14.11.2014 Views

plate 1 - Pondicherry University DSpace Portal

plate 1 - Pondicherry University DSpace Portal

plate 1 - Pondicherry University DSpace Portal

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ANTIFUNGAL EFFECTS OF AQUEOUS BULB EXTRACT<br />

OF AKiom sativum L. ON Colletotrichum capsici<br />

(Syd,) BUTLER & BlSBY INFECTING<br />

Capsicum annum 1.<br />

Thesis submitted to the <strong>Pondicherry</strong> <strong>University</strong><br />

For the award of rhe degree of<br />

DOCTOR OF PHILOSOPHY<br />

IN<br />

Llrc SCIENCES (BOTANY)<br />

DEPARTMENT OF BIOLOGICAL SCIENCES,<br />

PONDICHERRY UNIVERSlTY,<br />

PONDICHERRY-605 014,<br />

INDIA.<br />

DECEMBER - 2002


Dr. U. KANNABIRAN, M.Sc. I'h.1).<br />

Reader in Plant Sciences<br />

Department of Biological Sciences<br />

<strong>Pondicherry</strong> <strong>University</strong><br />

I'ondicherry-605 014.<br />

CERTIFICATE<br />

I liereby certif! that this thesis elititled '.ANTIIWNGAI, EI'I~I


DECLARATION<br />

I hereby declare that this thesis entitled '.AN'I'IPUN(;AI. EFFIX"1S 01;<br />

AQUEOUS BULB EXTRACT OF Allium sarivunl L. ON Collcrorriclturii cirl~sici<br />

(Syd.) BUTLER & BISBY INFECTING Capsicunr irrrnunt I.." sub~iiiued Tor ~hc<br />

award of degree of Doctor of Philosophy in Life Sciences (Botaii!) i\ in! original<br />

~ t r and ~ l has not previously formed the basis for the ,\\lard of ail! I>egtec. 1)iploina.<br />

Asrociateship. Fellowsh~p or other similar titles.


I wuli to express my profound sen ofgratttude to (Dl Q qantrablran,<br />

Qader, (Department of~~lzohgualSctences, Ponddeny 'Llntver ril\<br />

Jorg~utr~ me an<br />

opportunity to do my Ph \.I) under film I also thank 61mfor liic 1 aha68 gurdance,<br />

patience, gcrrc~ostty, rasv approachabrhty andabofor helpcng nrc 111 i ome ~lircru~qh the<br />

fiuras ofCLngIuli<br />

I owe a hep srtisc ofgratttde to Or (E Vyayan, (l'rofissor and /Ted<br />

Departrnrnt o/ ~iholb~ual Sciences, Ponduheny Vnivers~t~ cuho war very<br />

unhrstandng andorsu~cdlhe use offacthtus tn the dipadment i ~lian( lirn~for tfiu<br />

from the depth of niy heafl<br />

1 am cxtrerncly thankjuful to the faculty memberr cfDepa~.trtrertt of3u1logtcal<br />

Scunces, ~?oonhcher.ry I/nrvcrsity, Dr ?( Snkumar, Prof ? I' Natfiu~ and<br />

or 3 8.janracliandra @.edy<br />

andfo~ the11 .culuaGlc he&?<br />

for [tndy allownu me to use thcrr jil~joralo~yjarrht~es<br />

I tliankprojl~sely a~ldstncerely Dr 5 ~ayacfiandran, 1'1oj1sso1 arrd /[cad;<br />

Dcpartn~cnL OJ diotcchnohgy, PonLcfiefiy Vntwrszty, far hls r ,ihil~6(c suqqcrlions,<br />

flenerosrt) constiuclt~~~ suilflesttons, t&alutlc metfiodobgial oI7ifl~ilt10n rn nri~kng<br />

tfiupiolect, 14 dream come true" andforprovdng me necessaiy Lihn~ntotyfarrhtles<br />

I ako (hilnijlilsfarnlh members for aterythln'q<br />

I L I gratefuf ~ to Dr ?( Ja(tfitvef Lecturer, rL)epaflnreril ill<br />

Pondtchrn~ L'r~:oers~ty,for hu fructfi(stqp~tions andtlmcly adr I' LA<br />

,<br />

/irotcchrroi(yy,<br />

I 11 ~sli LO express my specla[ wliobhartcdlhan~ to my soilo~ I)r V $omattit,<br />

for her frurlful suggesttons, cntual comments, ~tniely dvtce, c" orri~mual support,


ncedrdtnqirafrorr andforproundi:ng me the ncceoay fileratrrns dunrlg thr rorirsc<br />

thrs coot.(.,<br />

I would h(e to place on records my 1ndc6tcdnes.r to Or, 7. qanc.ran,<br />

(bartment of Botany, Tanchi %tarnunwar Center for il'ost - (iraduale .~ludus<br />

(~yv)~.\), firthcheny, /or hls valua6h suggesltons, elaborate drscu.rsrorrs,<br />

ertcouragcments andfor prvudng me t h necessay Ltcratures reGvant to my ruo4<br />

7fu rrrolstbb Tmnd~~ thre in tlie scnpt andpresentatiotl I am much ~han/$d to hrm.<br />

1 evrtss nly humbh gratttude to fi$ A,$. qarnachandran Natr and<br />

Prof 'I{ Sunya O'rakah qao, Depaitmcnt of Chcnlu~ry, Porrdicheny Urr'nrventty,<br />

(01 Gunasegaran and Or. K, ,Subrananr, "n:$f,i16,\, o)ondtcheny,<br />

Mr .S Thtagaralan, MSc, Public Nealth Laboratoty, tPonduherry, %/r. Janlhana<br />

xnrhnan, M.Sc., qfficer, Pesttcde @stdue Jdyzmng Laboratory, Podulieny, for<br />

thr~ oaluablk sugdestions and cnttcaf comments rtl the acllvt pnnctph rsoLtlron<br />

.stltdici<br />

I qress my stncere thnk to Dr. 3: Par~hasaralht, qcadrt, .(ahrnJh .I'rhoof<br />

'Llnlverstty, Q40j 5, Wadana~unjzthanr. ~'ro/ x. Kadavul;<br />

o/,Ltclhyy, Po~rhchcny<br />

~L)I '7' $(anrassamy, Dr. (;, l(unlaravelu, mPG4'$, ~i)crndrr/i~ny, a~rd<br />

01 4 d'ragasam, Ifcad; Department oj$olany, ~~liaralhldasarr ~lr~r~crnn~eirt (,'olGagc<br />

~(JI 11 cllrian, Ponhchcny, for thetr valuabl;' suggesttons In the Idii~l+~atmoll o/phrrts<br />

arld'lrrscjy heks<br />

1 wrsh to record my thank to the members of the ,I)clrlor.al Commtttet,<br />

iDr. M.P. R,amanujam, qedr tn (Botany, mL?$j, (i)ondu/icny and<br />

Or. J. Prugasam, Department ofBotany, Bhrathdasan (jou~emment Cobage<br />

for rc oman, Porduhevy


&tng<br />

I wod&& LO thank Ofie staff~~epattrncnt ofBwlogtcal.~caencesfor<br />

me to use the dipartment computers andfor tLtr vdua6h Lijs<br />

I eqress my sincere thank to the Ltbraty Jutliontles and the StafjCojSuG -<br />

BIG, ~~onduheieny Unzverslty for thetr ttmeCy helps.<br />

wy warm apprecrat~ons to establihers of; New hnk, %&wd .Corn and<br />

NJXComputer centers for havlng brought out tau thesrr in thepresenljorm<br />

I am grateful to or, Bolan, Dr. Pavan andor. Clandrasekar, /JcmiCR<br />

Ponhrheny, who helped me the way I hob$<br />

ahrudcs through thelrpatunt andconstant advlces.<br />

at life and strengthened my menlal<br />

I rail never thank my parenls and brother enough jor aB their sup pot^ and<br />

love ficy were always wtth mc dung the di$cuCt tlmes and many 1hzng.r wouu<br />

have 6cei1 kft lncomphte wlthout their heks<br />

.$a many others have contn6utedzn makng my dreams conie true 111 lhls u1or.k<br />

I tak this opportunity to express my sinceye thank to alofthenl<br />

~ G L Id O ~ I submlt myself to the almghty who had Gccn wrth me in lhrs<br />

cndeaooi oridstioweredme wlth has bounttfulbhsszngs<br />

Bate. 3 1 ~i)ecember 2002<br />

PIhcee %rrhifre~.


ABBREVIATIONS<br />

niiti<br />

%<br />

BOD<br />

PP"'<br />

"C<br />

I1<br />

rnl<br />

a.nl<br />

rpm<br />

Ctll<br />

11 I<br />

Ill g<br />

8<br />

lllll<br />

\ !\<br />

\?I\<br />

N aOl-I<br />

DNA<br />

RNA<br />

I\ 1<br />

110<br />

111111<br />

hl<br />

11s<br />

1 rib<br />

SIX<br />

- minute<br />

- percentage<br />

- biological oxygen dcniand<br />

-parts per millio~i<br />

- degree centigrade<br />

- hour<br />

- millilittre<br />

- anti meridieli<br />

- revolution per minute<br />

- centimeter<br />

- microlitrc<br />

- milligram<br />

- gram<br />

- nanometer<br />

- volume by volume<br />

- weight by volume<br />

- sodium hydroxide<br />

- deosy ribonucleic acid<br />

- ribonucleic acid<br />

- weight<br />

- numhcr<br />

- mtllitiieter<br />

- molar<br />

- microgram<br />

- tris (I~ydroxymcthyl) ami~ioctanc<br />

- sodiunl dodecyl sulplicrc olyacrilanl~dc<br />

gel electrophoresis<br />

- litter<br />

- pheny 1 methyl sulpho~~! 1 Iluoridc<br />

- hcta mcrcaptoethanol<br />

- ('uomasivc brilliant blur.<br />

- tetratncthyl ethylene diaminc<br />

- Volts<br />

- milli ampers<br />

- ctliylcne diamino trlra acytale<br />

- sodium chloride<br />

- optical density<br />

- Lris acetic acid ethylenc dianiinc tetra<br />

acetalc buffer<br />

- acceleration duc Lo gra\ il)


- polyvinyl pyrrolidone<br />

- micrograms<br />

- kilogl.am<br />

- ~lllr~l~~iolel<br />

- Souricr transform infi.alcd spcctroscop!,<br />

spcclroscopy<br />

- revcrsc phase high prcssurc liquid<br />

cht.omatograpIiy<br />

- alpha<br />

- potassi~irn dihydrogen orthopliospliatc<br />

- sodium nitrate<br />

- potassium chloride<br />

- ferrous sulphatc<br />

- seconds<br />

- standard errol.<br />

- sodium dodecyl sulphate<br />

- chlorophyll<br />

- milligra~i~igram fresh weight<br />

- milligram/ gram dry weight<br />

- 3- (3.4 Dihydroxyphenyl) L- Alaninc<br />

- proton iiuclear iilagnetic resonance<br />

- magnesium sulphate<br />

- carbon nuclear ~nagnetic resonance


CONTENTS<br />

1. INTRODUCTION 1 - 10<br />

2. MATERIALS AND METHODS 11 - 46<br />

3. OBSERVATIONS 47 - 56<br />

4. DISCUSSION 57 - 66<br />

5. SUMMARY 67 - 69<br />

6. BIBLIOGRAPHY 70 - 86<br />

7. APPENDIX


INTRODUCTION<br />

Plant pathogens adversely affect crop y~eld and crcdtc


and four are nematodes Among the ma101 fungal d~sedse\ anthtatnose aiie~ts the vleld<br />

directly by ~nfect~ng fni~ts Anthracnose (llu~t rot) IS d 5erlous dljedsc 111 L ~ I I I I dnd 111<br />

surtahle weather, ~t may cause 12-15 per cent of damdgc to the crop (Go~iidtli~ 2001)<br />

In ~h1l11 plants, the d~sease anthracnose (Ilterally means ~odl~kc ) 15 LCILI~C~<br />

hy<br />

('ollcro~~r~hrrm cops~cr (syd ) Butler and 81shy It belong5 to the oldel Mcldnconlulcs<br />

contalnlng a s~ngle fam~ly Melanconlaceae<br />

The llpe frult rot of ch1l11 caused by thls fungus Ir a very serlous dlsedse I he<br />

rlpe fru~ts, turnlng red, show ell~ptlcal lesions whrch are green~sh bldch (or) d~lly glay<br />

rn color showing numerous dot-l~ke black stluctures, the aceivul~ of thc lungus rlic<br />

fungus spreads to the central cavlty of the fru~t and Infects the seeds ( ~ul)srcr produces<br />

dense ~hrt~sh to dark gray aer~al mycelium, reverse of the colony 15 ddrk brown<br />

