and berbamine in cultured roots of <strong>Stephania</strong> cepharantha. Phytochemical<br />

Analysis 4, 100–102.<br />

Sugimoto, Y., Sugimura, Y., Yamada, Y., 1988. Production of bisbenzylisoquinoline<br />

alkaloid in cultured roots of <strong>Stephania</strong> cepharantha. Phytochemistry 27,<br />

1379–1381.<br />

Taga, T., Akimoto, N., Ibuka, T., 1984. Stephadiamine, a new skeletal alkaloid from<br />

<strong>Stephania</strong> japonica, the first example of a C-norhasubanan alkaloid. Chemical<br />

and Pharmaceutical Bulletin 32, 4223–4226.<br />

Takemura, H., Imoto, K., Ohshika, H., Kwan, C.Y., 1996. Tetrandrine as a calcium<br />

antagonist. Clinical and Experimental Pharmacology and Physiology 23,<br />

751–753.<br />

Tamez, P.A., Lantvit, D., Lim, E., Pezzuto, J.M., 2005. Chemosensitizing action of<br />

cepharenthine against drug-resistant human malaria, Plasmodium falciparum.<br />

Journal of Ethnopharmacology 98, 137–142.<br />

Tanahashi, T., Su, Y.S., Nagakura, N., Nayeshiro, H., 2000. Quaternary isoquinoline<br />

alkaloids from <strong>Stephania</strong> cepharantha. Chemical and Pharmaceutical Bulletin 48,<br />

370–373.<br />

Teh, B.S., Seow, W.K., Li, S.Y., Thong, Y.H., 1990. Inhibition of prostaglandin and<br />

leukotriene generation by the plant alkaloids tetrandrine and berbamine. International<br />

Journal of Immunopharmacology 12, 321–326.<br />

Thu, N.V., Nuhn, P., 1971. Studies of alkaloids of <strong>Stephania</strong> glabra (Roxb.) Miers.<br />

Pharmazie 26, 504–505.<br />

Thuy, T.T., Porzel, A., Franke, K., Wessjohann, L., Sung, T.V., 2005. Isoquinolone and<br />

protoberberine alkaloids from <strong>Stephania</strong> rotunda. Pharmazie 60, 701–704.<br />

Thuy, T.T., Sung, T.V., Franke, K., Wessjohann, L., 2006. Benzyl isoquinoline and<br />

tetrahydroprotoberberine alkaloids from <strong>Stephania</strong> rotunda Lour. Journal of<br />

Chemistry 44, 372–376.<br />

Tomita, M., Kozuka, M., 1966. Studies on the Alkaloids of Menispermaceous<br />

Plants, CCXXVII.: Alkakloids of <strong>Stephania</strong> rotunda Loureiro. Yakugaku Zasshi 86,<br />

871–873.<br />

Tomita, M., Kozuka, M., 1967. Studies on the Alkaloids of Menispermaceous Plants.<br />

CCXLV: alkaloids of <strong>Stephania</strong> cepharantha Hayata 7. Structure of Cepharamine.<br />

Yakugaku Zasshi 87, 1203–1208.<br />

Tomita, M., Kozuka, M., Uyeo, S., 1966. Studies on the alkaloids of Menispermaceous<br />

plants. CCXXIII: Alkaloids of <strong>Stephania</strong> rotunda Loureiro. Yakugaku Zasshi 86,<br />

460–466.<br />

Tsutsumi, T., Kobayashi, S., Liu, Y.Y., 2003. Anti-hyperglycemic effect of fangchinoline<br />

isolated from <strong>Stephania</strong> tetrandra Radix in streptozotocin-diabetic mice.<br />

Biological and Pharmaceutical Bulletin 26, 313–317.<br />

Vanherweghem, J.L., Depierreux, M., Tielemans, C., Abramowicz, D., <strong>Dr</strong>awta, M.,<br />

Jadoul, M., Richard, C., Vendervelde, D., Verbeelen, D., Vanhaelen-Fastre, R.,<br />