Con~d~al mdsses are pale buff to salmon colored hut lnd~v~dual con~dla arc hyallne,<br />

falcatc lus~form, aplces dcute. 18-24 x 3 5 p, setae numerous trlch~forln brow11 to<br />

blachl5h blown, 2-4 septate, 50 - 100 x 2 6p Applesorla are abunddlltly produced by<br />

the gclmlnatlng conld~a<br />

D~schson (1 925) made a comprehens~ve review on the Colletotr~chum spp<br />

H~gp~ns (1926) descr~bed the morphology of C tup\to 1 Ing and 1111 (1944)<br />

desc~ bed con~d~a of d~fferent spp of C oile~oirrchurn Dura~ral (1956) ~eported thdt<br />

suclose and ammonium sulfate were found to be su~table for the g~owth dnd 8porulatlon<br />

of tlic fungus C tuprlcl<br />

C rr~psrc~ requlres a temperature a~ound 28"C, thc relatne huniid~ty ol 02% dnld<br />

opt1nl~1111 pH of 5 6 for ~ts best growth<br />

(Chowdhury 1957) h41~1dnd Mdhniood<br />

(1961) ~epo~ted the effect of v~tam~ns and Iio~mones on the g ~ o of ~ C ~ cupro h Ndla~n<br />

dnd [la, (1970) reported the colletotln tox111 ,produ~t~on by C CU/?~LI, wh1c.h kllled the<br />

host t~ssuc Rout and Rath (1972) established the seed borne natulc of C ir~po~r


Colle/urrichum spp. was reporled to inhib~t photosynthesis and physiolugq of ilic<br />

host plant (Grewal and Grower, 1974).<br />

An important feature in the pathogenesis ol' fruit rot IS the cl~e~nical ~aeclsanism<br />

of penetration of pathogens into the host and colonization of host tissue. It has been<br />

already reported that many Collerorichurn spp secrete pectinolyt~c and ccllulolytic<br />

enzymes. which play a significant role in pathogenesis (Cliacko PI ol.. 197X, hilanjee!<br />

Kaur and Deshpande, 1980; Cervone ct ul.. 198 1 ).<br />

The effect of different cult~tre niedia on thc growth and sposulatio~l of ('cor/)sici<br />

and ('cr~~.cumue was studied by Palarpawer (1987). Muruganandam el a1 (1987)<br />

reported the influence of some nitrogen sources and asparagine induced mauiniuni<br />

appressorium formation. Cellophane favors the formation of appressorium than agar<br />

and glycine. An intriguing finding was the replacement of contact st~n~ulus by glycinc<br />

in the formation of appressorium by augmenting DNA synthesis, which is a prerequisite<br />

for appressorium formation in an anthracnose fungus.<br />

Jindal el 01. (1994) reported seed borne nature of C capsici and 11s transnlission<br />

in bell pepper. Datar (1995) conducted a survey to evaluate the daniagc of ch~lli Srtr~ts in<br />

!lie markct. He reported that two species of Fu.sorium, 1)rcchslcrcc ccrir~rul~e~~~r~ and<br />

('LUIJ~IL~ are responsible for post harves! damage. Among them (' [(I/I\ICI<br />

serious damage.<br />

caused<br />

Manandhar ei a/. (1995) examined thc conidial germination and appressorial<br />

formation of Crapsici and Cgloeosporiordes on pepper fruits. 'The requircnient of<br />

different nitrogen sources for the growth and sporulation of Collcrorric~ll~~m spp was<br />

investigated by Palatpawar and Ghrude (1997).<br />

Conidia of Collerotrichum spp. as soon as dispersed rapidly adhere to aerial<br />

parts of the plants, to initiate disease. The'conidia are embedded in wcr-soluhle<br />

mucilage. composed of high molecular mass glycoproteins, which is rr.sin~nsihlc for<br />

initial attachment of conidia to hydrophobic substrate (Hughes ci oi.. 1999). Following<br />

3


germiruition. the spores produce short genntube, *ch<br />

required for initial penet~ation ofthe plant cuticle and cell wall.<br />

in turn develops apprcssonum.<br />

Pmveen and Purohit (2001) reported the ultrastructure of conidium ontogeny in<br />

CoNrro/rrchum cup~icl.<br />

Chelnical factors involved in the conidial germination of Ccup.\irl on the<br />

surface ofcliilli pods were reported by Rajapakse (2002).<br />

Fungicide development has been driven not by the occasional cr regional l'ungal<br />

problems of crops but by their global value to the manufacturing industry.<br />

discovery and development of effective chemical control emerged only in the mid-19~<br />

century Currently. ~iiethods of agriculture and horticulture rely heavily upon the usc of<br />

fungicides to the extent that some crops cannot be grown in their absence.<br />

'The<br />

4 good number of reports are available on the chemical control of C cupsici<br />

Cho\vdhury (1957) conducted spraying trials to control fruit infection of chillies<br />

by Ccrlpslo and concluded that 3 to 4 sprajs of poerenox, bordeaux mixture. ditliatie<br />

2-78 and !ellow cuproxide at 15 to 21 days intervals controlled the disease to a great<br />

extent and helped production of a higher percentage of healthy fruit,.<br />

Sarain and Panigrahi (1971) evaluated the efficacy of alltifungal activity of<br />

eight s!steinic co~ilpounds against C.capsio They further reported that agritiiyci~l I00<br />

(terranl!c~n and streptomycin), aureofungin. hio one, actidiolie at 10 ppm were Ibund to<br />

havc I I ~tililbltor! effeci on collidial ger~iiination of C'capsicl. Lira111 was Ibu~id to<br />

inhibit cirti~dlal gerlnination of Ccap~ici and inhibit its infec11011 on thc fruits of<br />

C'upoc rr1,i ~IIII~IIIII.<br />

Rqi~ el (11. (1982) recommended capton as the effecthe fungicide for this<br />

disease due to its compatibility with pesticides like quinalphose, dilnathoate, phosolone<br />

and carbar!l. Spraying with paushamycin at 200 ppm along with 0.3% blitox, 0.25%


and dithane M-45 controlled the incidence of Cxapsici and Xanthomonas (Raju and<br />

Rao, 1984).<br />

At present chemical fungicides dithane M 45, copper oxychloride, benomyl,<br />

capton, bavistin, ziram etc., are used to control C,capsici infection on chilli fruits.<br />

(Chakravarty ct al., 1981; Raju et al., 1982; Hewitt, 1999).<br />

It (Anonymous, 2002 a) was reported that the control of C cup,sici infection of<br />

chilli was possible through the use of disease free seeds, hot water treatment at 5Z°C for<br />

30 millutes and by crop rotation.<br />

Sugunagar Reddy e/ 01. (1980) reported that C cups~cisolates tolerant to copper<br />

sulphate are 1-5 fold more resistant to zineb. They concluded that even alternative use<br />

of different fungicides would be of no effect in controlling fungicides tolerant pathogen.<br />

Sariah (1989) reported benornyl resistance in C cupsici in the chilli growing field sites<br />

in Ma1a)sia<br />

Lvaluation of plant products againat fungal pathogens in the reccnt past showed<br />

that the! could be successfully used as effective alternative to currently used synthelic<br />

Cunglcides. Some of the research works on antifungal activity of plant extracts against<br />

fungal pathogens in general are given below.<br />

The tirst authentic report on the antifungal activity of secondary nielfiholitcs was<br />

reported h! Walker in 1925 (Seliapandy, 2001)<br />

Diiit el ai. (1976) observed that flower extract of llosu indictr strongly inhibited<br />

spore gern~~nation as well as radial groMh of ('ur~luluriu pullescc.~r\. ('epholospurium<br />

.socc hu1.1 and Fusurium nrl'ule.<br />

Dhauale and Kolmelwar (1978) repolled that seed leachatrs of chillies wcre<br />

fbund to inhibit C:capsici.


Eflcct ol flower extracts of' five plants on con~dtal gclmltlatlon dttd tny~cllnl<br />

glow111 wd5 studied by Kapr el ul (1981) They observed Uiat Cvolvulu~ uhtnoidec<br />

and ('an~~olvulus plurtcaulo almost completely lnh~b~ted growth of<br />

hi tic \,toe I hr ~I.Y~ILO/~ dnd Fusar~um oxyrporum<br />

Alrctnurru<br />

Es$c~itldl otl fiom Hyplts suuveolens was found lo be fungttox~c w~th broad-<br />

speitlum d~tl\t~ty (Pandey el ul, 1982) Leaf extract of Dalrtrcr nlha and (hnnuhrc<br />

\~IIIIU ctieihvcly tcduced the seed mycoflora of Eleuslne corucunc~ and thcrr populatton<br />

a1 lo%, conlcnlratlon (Pandey, 1982)<br />

M,l~ootl el a1 (1984) reported that among the 43 plant$ cc~ceticd, wdiet extrall<br />

ol I~iitri~rnrI~ri\ iprnosuv was the only effectlve extract both unde~ laborato~y dnd field<br />

io~ltltttoni ~ l~e~lt~lg growth and Cercospora leaf spot development 111 mung bcdn<br />

F%cnt~dl o ~l extract from the roots of Curculrgo or~li~~rdes showed both<br />

'111itlungai diid aottbdcterlal actlvity (Ja~swal el a[, 1984)<br />

.Ailr~l~rngdl assaq of 10 medlclnal plants agamst Aspetgrllr~~ sp dnd I'cnr~illrunt<br />

511 ilio\~cd [Ilat only Argemone mexrcana reduced growill of dl1 tile reel fungr (Nan11<br />

'i~id h,~du 1'187)<br />

Sr'~~tl~~l~i~~tlid~l<br />

dlld Na~dstrnhan (1987) repo~tcd the dtIll~~ll~d~ cflcct ol glolcln<br />

p'111 ill 'lilu~o~li C'\traLt$ of Aegie murnle/or dnd Pio\ol?r\ /lr/r/ioi~r ~1g~nn5t t/lo~~tirrrr<br />

IClllil\\~lllll<br />

Bdtlritid llands when d~pped In 1% nee111 011 for tlirec 111111utri recorded only 12%<br />

III~LC~IOII h\ ( li1111ae even after I0 day5 whe~eas control I I L I I ~ ~ecorded ~ 924%1<br />

~nle~t~oll \\ttl~tli C days (leyarajdn, 1988)<br />

\ .~po~\ 01 t~oenrculum vulgure and P~nzl~tnellu uni\lrm l~u~tt \Iio\+'cd ~omplclc<br />

~t~li~l~~ttoti 011 lie spore germlnatlon of C tupsrcr (ShuLld el L// . 19801


'riwari er 01. (1990) observed that only vapors of ('rir.rr\ nlctiiccr atid ('1er111rc~<br />

vitcnsu completely inhibited radial growth of two storage lung! \I/ ,I //ol.i,\ end<br />

P oxul~cum<br />

bsseat~al 011 from Ocrmum canum, l'rnu, rt~xb~rr$!hrr atiil It utt cplciirp (11<br />

('111 II\<br />

mcdrcu reduced germination and viability of sclerol~a of :M~~I~~~/IIJIIIIIILI l~/~o\co/rttci<br />

(Dube, 1991).<br />

Ilhanapal tr ul. (1993) reported that aqueous extracts ol ticcln Ical. untlpcd<br />

fru~cs, seeds and other cornmercral neeni products effectivel! ~nlirht!cti iadlal toutll 01<br />

Ithi.-ooon~n sulunl and P/~!~/opthora mcudrl S~ngh c/ a1 (1993) \tudlcd tile cllicacy (11'<br />

aqueous eytracts of 1 I<br />

niedicinal plants to control banana frutt rot i.caf c\lracts of<br />

A:odir~~c~/iilr lndicu. Ociitium sancrum and R~cinus conzniunrc wcre lourid to hc most<br />

ef'li.ctl\e In controlling the fruit rot<br />

Kala~chelvan and Sumathi (1994) reported that Solo~rri~~i ~ir,ql.ri~i~ lias<br />

solaniargtne, a steroid, xhich is inhibitory ro the test fungi /Ircth\l~~~rr 01 ~:oe and<br />

( 'ti~.~~t/ur I ~ lrtnuru I<br />

Ganesan arid Kstshnaraju (1995) observed that D or:)cuc cotii~t~al gci.liirnatloli<br />

\\as tnluhrted by 23 out of 36 plants tested Banibwale e/ ol (1995) also reported that<br />

onl! one plaqt. Luuwunici ~nermis, out of 14 medicinal plants tested. ~nhihitcd conldral<br />

perriilnartoli and rnycelial growth of 2 imponant cotton pah)gcns 1 rircicroc/~orw and<br />

\h~rcii/iet ~I~III roridum<br />

('l~~omolaenu odorola leaf extract of 2% concentratron r~ili~b~ted gro~tli.<br />

sporul,iuotl. sporanglal gemmination, zoospore release and germlnatloli of fJh)'~o/~hrhor(t<br />

i(ip\ii i ( Inandaraj and Lrela, 1996).<br />

Srivastava and Lal (1997) reported that out of aten plants trsted, fresh leaf<br />

culracts of Aladrruhra indka, Calo/ropis procera, 0 ~UJIII~IIIII slopped mycclial<br />

grout11 01'<br />

(' lirhcrcula~a and A alternata. Gehlot arid Bohra (1997) ~eported antifungal<br />

7


activity of certain halophytes against A, solani. The bark and leal' extracts ol' 7Bnrur.i~<br />

uphyllu, leal' and stel11 c;tracts of Sulsolu buryo.sma. stem and root extracts (11' A~rrlder<br />

len/i/orn~i\ and only stem extract of Huloxylon recurvum showed total inhibition 01' tlrc<br />

potato blight pathogen.<br />

'The antifungal effect of grape proteins against fungal pathogs~ls (i~ri~nicr,ditr<br />

hcdclli and Uotryris cincrcu was reported by Salzman el a/. (1 997).<br />

Amodiolia (1998) reported that leaf extracts of papaya I~il\e the potcnt~al 10<br />

control yo\jdcrq mildcw disease of ('. unnum in the field.<br />

Garg and Jail1 (1998) reported than an essential 011 Sru~ii the rhi/.omc of<br />

Curcunrii CLISS~~LI exhibited strong inhibitory effect towards all the bacteria and fungi<br />

used b!<br />

tl~eni.<br />

Fi\ s conlpounds isolated from Ecliplu ulba and Wedelia /rr/ohri/u wcre tested for<br />

their antifungal activity against nine fungal species. The mixture of coumcstans froin<br />

Ealbo shoi\ed maximum activity at 200, 100 and 50 ppm concentrations ('fliqagaraian<br />

and Krislina~iloo~~hq.. 1999).<br />

\'apo~~r toxicit! 01' 1 I plants against A.niger, Pes/ulo~iit poliiriii~tiir~ and 11 oi:l,ztrcJ<br />

~n),cclial gro\\~li was studied by Ganasan (2000). Praveen and Ki11113r (7000) evaluated<br />

aqueous exrracts of I5 plants, bulb extracts of two plants and r111i.onic cstract of onc<br />

plant for n~itifi~ngal actility against A.lrilicina. Among the 18 plants tesled I'o/j~uI/hio<br />

lottgifolici gue maxiniuni inhibition (70%) followed by ,4, indicic. 0' iirirt~rl \rrnc/ltni, ('.<br />

i.o.\cl~.\ and %in,yiher officinalis. Other plants were least effecti\e !I11 tlic sterili~cd<br />

!extracts lost act~vity<br />

.A11tlin!,cotic acti\ iry of D.innoxio extracts against ('cul~cii.~ \bas rcported by<br />

t'llitra and Lanabiran (2001). Kavitha e/ a/. (2001) eveluatcd Ical'r.\trac~s of 13 spccics'<br />

101' ('ii.c.\ict g gain st four fungal pathogens. All the plants produced more than 50%


~nll~h~t~on In mycelial growth of A colunr Fox,~\l~orurn I' nrro~rc~f~ and Sclerolirm<br />

rolf\~r<br />

IlakL~ c/ a1 (2002) reported the antlfungal effects ol' glucose dci~vak~vcs of<br />

Qucrc~ic rn/tc,orru against Allernur~u alterna~u, Cundidu ulhrcun\ etc<br />

I'hopp~l (2002) reported ant~ni~crob~al acl~vrty of esacnt~dl o ~l ol Ar/cmr\rtr<br />

nrlgriictr. a strongly scented weedy herb of Asteraceac The o ~l wa, toxic to all the slx<br />

bacter~a and seven fungi In vrlro ant~fungal actlvlty of T1norpor.a cord~folr~ was studled<br />

hy H11t1o el ul (2002) uslng chloroform and ethanol extract\<br />

I hey oh\e~vcd that<br />

mycchal g~owth of both the test fung~ was affected and the ~nli~hltor? ralc ~ncrca+cd<br />

with Illcleaslng concentrauon Among the two solvents chlorofo~m was lound to be<br />

\upc~~o~ o\'el ethanol<br />

111 OUI labo~atnry. several stud~cs wele undcrldhen to b1111g out tllc ~I~III"UII~CII<br />

effe~t ot botan~cal pestlc~des and antagonlstlc m~crohes (.[asni~ne, 1997 Scnth~l<br />

kunidl~n 1998, go math^, 2001, Pugazhenthi, 200 1 ))<br />

t


4. To investigate host patliogcn interactions and efficacy of thc selcclcd<br />

antifungal .aqueous plant extract to control anthracnose in thc potted<br />

conditions.<br />

5. To find out the antifungal active principles present in the selected a~~tifungal<br />

aqueous plant exlract through pal.tial spectral, chromatographical and<br />

phytochen~ical tests.


MATERIALS AND METHODS<br />

In thc present study experirnenls were conducted to find ( I ~ I ~lic potential<br />

fungitoxic aqueous plant extract to control the anthracnosc fungus in chilli plants<br />

I. ISOLATION OF THE PATHOGEY<br />

The infected fruits of Cap.sirum onnum L. werc collected lionl chilli plants<br />

growing in the fields in and around <strong>Pondicherry</strong>. Fruits wcre surface - s!crilizcd u~th<br />

0.2% mercuric chloride solution for 1 niin, washed thoroughly in stcrilc distilled nater<br />

for four times and the infected portions of the fruits were cut into sn~cill hi~s and placed<br />

on C~apek's medium with 50 ppm of streptomycin and incubated in HOD incubator at<br />

28 i 2 OC.<br />

1.1. Identification<br />

I he pathogen was maintained in potato dextrosc agar (t'1)A) ~nied~unl at<br />

optiriiuni temperature in BOD incubator at 28 f 2°C. Cultu~al characters and<br />

morphology of reproductive structures (fruit bodies), conidia and setae were recorded.<br />

Identification of the fungus was done on the basis of reports of Dastur (1021 ). Stitton<br />

(1973). \on Arx (1975), Kulshrestha cr a/ (1976), Sutton (1980) and Mchrotra and<br />

4neja (1990). Identification and confirmation of C'capsiri was donc 11:<br />

Ad\vanced Studies in Botany, <strong>University</strong> of Madras.<br />

1.2. Pathogcnieity Study<br />

the Centcr Ibr<br />

The pathogenicity of the isolate was tested on l'alur 1 variety of cl~~lli. grown in pots.<br />

I'hc conidial suspension of the isolate was prepared in sterile W~IL'I li.0111 7 days old<br />

culrure grown on PDA slants. The conidial suspension was diluted \\irl~ stcrilc dis~illcd<br />

\rarer in such a way that it contains approximately 2000 to 3000 con~dla ml<br />

The chilli plants of 120 to 135 days after sowing (DASI werc used for<br />

inoculation. The plaits were kept in a humid atmosphere for 24 Ii h! covering thcui<br />

i<br />

wit11 lioled polythene bags. 'he ripened red chilli fruits werc injured \\ith the help of<br />

surgical needle. 100 ml of the conidial suspension was sprayed with ~hr. hand sprayer on<br />

the fruits a1 7.30 a.m. Control plants were sprayed with the same \olume of sterile<br />

distilled water. All .the phts were icdiptely cuvered with blcdplylhme bags<br />

4:<br />

sprinkled with .smile water on the inner side to rnaiha high hmiiidity a d kcp


PLATE 1<br />

Anthracnose disease of chilli fruits<br />

I. Fruits of Capsicum annum showing symptoms of<br />

anthracnose disease caused by C.capsici.<br />

2. C.capsici - Pure culture


PLATE 1


'<br />

u~id~st~~rhcil as such for 24 11. I'cr~odical obscrv;~~icins o~i dl>casc dc\~loprncnt \\crc<br />

lll~~ll~,<br />

Scvci~ days after inoculation.<br />

the fruit\ were crhscrvcd Sor the disease<br />

dc\clopnicnt (Plate I). 'l'he pathogen was reisolatcd ii.onl rl~c inkc~cd arca of' the<br />

inoculated liuits and comparcd with the original isolalc.<br />

1.3. Maintenance of pathogen<br />

I llc ~)"thogc~i (,'olle~o~ric.hutn cul)sici (Syd.) Butlc~ & Dishy (I'latc I) was<br />

p~tr~licd b! single conidium isolation method. 'l'lic purified culture was stored in the<br />

sl.1111~ oi' I'IIA.<br />

2. SCREENING OF AQUEOUS PLANT EXTRACTS<br />

2.1. I'reparation of aqueous plant extracts<br />

Thc plant parts were freshly collected and washed in running tap water and<br />

\+i.rc iurtacc - sterilised w~th 0.2% mercuric chloridc solution for I min and then rinsed<br />

\+ill1 slerilc distilled water for 4 - 5 tinics to cnsurc that all thc cliloride ions ucre<br />

\razhc;i a\+ay. The aqueous plant extracts were preparcd accordung to the ~nic~liod<br />

descr~hcd hy Saspal Singh and Tripathi (1993). Plant extracts were prepared under<br />

azcplli' co~ldition. I'he surface sterilized plant parts \\ere ground 111 a stcrilc blender \vitli<br />

etlu.il \oIi~me of sterile distilled water b) weigiit. Illis slurr! Mas iiltcrcd th~.oupli a<br />

doi~blc la!crrd<br />

sterile cheese cloth and \\as cen1ri1'uyc.d at 50(l0 rpm lilr 10 Inln and the<br />

clear supernatant was saved. This serled as concentrated crude extract and required<br />

ct)~lccntralions were obtained. The extracts wcre freslil) preparcd as and wlicii nceded.<br />

2.2. Screening of plant extracts<br />

2.2.1. Conidial germination studics<br />

Conidial ger~nination studies ~ crcarried out In cavil! slidcs by ~ncubatin; 111 a<br />

n>iob.;r cllambrr at room temperature. Conidial suspension of 8000 - 12000 conidi;~ ' 1111<br />

\\ .iz ~vel~arcd in sterile dis~illed water \I ill1 the help of Ilaemoc! tonic.tc.r. 1 ml of conldial<br />

suspi;l~sion was mixed well with I n~l (i1'2OY0 plant extract, so that tlic rcsulti~ig solution<br />

\\ 111 1.1: of 10% concentration of plant extract \vith 4000 - 6000 conidla 1 1111. i:or control.<br />

stcriic distilled water was added with the conidial suspenslun instead ol' the plant<br />

nlracl. Triplicates were maintained [or each exgerimcnt.<br />

Slides were observed for conidial germination after 24:$<br />

and 18 h. Percentage of<br />

inlrihition over control was calculated b! usi11g the fornlula of L'incent (1927).


I=-<br />

C-T<br />

* 100<br />

C<br />

whele. I = Inh~b~tlon over control<br />

C = %of gelm~natton ~n control<br />

1 = ?4 of gerliilndtlon in treated<br />

The aqueous plant extracts those produced above 50% ~nliibi~loii on ~ hconld~al<br />

germlnatlon at 48 h were further selected to find out their cllc~r on thc indldi ~iiycel~al<br />

plo\\tll of ( LOlItiLi<br />

2.2.2. Kad~rl m)celial growth stud~e\<br />

Ihc lddldl g~owth of tlie liiy~el~uni or dnth~drnort I~l~igu\ (( icil)tici) ud4<br />

mcdiuled by po15oned food techiilque wltli PDA (Nene el ril<br />

1971) After the<br />

~~c~ilizat~o~i of pct~i<strong>plate</strong>s (9 cm), PDA niedlum. cork bore~s and othci glas wales In an<br />

autocla\e at 121 j°C fo~ 15 mln wlth 15 Ib I sq ~nch pressure tlic plant extlacts were<br />

ddilcd to thc \\alni PDA to obtain 10% concentration F~nally tlic pldtei \rcii ~no~uldted<br />

b\ placing 9 ruin d~scut from the growing tlp of 7 day5 old cultule ol C cuptro All<br />

theye \\ele done undei tlie larnlnar flow cliamber PDA <strong>plate</strong>s \\~lhouthe pldnt extlact<br />

sci\cd ns ~ontiol 'I he contlol and treated pldtes were niain~~iilied In illpli~dte lhc<br />

iiio~l~ldted <strong>plate</strong>s Mete sealed w~th palalilm dnd ~n~ubated 111 1301) iii~~lb~~ro~ rl~ 78 i<br />

2°C 011 thc 8 "'dd\ ot ~n~ubdtlon. the mi.dsu~cmelits ln ill1 NLIL Idh~11 dlolig llic iddid1<br />

liiii. ot the ~liy~eliai giowtli In the pcti~pldtes l'hc pcrccnt+i<br />

111liih111on \&ds cdl~~lldled by ~lbiiig tlic li~liiiuld ~i'Vlil~ellt (19371<br />

(11 1iij~~l1'11 g1ov.111<br />

v.heie I = Inhtb~tton ol mycel~al g~owh<br />

C = d~ameter gro\\tli In control<br />

'I = d~alneter gro\\th In treattilent<br />

Thc plant extract (Allrum satlvurr~ dqueous bulb extra~t) \sh~ih sho~vcd the bcst<br />

ie.ultb both on the lnhlblt~an of conldial gernilnatlon and rdulnl mycel~al giowth was<br />

selected for tirrther In xtro and In vrvo studies to confirm its an~lCurrgal effect5<br />

13


2.3. I)etcrminstion of minimum inhibitory conccntrstiun (MIC)<br />

To find'out MIC. required for the inhibition ol'the pathogcn both on ihc conidial<br />

gcrmi~lation and rad~al tiiycelial growth, the test plant extract was tcstcd at 10. 5. 2.5. 1.<br />

0.5.0. I. 0.05 and 0.02% concentrations.<br />

2.4. I)ctcrmination of LI) 5,)<br />

l,I)c,l value (lethal dose at which 50%) reduction 111 gl.owtli occurs) was<br />

deteriilined on dry weight basis. Graded series ol'the test plant extract at tlie rate 01' 100.<br />

;00. 500. 700 and 900 pl were added to 250 mi Erlenmeyer conical flasks conpaining<br />

('/,apch's-Dos broth to get 0.1. 0.3. 0.5. 0.7 and 0.9% concentrations respcctivcly.<br />

Med~uni u~tliout extract served as control. Eacli llask was inoculated with two 0 mm<br />

diamctcr niycelial discs cut from the growing tip of the scvcn days old culture (I!'<br />