Vanhaelen, M., 1993. Rapidly progressive interstitial renal fibrosis in young<br />

women: association with slimming regimen including Chinese herbs. Lancet<br />

341, 387–391.<br />

Wang, X.K., Zhao, Y.R., Zhao, T.F., Lai, S., Che, C.T., 1994. 1-Nitroaknadinine from<br />

<strong>Stephania</strong> sutchuenensis. Phytochemistry 35, 263–265.<br />

Wong, K.K., 1998. Differential effect of tetrandrine on aortic relaxation and chronotopic<br />

activity in rat isolated aorta and atria. Planta Medica 64, 663–665.<br />

Xie, Q.M., Tang, H.F., Chen, J.Q., Bian, R.L., 2002. Pharmacological actions of tetrandrine<br />

in inflammatory pulmonary diseases. Acta Pharmacologica Sinica 23,<br />

1107–1113.<br />

Xin, G., Li-Juan, C., Buda, M., Guo-Zhang, J., 1992. Effects of l-stepholidine on tyrosine<br />

hydroxylase activity in rat corpus striatum. Acta Pharmacologica Sinica 13,<br />

289–292.<br />

Xue, Y., Wang, Y., Feng, D.C., Xiao, B.G., Xu, L.Y., 2008. Tetrandrine suppresses<br />

lipopolysaccharide induced microglial activation by inhibiting NF-kappaB pathway.<br />

Acta Pharmacologica Sinica 29, 245–251.<br />

Xue, Z., Zhang, P.L., Ma, J.M., 1986. Alkaloids from <strong>Stephania</strong> succifera H.S. Lo et Y-<br />

Tsoong. Acta Pharmacologica Sinica 21, 223–225.<br />

Yamamura, Y., Matsui, M., 1985. Alkaloids from the fruits of <strong>Stephania</strong> japonica 2.<br />

Structure of oxospephabenine and N,O-dimethyloxostephine. Journal of Natural<br />

Products 48, 746–750.<br />

Yang, D.L., Mei, W.L., Dai, H.F., 2010a. Cytotoxic alkaloids from the tuber of <strong>Stephania</strong><br />

succifera. Chinese Journal of Medicinal Chemistry 20, 206–210.<br />

Yang, D.L., Mei, W.L., Wang, H., Dai, H.F., 2010b. Antimicrobial alkaloids from the<br />

tubers of <strong>Stephania</strong> succifera. Zeitschrift für Naturforschung B 65, 757–761.<br />

Yao, W.X., Jiang, M.X., 2002. Effects of tetrandrine on cardiovascular electrophysiologic<br />

properties. Acta Pharmacologica Sinica 23, 1069–1074.<br />

Yasukawa, K., Takido, M., Takeuchi, M., Akasu, M., Nakagawa, S., 1991. Cepharanthine<br />

inhibits two-stage tumor promotion by 12-O-tetradecanoylphorbol<br />

13-acetate and mezerein on skin tumor formation in mice initiated with 7, 12-<br />

dimethylbenz[a]anthracene. Journal of Cancer Research and Clinical Oncology<br />

117, 421–424.<br />

Zhang, C., Wang, Y., Liu, X., Lu, J., Qian, C.W., Wan, Z., Yan, X., Zheng, H., Zhang, M.,<br />

Xiong, S., Li, J., Qi, S., 2005. Antiviral activity of cepharanthine against severe<br />

acute respiratory syndrome coronavirus in vitro. Chinese Medical Journal 118,<br />

493–496.<br />

Zhang, H., Yue, J.M., 2005. Hasubanan type alkaloids from <strong>Stephania</strong> longa. Journal<br />

of Natural Products 68, 1201–1207.<br />

Zhao, Y.Z., Kim, J.Y., Park, E.J., Lee, S.H., Woo, S.W., Ko, G., Sohn, D.H., 2004. Tetrandrine<br />

induces apoptosis in hepatic stellate cells. Phytotherapy Research 18, 306–309.<br />

Zhu, M., Philipson, J.D., 1996. Hong Kong samples of the traditional Chinese medicine<br />

Fang Ji contain aristolochic acid toxins. International Journal Pharmacognosy 34,<br />

283–289.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!