('coj~~ic,i Triplicates were maintained lor control and treatment<br />

I'hc llasks wcre<br />

tnci~bated at static condition for seven days at 28 k 2°C under laboratory condition.<br />

Ilo\$c\r'i. the flasks \\ere agitated at 24 I1 interlais. On the 8 'I' &a),<br />

each llnsh was filtered separately through a pic-\rciglied Whatman KO. l<br />

dfx dnii dr~ed in a hot air oicn at 60°C for 24 li<br />

mycelial mat in<br />

lilter paper<br />

The drj weight ol'tlle nijccl~unl 1Y<br />

;axis) \\CIS plotted agaltist concentration ofthe aqilcolis plant extract (X - as~s) l,ro~ii tllc<br />

rrsulti~lg growth curve. I.Dla value (0.7%) was determined.<br />

2.5. 1lc;it tolerance ot'the pant extract<br />

I lie rest plant


mantile Culttvdt~on practices dnd application of fc~Ltl~/e~$ wcle donc dj I L L ~ I I ~ I I ~ I L I ~ ~ L ~<br />

by I'dlu~ Vegetable Resear~h Statlon Conhol pld111\ wcle 5pld!~d ~1111 L I ~ L \dine<br />

volu~nc oC stcr~le d~st~lled water On the 8 'I' d+ of thc \ ~ I G I \ L ~ L ~ L L ~ ~ I IWCIC<br />

I ~ L ,<br />

5clc~tcd lot pllytotox~ctty stud~es<br />

2.7.1. Morpholog~cal parameters<br />

2.7.1 1 Length nt the rhoot and root<br />

I he length of the root and shoot were nlcdcu~ed w~th d Ihill~ ol '1 \L~IIL<br />

2.7.1.2 Fresh and Dry we~ght of the +hoot and root<br />

l lle pidnls wele sepaidted tluo shoot dnd loot 101 dl). \\'etglil L ~ pld11l L 1)dtls<br />

\WIL L L ~ 111 I the electr~ oven at 80°C for 24 h file lleah dtld dl! we~glil of thi: plant<br />

\\'I, found oul by usrng electrl~ slngle pan halan~c<br />

2.7.2. Blochernlcal parameters<br />

2 7 2 1 Photosynthet~c p~gments (H~scox and Isrdelstam. 1979)<br />

4n amount of 100 mg leaf tlssue was kept In a tcst t~~be Lontdlnlng 7 mi of<br />

dl~nctll\ I wlphoxtde (DMSO) and kept In an ~ncubator 111 tile dat h dt 65°C until the leaf<br />

rnate~~,ll\ became colorless The extract i~qutd was transferred to d ;!ddu'it~d l~ihc and<br />

[IIL<br />

\(llk111ie\\as made up to 10 ml wtth DMSO and qto~ed ai 4°C uni~l ILL~LIIIL~ fb~<br />

~ L I I ~ I ~ L ';I~~~\SIF<br />

I lhe absorbance wd\ medsuted at 480 04~ dr~d 00; 11111<br />

111 a<br />

~p~~t~~pl~otonieter dgatllst d i(dgent blanh 1 he IIISIIILIII cot~ttn~\ UCIL L \ ~ I I ~ I ~ I L L'15 I PCI<br />

,llc tiu~~lul,~ StLen by Harborne (1984)<br />

I he plgnient content5 were expressed as 11i:'g itch \~rtplil 01 IIIL l~dl<br />

2 7 2 2 C~rhohydrnte\<br />

I hc ~drbohyd~ate frd~t~ons vt/ totdl \ L I ~ ~ I r~duc~nf<br />

\<br />

\LI~JI\ '111d ion-~cducing<br />

\up,i~*,ind \td~~h hele cxtld~ted 1ro111 o~en - d~~ed powdctcd nldtclrdl+ (11 llic iont~ol<br />

dnd t1c.11ed ieedltngs, followrng the stditdard methods


Alcoholic extraction<br />

350 11ig of po\vdered \dnlple uJr ~xll'lited in I0 ~nl ol XO'% ctll,~nol dnd ho~lcd<br />

I hc honiogenate wds centriruged at 6000 1p11l 101 15 111111 l llc \ L I ~ L I I ~ L I wa5 ~ ~ I ~ rdvcd I<br />

dnd made up to 20 ml wlth XOK ethyl dlcohol 1 hls ~ ~ L O ~ O ~\lld~t<br />

~ I C wd\ LIU~ 101 tllc<br />

qudntltattve esl~mdl~on of reducing sugd~\, told1 su&rls, non-~educlng augdls, phenol\<br />

dnd total free anilno ac~ds The res~due i\da sd\ed for \lnrch estlmatlon<br />

2.7.2.2.1. lotal sugars (Dublo\ el ui lc)51<br />

Reagent<br />

Method<br />

I. Anthrone reagent: 2 y of cinthlone wds dl\\oI\cd 111 1 I 01 ~i)ncellttatcd<br />

sulphuric ac~d (cone H~SCIII lhl\ reage111 wdj plcp'tred (~csli lust hclo~c<br />

use<br />

'lo 0 5 in1 of dlcohol~~ ~\tlait 0 5 1111 01 d~rl~llid wdlcr way added I o<br />

the dbove solut~on, 4 ml of old dntluoile lcdgent wnc ddded Ihls has hedted fo~ 10<br />

111111 111 a bolllng water bath To preirlif loss due to evapolatlon, the te\t tubes weic<br />

cloqed with glass marbles The test tuhcs wels cooled and the abso~hance was ~e.~d at<br />

620 nni In a spectrophotometer agdlnsr a ledgcnt blank The standard graph wds d~d\rn<br />

v, ltli Lnown Loncentratlons of glucose<br />

2.7.2.2.2. Reduclng Sugars (Wang i.1 iii 1997)<br />

lleagcn t<br />

Mctliotl<br />

I. l)~n~trosallcylate reagent I g of i 5 d~~utro\nl~i\ldlr (DN\) 30:<br />

sod~um potasslum tallaldte 111d 1 6 g of sod~um h\dio\ldc ncle rll\.;oI\~d In<br />

80 ml of dlst~lled wdter and \nude up to 100 1111<br />

10 ml of alcohol~c extract was ~ddcd lo 2 0 nil 01 DNS liagellt 1 IIC tube\ \\clv<br />

~ove1L.d wlth glass marbles and kept In .i boiling watel bath fo~ 10 lnln Then the) nelc<br />

coolcil and d~luted \\lth 10 rnl ol walela I hc olange led ~ olo~ lormed was lueds~llcd a(<br />

575 Illn in n spectrophotometcr dgalnbl GI redgent blank I he sldiiddrd gldph was d~d\\ll<br />

1t11 Luown concentrations of glu~ose<br />

2.7.2.2.3. Non-reduc~ng Sugars (Looiii~s and Sliull, 19i7)<br />

The amount of non-reduc~ng sugars was deterouneQ.'h! the tollowuig lormuln<br />

ol<br />

Non-reduc~ng sugar = TomI sdgnn - Free rtducrng sugars o 95<br />

16


2.7.2.2.4. Estimation of Stnrch (ML Creddy el (11 1950)<br />

flie rcs~duc left hehrnd afier alcoholrc extractloll w,t\ u\cd lor the c\t~~ndt~on<br />

~td~cli<br />

Reagent%<br />

I. Anthronc Itengent: ./\nthrone 20 mg was dts\ol\cti 111 100 1111 01 old 05%<br />

Mctllod<br />

H2S04<br />

11. I'erchloric acid (PCA). I8 nil of d~itrlled water 52 1111 ol LOIIIIIILILI~~ I'CA<br />

(70%)) wele nilxed io gct 52?4 PCA<br />

Distilled wdtei and PCA (52%) 5 nil of each wcrc added io thc ~c~duc lelt dltc~<br />

dlcoholii extlactlon Ihe mlxture wds incubated for 30 mln 'ind liltered I lie lilt~atc was<br />

ii?ade up to 300 nil with d~strlled water in a volulnelrlc fla\k<br />

lo 0 5 1111 01 the above extract 2 5 nil of d~st~lled \\CILCI<br />

'lnd 5 1111 of cold<br />

dnth~one iedgent were added dnd heated loi 7 5 mln In '4 boil~iig \\~[LI hdili I Iic lube5<br />

ucle ~nimedra~el) cooled lo rooni ternps~dtt~~c and nilxcd ~Iioicruglil) 111 ,I c\clom~\iurc<br />

Ihe bluish yeen colnr was read at 630 nnl dgrlili\t<br />

'I IL~I~LI~~ hldnk 111<br />

ipcci~oplioto~iiete~ A stdndard culve uac d1,1u11 w~th ILno\l~i L~LI (11 91dlill WdS cdlculated b\ lll~lIl}l~)'lll~ t h flll~iir~ ~ ~ijill\~llclll ~lli\illt 111<br />

tlli ~,~inpli h) 0 U<br />

2.7.1.3. Arn~no ac~d, (Moore and Stem 1948)<br />

Ite,~gents<br />

rlic nlnhydrln reagent was p~epa~ed b!. lresh ml\iti; ol L~IU.II il~~rl~il~trc\ 01<br />

~oi~~ltoil A dnd iolullon B<br />

Rlerliod<br />

Strlutlon A: 800 mg of stannous chlot~de wdi d~s\ol\id 111 500 rlil ol 0 2 M<br />

cltlalc buffci (pH 5)<br />

Solutron U: 20 gof nlnhydrin \43\ dlscolved In 500 1n1 01<br />

~lli'tli\ I CCII(I\OIVL<br />

1)tlut;lnt solution: I'h~s was piepnred h) lnlxlng equ.11 L~LI~III~I~IC~ 01 \\iltcr ,111d 11<br />

}"op"lol (\!v)<br />

I o I ml of the dl~oholic extract 1 ml of freshly pieprl~cd ~unllydr 111 redgent via\<br />

ddded It was healed in a water bath at 60°C tor 20 mln 5 mi 01 d~lutant solut~on was<br />

ddded to il wlien 11 was st111 In the waier bath It was coo~cu'dnd the color developed<br />

\\a> lead at 570 nm in a spectrophotometer agalnst a reagent hlaiih The amount of total


lrec amino aclds prcsenl 111 Ihe sa~nple was calculated by u\ing tllc s~andard grdph<br />

prepared by usi~ig !lie amlno acld, leuc~ne<br />

2.7.2.4. I'henols<br />

2.7.2.4.1. Est~mation of topal phenol (Bray and I'horp. 1954)<br />

Itengents<br />

Mcthod<br />

ii.<br />

I. Sodium carbonate 20%: 20 g of sod~um carbo~i~itc was dlssol\cd rn 100<br />

ml of dist~lled water<br />

Folin-ciocnlteu reagent: Fohn-c~ocalteu wd\ d~lutcd i411Ii d~\t~lled wa\cl<br />

at l<br />

I ~allcl (viv)<br />

1 o I 1111 01 alcoliol~~ extract I 1111 of fohn-c~oialteu Ic,ipcnt dnd ?. 1111 of 70%<br />

iod~~~iii carbonale were ddded and m~xed well In a cycloni~\ti~rc I lic nil\ture was<br />

hedted In d hoillng water bath for I niln and cooled Ilic sol~~t~o~i ud\ d~lutcd to 2.5 mi<br />

uith d~~t~lied ikaier The Inlenslty oi'result~iig blulsh wlicle colot i\d\ lead dl 650 nm 111<br />

,I \pi'c~~opliotoniete~ agalnst a reagent blank. A standard LLIIIL iini p~c.lu~ed u~tl~<br />

Ikno~~i qudntlties of catechol as phenol equi;alent<br />

2.7.2.4.2. Estimation ol ortho-dihydror! phenol (Mdliade\,il? i ~ 511dlid1 ~ ~ 1006) ~ i<br />

Reagent+<br />

Metliod<br />

I. Arnow's reagent I0 g ol rod~u~n llltrltc d~id l0; 111 \O~ILIIII ~~lr~ljhildl~<br />

\\el? d~qsolved 111 100 ml of distilled watcl<br />

b~oi\ 11 hottlc It I\ \table IOI oil? yea1<br />

11. i ICI. O 5 N<br />

111. %OH, 1 h<br />

I<br />

Ihc t~,l~pit wd\ \~oltd 111 ,I<br />

1111 of thc alcohol extlact was p~pstted Into a tcst tube r ~~i~i i 1111 01<br />

0 5 3 1 l('1. I<br />

1111 01 311io\\'\ leagelit 10 ml of d~st~lled ivater and 2 till 01 I \ \ctO1l \\cii. 'idded<br />

Soon atte~ tlic add~t~on of thc alkal~, the p~nh color developed :\ 1c.dyc111 hlCilih w~thout<br />

tlic ~ \ I I ~ Iisas L ~ ~nauitalncd I lien, 11 wds illluted to 25 ml dnil ilic r~b\~irhr~~i~~ or \lit<br />

solution \ids lead at 515 nni In a spectrophotonieter 0 I)<br />

sdlnp1r.r \\ere calculdted from the standa~d curve p~epared \c.~tIi c,~ttcIic~l<br />

plicnols prcjclit In tlic


2.7.2.5. Nucleic acids and proteins (Schneider, 1945)<br />

Extraction of nucleic acids and protein<br />

Nucleic acids and protein were extracted from the frcsh leaf tissucs of control<br />

and treated seedlings. 500 mg of fresh leaf tissue was weighed; to this 5 ml of IO'% cold<br />

trichloro acetic acid (TCA) was added in ice. This was homogcnizcd with a<br />

homogenizer and then allowed to stand for 30 min. The supernatant was discarded. To<br />

the pellet, 3 ml of 10% cold TCA was added and mixed thoroughly in a cyclomixer. It<br />

\vas centrifuged at 2500 rpm for 10 min. The supernatant was discarded. 1'0 the pellet 3<br />

1111 of iso-propanol was added and mlxed tl~oroughly in a cyclonlixcr. 'l'his was<br />

centr~fuged at 2500 rpm fbr 10 olin. 'The supernatant was discarded. Iso-propanol<br />

washing was repeated thrice. To the precipitate, 5 1111 of 5% PCA was added. mixed and<br />

licatcd in a boiling water bath for 1.5 niin. The tubes were centrifuged at 3000 rpm for<br />

15 1i11n. The supei.,iitanl was saved and used for the estiluatioli of DNA and RNA.<br />

The residual pellet was d~ssol\,c.d in 5 ml of 0.1 N NaOll and centrifuged at<br />

3000 rpln for 10 min. ?'he supernatant uaa used for protein csumatlon<br />

1.7.2.5.1. DNA (Bul-ton. 1956)<br />

Rcagents<br />

Mctliod<br />

i. I)iphen!.lamine Reagent: l .j g diplienylaminc \\its dissolved in 100 1111 of<br />

redlstillrd acetic acid. To 1111s. I .5 1111 of COIIC. I12SOi \\ah addcd and stored<br />

at 4'C or ill dark colo~.ed hottlc l'o every 20 ml of thc reagent. 0.1 ml of' 1.6<br />

D/o aqueous acetaldehyde \\as added just before 115c to potentiate the color<br />

de\,elopnient.<br />

ii. Acetaldehyde solution: Itcd~stilled acetaldeli!dc nt a conccntratioli of 1 .O<br />

'Yo was prepared as an aqucous solution and stored at 4°C'<br />

iii. I'crchloric acid (PCA): 3% PCA was prcparcd b! dissolving 5 ml of 73 %I<br />

'1'0<br />

l'C.4 11168 n1l ofd~stillcd \\atcr.<br />

1 5 ml of nucleic acids extract, 3 ml of diphen! lamine reagent was added.<br />

I he ~bcs bere Lrpt in a water bath maintained at 70°C for 10 mln and then cooled. 'Thc<br />

color development was read at 640 nni in a spectrophoton~etcr against a reagent blank.<br />

.4 standard curve was prepared b! ust~ig knoyi conc;cnirwons of calf thymus DNA.<br />

The DNA content was expressed in III~ of DNAIg fresh WI.<br />

of~he leaf tissue.


Ilcngcnt*<br />

Uetliod<br />

In<br />

I. Reagent A: I g of orclnol wd5 d~ssolved in 100 ml ol d~qt~lled wutc~ and<br />

staled In a refrlge~dto~<br />

11. Reagent U: Co~l~entrated hydrochlor~c JCI~ (ronc Ii< I )<br />

III<br />

Ileagent C: Terrl~ chlor~dc (I cC'I3 GH-0) 10% solution<br />

\I Orclnol Reagent lo 10 nil of' reagent A and 40 nil of ledgent 13. 1 1n1l (11<br />

leagent C %'a< ddded Orc~liol leafcnt %as frcshl) plcpd~cd dl th ~IIIIL 01'<br />

LISL<br />

I o 0 5 nil of nuclelc actds extract, 3 rnl of orcinol reagent wds added dnd liedted<br />

\+'itel bath I ~ 20 I lnln at 90°C and then cooled 1 he color development wds read al<br />

665 ~uii 111 GI spcct~ophotomete~ agalnst a reagent hlank A standdrd curve was prepa~cd<br />

b\ using Lnown concentrdtlonc ot purltied RK4 The RNA content N ~ expressed S In<br />

Ing of Ill\! 41g fiesh wt of the leaf ttsaue<br />

2 7 2 5.7 I'roteln ( Loury 195 1 )<br />

Ilc,~gcntq<br />

I<br />

II<br />

III<br />

Metl~od<br />

Ilc.lgent A 0 5 g ioppc~ slllphdte (CLI~OI 5H20) dnd 1 y ol scidl~lrn ilttclt~<br />

d~\$ol\cd tn 100 nil of d~~tillcd wdtei (I urlong el ul Ic)7;1<br />

Itcrgcnt B: 70 g ol sod~unl calhotiate (Na2C01) dnci 4 p \od~itlil li>d~o\~dc<br />

~cre dlssol~ed In I I of \later<br />

lledgent C: To 50 1111 of reagent B I nil of reagent A uas ddded<br />

I\ Keagent D: Folln-c~ocaltedu reagent \sds prepaled by add~ng equdl voiume<br />

of dtstllled \\ater to the conirnerc~al reagent<br />

Reagents C and L) werc prepdred fresh at the tlme ol use<br />

lii 0 5 ml of the protclli extrau 2 5 nil of lcayent C vd5 dddcci '111d th~ IIII\IUIC<br />

t~ic~lh:+ted lo1 5-10 nilti dliii tlicn 015 ti11 [it ledgelit I) wd\ r~dd~ii I l i ~ 1111\tu1c iws<br />

I I ~ L L I ~ ~ lor ~ I Ldnothcl L ~ 20-30 mlti 1 Iic ~olor deleloped way ledd dr .I \\~~\c.lingtli ol 660<br />

nm 111 n ~pectrophotonieler against a redgent blank Stdndard cclrte ol prolecn wds<br />

prepdred b\ usllig known concentrations ol bovlne seru~album~n (H{A) I'roteln<br />

content \\as expressed ln mg of proteinlg offrrsh wt of leaf tlssue


2.7.2.6. O\idativc en/! inch<br />

Prep~ration of the salnplc extract<br />

I<br />

g of fresh leaf sdniplc rids waslicd w~th lunillng tap \\alci and 1111scd wttll<br />

dislllled water 'Thc \\aslied t~csll leaves werc cut 111 to small p~cccs slid 5 nil ol<br />

phosphate buffer p1.i 7 was added and gronnd to a fine paste uslng a homogcnizel. I'he<br />

extract bas centrifuged a1 4000 ~pni tor 10 IIIIII dl 4'('<br />

and the cleai wpclnatanl was<br />

collected 'I'he collccted extrtct w,\r kepi under tol~iene at O°C lo1 one wceL<br />

2.7.2.6.4. Laccase (Mali'idevan and Sridha~. 1996)<br />

Itcagent<br />

Method<br />

i. Phosphbte hufii (0 I bl) p116 ~ontaln~ng I 0 11iM g~i~rl~ol.<br />

5 ml of sodu~m pl~ospli~ilc burfei conta~~ung guiacol \\.I\ p~lxttccl Into a (c'il<br />

tiihc 0 1 nil of thc enzynlr rource was added to it<br />

After 5 niin tlie ah5oihancc was<br />

dctcim~ncd at 470 n~n m a \pect~opliotomctci agdinst n leagciii hlaiih Suitrihlc con~~ol<br />

w~th bolled enzyme rids ~na~iitaiiied The enLylne actlvlty was e\pressed 111 un~ts One<br />

unlt = changes In the absorbance of the leacrion nnxtu~e ! mln<br />

2.7.2.6.2. Polyphenol oxidase (Mahade\an and S~idha~. 19961<br />

Itcagenth<br />

Rlctl~od<br />

i. Phosphate huffei (0 I M) pi-I 6<br />

ii. I. - Dopa (0 01 7 h4)<br />

3 5 in1 of phosphate hulfei was p~prtted inlo a tcsr tube .111d 0 5 1111 01 1.- 1)opa<br />

\\'I\ .iddcii ro 1t Tiit\ mixttilc war cal~hei,~tcd 111 'I \&dtcr hatii CII YO'( I (I tlli\ 0 5 111101<br />

tlie enc!lnr source was added and the Isactlor1 ciiixturc was I ~ L L I 111 ~ ,I ~ \\atel C ~ bath<br />

lo1 5 lnim at 30°C<br />

Absorbance of the solut~on was deternulitd at 175 nm in a<br />

~pectiopliotometer Su~rable control was mamta~ned w~tli boiled cnr! nic<br />

I lic enzyme<br />

dcti\it! \\as expresaed'in urits One unit = changes In the absoth~ilcr. ol rhc Icaciion<br />

ii11\1~1e Inin<br />

2.7.2.6.3. I'eroxidase (Hampton, 1962)<br />

Iteagen ts<br />

i. Bho&iite buffer (0.05 M) pH 6. j


Metllod<br />

ii. l'liyrogallol (0 00 1 M)<br />

iii. I-lydrogen pcroxidc (1120?)(0.588 M)<br />

-1.0 1 ml of0.001 M pyrogallol in 0.05 M phosl7liatc buil;.~ 01 pi l 0 5. 1 X till 01'<br />

distilled water was addcd In a cuvette and the ahsorb;illcc was idlitstcd to /cro at 470<br />

ntn tn a spectropliotoii~ctcr Inimcdiatelq 0 I ml 01' ?'I,;) (0.5KR \ I) tl.0. and O.inil o('<br />

enqme was added. 'flit. contents wcre mi\cd wcll anci placed ill ~ I I C spcctstijil1tito1liclcr<br />

'flic changes in the ahsorhance a1 e\:ery -30 second\ tntcrvals llri ; mlti \\,I\ mcasurcd<br />

Sultable control with boiled enzyme was maintained<br />

The ctllyrnc acttvlty was<br />

csp~csscd in units. Ons unit == changes in thc absorhancc of the ~c.lct~oti Iilluturc i min.<br />

2.7.2.6.4. Catalase (Chancc and Malchlq. 1955)<br />

Reapents<br />

Metl~od<br />

i. Phosphate huCli.r (0 1 M) 100 ml contaming 0 16 1111 01 li,O:<br />

? till of II20? - phiisphatc buffer (pH 7) was pipetted into a ri\t t~llic I (1 tli~s. 20 pI<br />

of cti/!nic source \ I ~ S addcd and thc breakdown ol'H!O- was ~ll;,~r~~rcd ;it 240 nil1 111 ii<br />

s ~ I ~ L I ~ ~ :III ~ eqi~ivalctit ~ ~ ~ o amount ~ o ~ or ~ buffet ~ c ~ cc)nt.l~niny c ~ 11.0, \\.I\ 11>cd as blank<br />

I'lit. c~i/!'tnc activit! \\as expressed in enzyme units i nig ot I~I(IICIII 011~ L I I I ~ ~<br />

c11'iti~i.s In the ahsorb~~ice of'the reaction mixture! nit11<br />

2.8. Sced gcrrnination studies<br />

\'lahle chilll weds of Palur variety I wcre surface - .tc~tli/c~i O 1%<br />

Inclclnlc chloride solut~on fbt one min and washed repeatedl!<br />

i\~tli \tcr~I~/cd dtsttlled<br />

\4a1c1 I he seeds. ar rile rate of 100 1 <strong>plate</strong>, were transl'crred IOLII I i el11 dtanietcr<br />

pct~~lll.ites lined with I\\O laqcrs of Whatman No I iil~c~ papcl LIIL~C\ I lie iiltc~ ~papcr\<br />

uc~c ~iio~slened \*,it11 15 ml ofA ,$utiijun~ aqueous bulh cxtracr ('I,IICI<br />

~CCCIVC~<br />

d~st~llcli watt1 I'he pldtes werc kept in dark at 78 F- 2 "(' Em~.~g;ticc 01 thc ~adicei wub<br />

tahi.11 .IS tllc criteria To1 gernilnation. Thc nu~:lbcl. of'gcrniinatcd \:LYIS \\as countcd aficr<br />

90 Ii .~tiii tlic per cci~t ol'gcrln~nation was calc~tlatrd hy us~ng the lk>~~ii~~lrl<br />

(IS 1 A. 1070).<br />

(i~.rnmtnation percentage =<br />

Nuniber of seeds gsrmina~tii<br />

f<br />

,!- * 100<br />

Total number of seeds so\\ n


3. IN VITRO STUDlES<br />

The Czapek's liquid media (broth) was used for in virro studres. '1.0 50 ml of<br />

sterilized media in a 250 ml Erlenmeyer conical flask the test plant ex(ract was added at<br />

LD 50 concentration (treatment). Medium devoid of plant extract served as control. Two<br />

discs of 9 mm each in size were cut with the help of a cork borer froill the growing tip<br />

of the 7 days old culture of c'caps~ci. They were inoculated in the flask and incubated<br />

in a BOD incubator at 28 t 2°C. The flasks were incubated Tor 8 days. The ct~trol and<br />

trcated flasks were all maintamed in triplicate. After incubation. on 4 'I' and X 'I' day the<br />

fungal mycelial mat and the liquid media were separated by double layered Whatman<br />

No 1 filter paper placed in Buckner funnel under suction by vacuum pump. On 8 "day<br />

of liltration, the filtrates were further used for the analysis of ex~racellular protein<br />

profiles of the pathogen and also as enzyme source after centrifugation at 5000 rpm for<br />

T!ic mycelial mat of the pathogen grown in Czapek's broth with sucrose as<br />

carbon sdul.ce was separated and utilized for the estimation of nucleic acids, protein and<br />

total lipid contents. Cell permeability and analysis of genomic DNA profiles based on<br />

ditt'eient ~.estrlction enzymes were carr~ed out only on mycel~al mat 01' [he pathogen<br />

collected on 8 'I' da!,.<br />

For pectinolytic en/!,mes production the pathogen \\as grown in Czapck's<br />

~lii'diii~ii supplemented with pectin as carbon source replacing sucrosc I:ol oxidative<br />

civ! tnes. amylase and invertase sucrose was used. Sinillarl! for celluloytrc enzymes<br />

c21 ho\!ruethyl cellulose (CMC) was used<br />

3.1. Cell permeability<br />

I<br />

g of fresh mycelial mat was d~pped in 25 ml or distilled water Alicr 24 h and<br />

-18 11. the conductivity of the bathing solution was recorded on Control Dynamics<br />

conductivity Bridge. Results are expressed in milli Seimcni (mS) 1 cm2 of bathing<br />

s011111o11<br />

3.1. Estractiun of nucleic acids and protein (Schneider. 1945)<br />

Nucleic acids and protein were estracted from the fresh m!.celial mat. 1:xtraction<br />

\\as carried out with similar procedure as mentioned in *tion 2.7.2.5.<br />

3.2.1. DNA<br />

Estiiiiated with sirniiar &ure as mntioned in section 2.7.2.5<br />

23


3.2.2. RNA<br />

Estimated w~th s~mllar procedure as ment~oned In sectlon 2 7 2 5<br />

3.2.3. Proteln<br />

Est~iiiated w~th si~li~ldr procedure as meiit~oned 111 sectlon 2 7 2 5<br />

3.3. I'otal l~prds (Tsuda er a1 , 1972)<br />

I<br />

g of fresh mycelium was extracted after suspending overn~ght In 10 1111 of<br />

chlo~oform methanol (2 1 viv) at room teniperature<br />

Then the myceltum was<br />

hoillogenized in a morter with pestle 111 5 ml of cllloroforn~ methanol (2 1 vlv) Aftei<br />

filt~at~on the ~esidue was resuspended overn~glit 111 10 ml ~hlorotorm methaiiol (2 1<br />

vlv) and then extracted<br />

The chloroform<br />

methanol extracts were pooled and the crude lip~d thus<br />

obta~iied was pur~fied by the method of Bllgh and Dyer (1959) To tli~s crude lip~d<br />

soli~t~on, 15 ml of chloroform water (1 1 vI\) wa, added in a separallng lunnel After<br />

thoroiigh mlxlng, the lower chloroform phase wa\ withdrdwn dlluted w~th ben7ene lo<br />

ienlovc traLes of water and brought to near dnness Thc ~esidue was immedi,ttely<br />

diiscilved 111 ~hloroform methanol (I 1 vlv) solut~on and made to a known volume with<br />

chloiofoim I lie total l~pid content wds obtained by determin~ng the d~y weight in<br />

al~quots of this solut~on The total l~pid content uas exprefsed 111 nig I g fiesh wt of<br />

ni\cc11~1111<br />

3 1 En~y me Assaj s<br />

3.4 1 Est~matron of Pectrnolytrc enzymes<br />

1. Pol\ nlethyl esterase (PMt)<br />

r Elid product esllriiatioll<br />

2 I1oI\ ~iietliyl galacturonase (PMG)<br />

d VISLOSI~~ dssay<br />

b. 1 11d pioduct estlmdtion<br />

3.1\55d\ of Pectin tiails el~minase (I' 1 i-.)<br />

a.Viscosity assay<br />

b.End product estlrndlioil<br />

3.4.1.1. I'oly methyl esterase<br />

methanol<br />

Poly methyl esterase (PME) cleaves pectin result~nq in pep ti^ dud and<br />

lnclease in free carboxyl groups was n~od~tored In a Control - Dynamu pH<br />

meter (Mahadevan and Sndhar, 1996)<br />

24


Reagents<br />

Method<br />

I. 1 5 g of pectin In 100 ml of 0 2 M NaCl<br />

ii. 0 02 N NaoH<br />

20 ml of pectin solut~on was p~petted out In a 50 ml beahc~ I01111 of (he cnlynie<br />

sourLe was added to th~s pectln solution and the ptl was ~m~ned~dtely adltc~tcd lo 7 by<br />

ddding 1 N NaOH Thls IS the zero tlnie Contro! was malntauned with h11i.d en~yiiie<br />

The cnzyme substrate 1nlxtu.e was Incubated for 24 I1 and the pl-l was readlusted nlth<br />

O 02 N NdOH to pH 7 The enzyme aLtivlty was exp~esscd as jpcc~fic dir~~~ty<br />

LIIII~F<br />

(SAIJ) One unlt = ml of 0 02 N NaOH requlred to malntaln pl l 7 111<br />

3.4.1.2. Polymethyl galacturonase (Mahadevan and Sr~dhdr 1096)<br />

Endo PMG actlvlty was determ~ned by measurlng the loss 111 vlscoslty and exo<br />

PML actlvlty was determ~ned by measurlng the reduc~ng wgars p~oduced dr the end ol<br />

leactlon (Wang el a/, 1997)<br />

3.4.1.2.a. Viscosity assay<br />

V~scos~ty loss was determ~ned w~th the Ostwald vlscometrl 150 at intervals ol<br />

30 111111 staltlng fiom 0 to I80 mln after preparing the reactloll mi\rurc<br />

Reagents<br />

I<br />

Method<br />

pipet1:d<br />

II<br />

Sodlum acetate - acetlc ac~d buffer, pH 5 2<br />

Substrate preparation: 1 g of pectln wa5 dissolved In 100 mi ol acctale<br />

buffer, pH 5 2, heated to 50-60°C In a wdtci bath d~id 11il\ed w~rll rlic hclp of<br />

a homogenizer and then passed through two layered cheese cloth The pll<br />

wds adjusted by using 1 N HCI or I<br />

toluene was added to the substrate and stored at 4°C<br />

h' NaOH to pH 5 2 l i\\ d~op? ol<br />

4 nil of the substrate, I ml of the buffer and 2 1111 of tlic c'lizynic SOLIIC~ *ere<br />

into the Ostwald vlscometer 150 The eftlux tame oS th? ied~tlon ml\ture was<br />

mea\u~ed at every 30 mln interval for 3 h and the loss In v~scosrt \\A\ ~dlc~ldled by Ilie<br />

torinul~


Wl1cl.i.. .<br />

V - percent loss in viscosity<br />

Ti, = flow time of reaction mixture at 0 min<br />

1'1 - flow time ofreaction misturc at a particular time interval<br />

T,,= flow time of distilled water<br />

3.4.1.2.b. Assay of exo I'M(;<br />

Ileagents<br />

Method<br />

i. Dinitrosalicylatc Reagent: I g of 1.5 DNS, 30g of sodium potassium<br />

tartarale and I .6 g of sodium hydroxide were dissolied in 80 nil of distilled<br />

water and made up to I00 1111<br />

ii. Sodium acetalc acetic acid buffer, pH 5.2<br />

iii. Standard glucose. Img 1 ml solution<br />

From the 3 h incubated reaction mixture of the previous reaclion 2 ml oi'aliquot<br />

was pipetted in to a test tube. To this 2 mi of DNS reagent was added and heated in a<br />

boil~ng water bath for 10 min, then cooled and then diluted with 10 ml of distilled<br />

&atrl<br />

I'hc orange red color was read at 575 nm in a spectrophotometer, with<br />

appropriate blank Control was maintained with boiled enzyme reactlon mixlure. The<br />

cnr!mi. activity was expressed as spec~fic activity units. Onc ulnl .- mg of glucose<br />

reIt;~\ed i hr,<br />

3.4.1.2. Pectin trans eliminnse<br />

1;iido Pl't activity was determined by measuring the loss in \.iscosll> of rcaction<br />

I~~I\~LIIS and eso PTE activ~ty by determining the production of tliiobarhituric acid<br />

( I U \ i ~ractiiig substances (Mahadevan and Sridhar, 1996).<br />

3.1.1.3.a. Viscosity assay<br />

\!iscosity loss was determined with the Ostwald viscometrr 150 at intervals of30<br />

inin s~nrting from 0 to 180 min after preparing tlie reaction niiilurc<br />

Ileagents<br />

i. Boric acid - borax buffer, pH 8.7<br />

ii. Substrate preparation: I<br />

g of pectin was Aissol\ed in 100 1111 of borax<br />

buffcr pH 8.7, heated to 50-60°C in a watcr bath and mifed with the help of a


homclgenii.cr atid then passed through two lahcred chccsc clot11 and t!ic 1111 was adius~cd<br />

to 8.7. Few drops of toluene was added to thc \ilhs~ratc and SILII.CL~ ;it J"('<br />

Mcthod<br />

4 ml of the substrate. I 1111 of the hull'er and 1 1111 ol' tlic CIII~IIIC source \vcrc<br />

prpctted in to thc Ostwald viscoliieter IS0 '1 Iic eflu\ 111i1c trl'tlic rcacuoll mixturc was<br />

mei~sured at every 30 min interval tijr i Ii and llic rcducuoll 111 tl~c \~';cosit! \+:is<br />

calculated by the for~iiula of thc \.iscosity as\q ol'clido I'M(;<br />

3.1.1.3.h. Assay of eso PTE<br />

Itcagents<br />

Mctl~od<br />

i. 0.01 M TBA<br />

ii. 0,j N I-ICI<br />

3 rnl of the reaction mixture incubated for 3 h. was plpctted into a 25 nil tesl<br />

tuhC lo this. I0 ml of 0.01 M TBA and 5 nil oi'O.5 Ti tICI \rclc ~iddcd and placed In a<br />

ho~lilig water bath for 60 min. This was coolrd uilder tunning tnjl \\atel and thc voiunic<br />

(:!' rlic solution was adjusted to 18 ml w~tll distilled water llis nhsorhance ol the<br />

>upclllatant was measured between 480 to 580 nm in a ~~~~.~tr~:~>Iiu~o~iicter.<br />

I'lic<br />

11121\111111111 abs~rbancc of the solutioti was obscl.vcd at 547 11111 I 11/!1iic substrate<br />

~ilr\t~~rc' drawn at Lelo ti~iie incubation and ho~lcd en/ymc \\.it<br />

u\cd as blank. I'lic<br />

ell/>llir activlty was expressed as spccitic acti\.ity units. 0111. ittilt - changes ill thc<br />

ahcotharice of0 001 hr.<br />

3.4.2. Estimation of cellulolytic enzymes<br />

1. I .4 H-Exo-giilcanase (cl)<br />

a. End product estimation.<br />

2. I .J [i-Fndo-glucanase (cx)<br />

a. viscosity assay<br />

2.1. I-'so f:ndo P 1.4 - gulcai-,case (y)<br />

3. Cellobiasc<br />

a. End product esttmatioii<br />

a. End product estimation


Z 4 2 1 Measuretncnt of 1,4 11- Exo-gluernn\c (CI) (Mrl~~dcva~l and Sndhrr,<br />

I W6)<br />

TIIL ~LIIVI~Y 01 C<br />

produced h\ CLLI~\ILI wds d\\d\ed by nica\urlng the<br />

l~duclllg \LlgdlS rclcdbed by the blcdi\do\~~~ of d\ Ice1 with dllllllOl1~ lCdgelll<br />

Itedgcnl\<br />

Mctliod<br />

I 5od1um acetate - dcetlc dctd hufter, pl l 5 0<br />

11 1% avlcel (M~c~ocryctall~~ie crllulose) \~~\pended 111 hulle~<br />

111 Orc~nol reagent. I g ol oli~nol wa\ d~b\olved 111 .O<br />

1111 01 d1\11IIcd WdlCl<br />

(~~ddually 20 ml ol 67%) H7{O, wds added w~tli cool~ng I lie volumc wa\<br />

~dlaed to 100 ml \\'1tI1 dlstlllid \\ater<br />

I\ Anthrone leaKent 200 tiif of anthronc wdi d15soI\~d In 100 ml 01<br />

ionc HlbO,<br />

1 1111 of encytlic coulce I ml of buffet and 0 5 mi 01 \ubstrale uele added rn d<br />

te\i tuht atid lnc~~bdted at room tempelarure fol 3 11 ]lie IC~LIIOII I~IIX~LIIC \vd? lulxed<br />

wcll \\lth iyclomixture dt ~.rgular ~nter\dly of 30 Inln<br />

At the end nl the tedilton the volume ol tht Icactlon nu\tule nil\ ddju5tcd lo 5<br />

lnl \\1tI1 dlitllled ~.dte~ I he tubes werc iintr~fi~pid 101 I5 nl,li ,it 2000 g to d~pos~l the<br />

IL\I~U~II II\ILLI CLIILII~\L


3.4.2.2.a. V~rco\ity Measurcrnent<br />

O\twdld vl\colneter 150 wds uscd to ~CILIIIIII~L I ~ L \ I\L~I\II! 01 LLIIUIO~L<br />

I


4. Cataldsc<br />

I strrllLited wrth srriiridr pro~edurc\ mentroned In wctron 2 7 ? 0<br />

3.4. Amylase (Mahadevan and Srrdliar. 1996)<br />

Reagcnts<br />

I. Sodlunl dcetdte - dcetlL acrd buffer ( I M) pl l 6<br />

Metl~od<br />

11. 1% soluble starch solution: I g of starch WAS d~ssol\ cd 111 100 1111 01<br />

d~jt~lled hatel<br />

III. Urn~trosal~cylatc reagent: I g of 3.5 1)NS. 3) g ol \oiI~tl~n ~01~1\\111111<br />

tarialdtc dlid I h g of s~druli~ hydroxide N8elc dr~sol\cii 11180 1111 01 d1\111lcd<br />

water and made up to 100 ml<br />

5 1111 01 the enzyme source was plpetted Into a 100 1111 flil\l\ I ( I [Ill\ I0 1111 ol I<br />

M dcclale butter pll 6 and 2 ml of 1 percent soluble stdr~li \~ILIIIOI~ \rcIL 'lddcd I lie<br />

redctlon riil\ture W ~ S Incubated at room temperature for 21 li lllc 1cdit1011 W ~ F<br />

term~nd~ed b! the add~tron ol 1 ml of DNS reagent to I nil of tli~ Isdctlon rnr\~u~c I hr<br />

dliiount ol reduclng sugars liberated was estlniated ds In the L~\L 01 ?\(I I'M(I 1 lie<br />

cn/\riic actnlt) was expreswd as specrfic actlvltg uli~t\ Oric LIIIII lily 0 1 ~c~l~~irrig<br />

5ug.11\ I~heidtcd I g 01 I~eili wt of the tissue<br />

3.1. In\ ertrsc (h'tahddcvdn dnd Srldhdr, 1996)<br />

Ilcdgent6<br />

Mctliod<br />

1. Aqueous sucrose solut~on 2.5%: 2 5 g of suLrose \ha, d~\\olvcd 111 100 nil<br />

ol dlst~lled uater<br />

11. Sodturn dcrtate - dcetlc acrd buffer (I M) pH 5<br />

111. Urnitrosalrcylaie reagent: 1 g of ?,5 DNS 30 g ot ~odii~rii potd$\~u~ii<br />

tdrtdldte and 1 6 g of sodrum h!drox~de Rere dissoccd 111 110 rnl ol d~\tllled<br />

bdter arid made up to 100 nil<br />

i 1111 01 thc enzyme extract was pipctted Into a 100 n11 t1d4 10 1841 ol dLetatc<br />

bull~i ( I \I) pli 5 and 5 ml of 2 5% sucrose solution were addcd I lic IC~L~IOI~<br />

1111\llrre<br />

wd\ u~ctlbated dl loom temperature tor 24 1 Thr rcdctroli \\&I\ Icrn~rririlcd h! the<br />

addruon ot I ml ol DNS reagent to lnll of the reactron mr\ture<br />

I hc mount of<br />

reducrng sugars Itberated was eshmated as In the eve of exo PMG The enzynle actlvlty


wa\ cxp~cssed as spcc~ii~ actrv~ty units One unrl = Ing ol'reduc~ny sitgals II~K.THIL~ / g<br />

of Iircsh'wt ol'thc tlssuc<br />

3.6. S1)S - I'A(;E nnrlysis of crtraecllulnr proteins (I..tcni~nl~. 1970. M;~lradcv;l~l and<br />

Sr~dhar. 1996)<br />

I'rupwntion of samplc<br />

C~~lture filtrates of cont~ol and treatment were liltcred tlirougli What~iiatn No. I<br />

liltc~ papel using Buchner funnel, w~th suctlon. Two volumes ol chilled acctonc was<br />

added to thc culture filtrate kept 111 a bcake~ placed on ~cc hatli Incuhalcd lor 1 11 and<br />

ccnt~~filgcdl 10.000 g fo~ 30 mln at 4°C The supernatalit Mas dlscaldcd and the<br />

Icllldlnlng dcctone was evaporated I he pellet was d~\solved 111 mlnlmunl qilantlty 01<br />

III\<br />

HC'I butte1 (pll 7) l'hc proteln content was estlnrated \\~th s~~ii~la~ p~occdurc<br />

nicnr~oncd 111 2 7 2 .i and adjusted ro around 180 pg In cach samplc<br />

Ilcrgcnts<br />

I. .4crylamidc stock solution (30%): 30 g 01 acrylam~de and 0 8 g ol' b ~r<br />

ac~ylam~de were dissolved 111 100 nil of d~srllled nater and filtered through<br />

V.'hatmati No I<br />

filter paper liir filtrate was \torcd 111 '3 h1ow11 hor{lc a1 4" ('<br />

2. Itcsolvin:: gel buffer: 18 17 f of Tr~s (1 5 M) was d~ssolied 111 100 nil of<br />

warel and the pH was adlusred to 8 8 w~th con^ llCl<br />

lilte~ed and stored at 4 ' ~<br />

I'hc soli~tlon \+as<br />

3. Stacking gel huffer: 12 11 g of I'rts (I Mi waq d~\\ol\cd 111 10(1 1111 ol'<br />

d~st~llsd \vatrr and tlic pll \\,I\ ddji~stcd to 0 X U I ~ I I L~~IIL 1 [('I I lic ~OIUIIOII<br />

\rdi liltcied and srolcd at 411(<br />

4. SI)S Solution (10'Y~): 10 g 01 SLIS \\as dr\\olvcd 111 100 ml ol d~s~~lltd<br />

\\ale! filtered and storcd at ~oolu temperatulc<br />

5. APS (10%) - Initiator: 10 f of al~imon~urn persulphate way d~ssolved 111 10<br />

1111 ofdlsulled water I he solut~on was p~epa~cd lic\li<br />

6. I


8. Coumassie staining solution: 0.25 g ofCH13 11-250 was Jissol\ed in 9Oml of<br />

methanol : water (1 : 1) and 10 ml of glacial acetic acid and then tiliered<br />

through Whatmanil No. l filter paper.<br />

9. 1)estaining solution: YO rnl of methanol : water ( I : I ) and 10 1111 of glncidl<br />

3.6.1. (icl casting<br />

acetic acid were mixed.<br />

'I'he electrophoresis glass <strong>plate</strong>s. spacers and comb were cleaned with acetone lo<br />

remove an) grease. The spacers werc placed between the two pla~es. 'l'he <strong>plate</strong>s wcrc<br />

fixed perfectly on to the gel casting apparatus. The resolving gel (running gel) was<br />

pourcd using a Pasteur pipette between the glass <strong>plate</strong>s ensuring no leakage<br />

acrylamidc solution \\.as overlaid with ethanol. This overlaying prevents oxygcn Crom<br />

difi'using into the gel and inhibits polymerization. After the polymerization was<br />

completed, tlic overla!, uas poured olT and tlie Lop was washed >cvcral times with<br />

deionized water to reniove acy unpolymerized acrylamide. Care was takcn to drain as<br />

niuch fluid as possible from the top of tlic gel and then. tlie remaining water was<br />

~relilo\ cd \\it11 the edge of paper towel. Over tlic polymerized resol! Ing gel. the slilcklng<br />

gcl \\CIS<br />

applied, lhc ell leniplatc (coluh) was imrnediatel! piaccd on tiir gel to form<br />

\\ells, (cure has ~aheli to avoid an! trapping of air bubbles). Alicr ~lic luil!~llcri;ljttion<br />

was complete. tlie Teflon Comb %as removed carefully and the wells were illllnediately<br />

\\ashcd \\ itli dcioiiired waler to relno\ c the unpolymerized acl.ylarnidi..<br />

'l'he<br />

I<br />

lie composit~oll ol'thc resol! in: gcI and tlie stacking gcl arc .I\ gi~c11 below:<br />

. ..~ -- --<br />

~ Solutions - 1 I


1.6.2. 'I he Electrophoretic Run<br />

I'he prolein sample wds [hen ddded on to [lie wells<br />

I lie resctvolt bullet wd\<br />

filled In both the electrode chambers and the electrodes were ~onnectcd to the powel<br />

pa~k Ihe condlttons were set lnttidlly dt 90 V and 25 mA unt~l the dye Iiont red~hed<br />

the resolving gel and later at 100 V tlll the dye front reached the end After runntng, the<br />

gel wa5 removed, waqhed In dtsttlled water and was stalned w~di thc Coomdssie blue<br />

iolution<br />

3.6.3. Stalnlng with coomastve blue<br />

fhe gel was tmtnersed In at least 100 nil of statnlng solutton dnd kept ovetn~ghl<br />

dt roo111 temperature The gel was then destained by soaklng ~t In the dc\tdinln$ rolu[ion<br />

3 4 tlmes<br />

3 7 DNA gel electrophores~s<br />

I'reparat~on of sample<br />

25 mg of lyophlltzed ~ iiy~~i~al po\~dcr of ( CCI~FICI<br />

\vd\ ~u~p~tidcd 111 500 pI of<br />

the extraction buffer, (I00 mM Trts - HCI pll 8 , I00 mM ED lA , 250 mM NaC12) In a<br />

I<br />

3 ml mtcrocentr~fuge tube To thts, 50 PI<br />

oi 105/0 SDS was added and the nilxture wds<br />

iniuhdted tot 30 niln at 65°C Then 100 111 of 10 % potasslum acetdte solutlon (3 M<br />

potdss~uni and 5 M acetate , pH 4 8) was added dtld the tube \vat kept on tct tor 15 tntn<br />

I lic ni!\lut~ nds ientrituged at 13 000 ~pni lot I? mtn and llie '~upi~ndlrl~~t ~otitdi~iiiig<br />

gillomlc DN.4 wds transferled In lo<br />

tilne w~th clilo~ofoini iso-dln!l<br />

fterll tube Th~supetndtant udb c\LtCtcted onc<br />

al~ohol (24 li mt\ture Alk~ ceiilttl~tgdltot~ 01 tlii<br />

~mul\toii to1 7 mtn the uppet aqueouv pli'i,~ ~ ~tli the DNA \\d\ t~dn\lotrncd lo dnothcr<br />

tuhc containlug 50 PI ot [so-propanol I hc iontcni\ &ere ~ I I \ L g~ntl) ~ dtld th~ lube Wdb<br />

plt~icd on ILL lo1 DNA plecipttdtton IINA \\.I\ p~ll~ied at 13 000 lpni lot 111111 dnd tlic<br />

pellet was alr dried and dissolved In 50 111 of TE (Irts - EDTA) buffet Purity and the<br />

concentlation ul DNA Mas estitnated by using llic ~pectrophotomc~ct<br />

37.1. Quantlficatlon of DNA and estlmatlon ot purity<br />

'5 111 of the Dh4 sdniple wds dllured to i ml and the oplical dcliiit! wd\<br />

llleds~lled ai 760 11111 and at 280 nni The residue ~ L I I I ~ of \ the sdmple nd5 cdli~i~ated by<br />

tllc for~nula


I he amount of DNA was measured by ustng a standard valuc<br />

I (4 D ?,,I, corresponds to 50 pg 1 ml of DNA<br />

3.7.2. Restriction digestion of geni~rnic DNA (Sambrc~)k ci trl . 19x0)<br />

1. rhe (ienoniic DNA ~solated con^ control dnd treated niyccl~al nisi wele<br />

digested us~iig EcoR1, Hlnd Ill. Sal 1. Pst I. and Not I 111 d~fTc~cnt comh~natlon<br />

1 lie rwcrlon mixture for the digestion ofgeno~n~c DNA I20 PI] contained<br />

2. Genorn~c DNA 5 pl<br />

3. I0 X l3uKer 2 111<br />

1. kcoR1 I<br />

5. Iilnd 111 1 PI<br />

6. D~st~lled water<br />

Il ul<br />

7. I he reactlon mlxture was gently nilxed and incubated at 37'C lor 90 mln<br />

I lien slniilar reactions were done w~th different comb~nat~on\ or iestrlcuon<br />

digcst~oii such as EcoRl and Not 1. Hind Ill and Not I Not 1 dnc! Sat 1. EcoIZl<br />

'tnd Sal 1 respect~vely w~th the concentrations as glven by the guppller Illen the<br />

d~gestcd DNA was run on 0 7% agalose gel to check the d~ge


15 mln I o th~tloltc~~<br />

'I~~IO\L SOX I Al W ~ d(1ilcd F IO dtt'l~li d lin,tl ~o~i~c~i~~dt~on<br />

of<br />

1X and nyxed well I he dgdrOSe solution was po~t~cd on to 4 t~dy li\cd wlth a colnb<br />

(clearance bet\+een ~onib and tcmplatc ud\ dboul 1 m~n) dnd \\,I\ dllo\rcd to \el lo1 30<br />

Inin I Iic comb WCI~<br />

then removed and the gel wa\ pl't~ed on ,I ho~i/onl,tl gcl tdiih lillcd<br />

wlth suflic~enl IX I Al- bufler to subme~gc the agaro\c gel DNA .;ample\ ronrdtnlng<br />

IX loading dye Mcre loaded Into the slot\ of the gel I-lectrophores~c \\d\ cdltled out at<br />

50V lo^ lcqu~ted tinlc<br />

LI~II~ILIII~<br />

IINA hmd\ ~esolbrd on the dgd~(~w gel\ Melt \,~\ualt/cd by ~lta1111tlg tllc ~ cI 111<br />

htonltde I he stdllllng solutton \\as ptepa~ed by addlnp d 10 n~yl~iil sto~h ol<br />

~~li~d~u~ri h1on11d~ to d~\l~llcd wale! to d l111al LonLcllltdtlon ol 0 7 ug ml IIlc gel uas<br />

\ubnielged In thc 5tdln lor 30 - 45 min and then dcsralned ~n d~sttlled ualer lor 15 Inln<br />

I hc sta~ncd gel ad\ observed under short \\dvelength (300 nni) LV t~d~l\tllun~tnato~<br />

4. IN VIVO STUDIES (POTTED EXPERIMENTS)<br />

I'ottcd cipcrllnents \rere conduct2d In the I'ond~cherr) I'mverstt~ c'inipuc I',llur<br />

I \d~let\(11 C~II[I seeds wrle obtalned ltotn Palul \'egetable lleaed~cli Stdtlon I',ilur<br />

\'ldble 'IL'C~S 01 uli~lorni uzc color and \\sight were ~electcd lo1 rn rrio studlc\ Sccds<br />

\\ctc rCll\ed In dpproplldte field cond~tlo~l 111 earthenuarc pots I Ilr pot5 \\)ere filled 141th<br />

7 1 1 t,itlo 01 cdnd led \otl and farni!arti manure On 4.5 "' da\ 2 to 4 \ecdl~ng\ of<br />

LIIIIIOII~I \i/c wet' ltdllrpldlllcd 111 ea~ll pc11 ol 30 c1i1 ' stzc ( LII~I\~I~IOII PIC+L~ILC\ rind<br />

,ippl~cn~~t~ll 111 Ictttll/e~s \\rlc done d\ ~~~on~n,ctldcd h! f',lltii \'cg~tahl~ II~C~I~~IJ~IOI~ 011011~<br />

\LI 01 1111ccled pldnt+ (IIC~II~~ pldnt\) OIC \ct<br />

of 1ntectc.d plants welt. left '1,<br />

\u~h I or ~ot~ttol, t~cdted and tntecrcd pldntc pot\ uele


4.2.4. Pknolr<br />

Eslimated with iimilar procedure iu: mentioned In sectlor1 2 7.2<br />

4.2.5. Amino acids<br />

lis~imaled with similar procedure as nie~~tioned 111 scctlon 2 7 ?<br />

6.4.2.6. Estimation of nucleic acids and protein<br />

listimated with similar procedure as niclitioned In xcllon 2 7 2 5<br />

4.2.7. Aminonitrogen (Moore and Stem. 1948)<br />

I\ .1~ld1112 0 1 2 1<br />

111 I I tr I 1111 tlic ahovc extract I ~ nl of nlnhydr~n rcdgeni \\.I\ aci(1c.d I 111'11. 11 \\,I\<br />

lic.r~~~I lo1 3 1 111111111 a bo~l~ng \\atel hath and coolcd 5 ~nl ol Ll~,:~llcd \\,i[cr \\A .~ddc~l<br />

and [lit abw~hdnce was measured at 475 nm In a spectropho1t111li.1t.1 .Igalnbt .i iii1s1'111<br />

blank St.iii~l.~~~I curve \\as prepared \\ II~<br />

I\no\rn quantltles (11 :I~I~.II~IIL.ILICI<br />

4.2.8. Ascorbic acid (Sadas~~ani and \lan~cla~n. 1091 )<br />

Itcagent$<br />

Mcfltod<br />

i. O\nlir arid -ioh: 4 g ol o\al~c ac~d wa.\ d~haol\cd 111 lot1 1111 01 dlsl~llcd<br />

\\ JlCl<br />

ii. l)!c solution: 42 1i1g ol'snd~u~i~ b~carho~ia[c \4,,\ ~I\~oI\L~LI<br />

111 \11iaIl\~I~IIIIL,<br />

ol d1stil1t.d \\ater lo th~s 52 mg of 2.0 ci~cllloro ~II~cI~oI ~~i~iophcnol<br />

~Jdcd and thc. volunlc ua\ ~nadc up to 200 1111 \\lth J~,i~llcii \\die1<br />

0 5 g ol' the wmple was extracted ~ lth 4% oxal~c ac~d .~nd 11li1d' upto IOU 1111 111<br />

a volunietr~c Ilash. From this. 5 ml of the solutiorl Has pipetted 1nO ;I 100 1111 COIIICJI<br />

3 7


flash TO this 10 ml 4% oxal~c dc~d wds ddded dnd (Itrated agalnc,t the dyc \c14(111cln I Ire<br />

end pornt 1s tht dppearance of blue color Amount of ascnrh~~ dcld plcwnc 111 llic g1tc.11<br />

xcm~ple traa ~dl~uldted by the lollow~ng formuld<br />

0 5 my v> I00 nil<br />

* - * * 100<br />

Vl ml 5 ml wt of (he sample<br />

VI nil = \,olu~iic of the dye consumed by standard ascorb~c ac~d ,elution<br />

V, 1111 Volunie of thc dle consumed hy the ascorb~c ac~d present In the sdnipl~<br />

1.2.9. Capsalc~n l?adasl\dm and Mdnlckdnr 1991 )<br />

1teu:cntr<br />

\ltthod<br />

\\,I\<br />

I 0.4% rodlum hbdroxlde: 0 4 g of sodium hydroxide uas dissol\cd 111 100<br />

nil 01 dlst~llcd \rater<br />

11. 3% phosphomolyhd~c ac~d: 7 g of phosphomolbd~c d ~ HA\ ~ d d~\\(d\cd 111<br />

100 1111 ord~stllled water<br />

111. Dn acetone: 25 g of anhydrous sodlum sulphate was added to 500 rill of<br />

dcetolr~ one da\ bclore use<br />

0 5 g 01 dl\ ch~ll~ powder \rd\ tdlrn In d screw cap tube '0 nil ol dl\ '~ccroli~<br />

.~ddcd to 11 .lnd pldicd m d niechdli~~dl shdh lor 3 h and centlilr~ged dl 10 000 1pnl<br />

101 10 umn I lnl of clsd~ \upern ltant wac p~petcd In to a test tuhc and c\ ~ptn~lc~l to<br />

I I I I r e<br />

h i Ihe rcs~duc \\'I\ d~isol\ed In i 1111 ol 04",~ \od~~inl<br />

Ii\d~o\~,i~ so1~1101r 1 ci tht\ > 1111 or j0/~, plit~~pho~ii~~lyhd~c acld \\'I\ .idtled ,111d\I~.I~LII<br />

,~nd,~IIin\cd<br />

10 \~dlid lor I 11<br />

1p1~i IOI<br />

rhc resull~ng rolu11011 \\as lillercd dud cc11trilugcd ,I! '000<br />

10-15 111111 TIic CIC~I hlue colored \olullon \rd\ dl~ectl, t~d~i\fe~~td I!) 'I L~I\LIIL<br />

.rnd lhc .rhso~hatr~c \4d\ read at 650 nm 111 a \peclrophotonieter ngdln\t J ledgenl hl'lnh<br />

\t,~nd.~~,i grdpli \\A\ plotlcd \\~tIi hnown LoliccnllLillons of cap\dILIIi<br />

4.2 10. ( cllulosr (S.~d,i\t\~~~ii and Man~cl~rln 1001 )<br />

Ilragrnt\<br />

I Acet~clN~tr~c reagent: I50 nil ol 8Pi0 acetlc dc~d uas m ~wd \\~th I? lnl 01<br />

coli~~tll~dled IL<br />

dud (conL I-INO:)


Method<br />

ii. Anthronc reagent: '00 111g ofd~itt~r~ne wd\ d~ss~lvcd 111 100 1111 01 COI~C<br />

tizS04. Freshly prep4 andch~lled for 2 h before u\e<br />

3 ml of awttcinllr~c ledgent was addcd lo I g ol the sd~nplc 111 '4 IC\I tuhc dnd<br />

n~lxd ucll In a vOnek mlxture and placed In a wale1 hdth dt 10OU( lu~ 30 mi11 dnd tk11<br />

cctrtr~lugcd at 3000 rpm for 15-20 mln I he supernatant Has d~\~d~dcd I he rc\iduc wd\<br />

washcd w~th d~st~lled water<br />

lo th~s 10 rill ol 67% \ulphu~lc d ~ wd, ~ d dddcd and<br />

.~IIoned 10 stand for I h I ml ofthc above solut~on wd\ d~luted to lo() n ~l w1tl1 d~\t~llcd<br />

watel 1 o ow ml of the d~luted solut~on 10 ml oianthronc reapeni \\d\ added and 1111\cd<br />

well 1111s was heated In a bo~l~ng water bath lbr 10 min and cooled under running tap<br />

wdter and the absorbance was read at 630 nnl In d \pectrophotonlctc~ 4nth1onc rcdgent<br />

along \\IIII dist~lled water was used as blank Standdrd graph \rd\ plotted s~tli Lnciwn<br />

Loncenlrdtlons of cellulobe<br />

1.3. En11 mc Assays<br />

I'rcparation of acetone powder<br />

Ilragcnts<br />

Mrtl~otl<br />

I. Acetone<br />

11. I)I~II~>I cthri<br />

111. I'hosphdtr bullcr. pli 7<br />

1 he t~ssues sere weighed and cut ~nto p~eccs of 1-2 LII~ cdcll dnd then<br />

~I,III\~~II~~ to a hlendor Ch~llsd acetone (-10 "\\L~CI \\'I\ \p~cdd 011<br />

dr~cd tor r~h~~ul 1 11 l lhi. lpt~\\il~i \\a\ \IIOIC~ 111


Enzymc prcprralion<br />

(I I 2 or Inc powder was wclghed and ground in 5 1111 01 ~>ho\pI~a~c hullel (0 I<br />

M) pl l 7 ;11 -1°C' lib1 10 lo 15 nltn rn a homogenizer l'hc extract was cc~~tr~lugcd a1 I(KW)<br />

g C~I 20 111111 at 4°C' and the supernalan1 was used as tlic cn/ynic wulcc<br />

4.3.1. b:nr! mc asrays<br />

4.3.1.1. I


I Jcca\c. polyplicnol oxidasc. pcroxldasc and catalasc act11 ~tlcs wclc c\t~m,~lc


'lkc~n~posilion OF drc resolving gel and the slacking gel arc as glven klow.<br />

)-.-Solutionl-I-<br />

- -- --<br />

Resalvmg Gel (I2 "/a)--]-<br />

Actylatnide Stock 6.0 m l - 7<br />

-<br />

1.5 M Iris. pll 8.8 -1----.------3:8 lnl -- -.I<br />

-- -. - - -. . - --. - - . - ---A.<br />

10% SDS 7.-<br />

o.ir,l<br />

..-. -- .. Deioni/cd itater<br />

--I--<br />

-- -<br />

I<br />

491111 1<br />

(;el cltstlng. electrophoretic run and stalnic~g 01' [lie gel \\elr. done as ~nsnliond in<br />

scc~l~lll : 6<br />

5. ACTIVE: PKlNClPLES ISOLATION<br />

5.1. F.\-traction of the active principles 01' A.snlivutr~ aqueou\ hulh cxtract<br />

(I Iarhorlic. 1984)<br />

('rude .A crrtn~rim extract Has prepared h!<br />

solvent c\ti~ct~o~i procedure I'lle<br />

P~IIICII~IC 111\oI\cd I\ that the sol\cnr takes thC soluhle comp~~u~ld., ~prcst~it 111 the plant<br />

dclltl?.iillg ~1x111 rlis~r solubility facto~ I'hc sol\snt used lo1 111s c\uactmn was 05""<br />

rcct~li~il \iv~t ;111il dcli!dratcd alcohol 1111\1urc (I I )<br />

ICII 101<br />

\\,I<br />

I is ol'l1gli1l! cn~shcd fresh garlic hulhs \&as soakc~i 111 2 I 01 tile aolvcn[ a~ici<br />

t\\o 111o11111\ nith agitat~on at ~xirliculai tlitcr\al.r. Alt?~ i\ro ~n(~litli$. thc chtract<br />

~il~srcJ tlirough double la!crcd cl~cc.;~, clo~li slid CL\II~L,IIII,II~L~ 10 IOU 1111 b!<br />

3.2. \ntil'ungaI nsss! or the crudr pli~nt cxtract<br />

111 i~tro tcbtc were carried out to conti1.111 tlw ant~I'l~~ig,il actl\~t! ol'tl~c cruds<br />

5.2.1. ('anitlid grrmination studies<br />

('ollldial gcrniination st~~dics \\us car1.1cd out III ca\ 11) 41ric.\ h! ~llcuhallng 111 .I<br />

Iiiolet cli;~mhcr at room teli~peratllre 100 p1 of thc crude plnlil c\ll.acl was ddded to tI?c<br />

c;~\ IIICS<br />

ultl illlol\ied to cvaporatc I n rll~s 100 511 oi of cci~i~di,ii \LIS~)~I~~ICIII conii111111lg<br />

400(~-600() con~d~a I ml was added. Lor control cltraction ~~I!$III \\:I\ addsd ~nslsitd oi<br />

12


thc crude plant extract dnd allowed to c\dp~~dtc 1 (I thi~ I00 111 01<br />

LIIL CI>I~I~I,,~<br />

suspension was added Contdtal gernundtloti \tudtc\ a~id per cent inh~htllon ovc~ control<br />

were carr~ed out as descr~bed in sectton 2 2 1<br />

5.2.2. Radial mycelial growth studies (Goh~l dnd Vdl,~ 1996)<br />

Agar <strong>plate</strong>s of PDA wcre uniformly \prwd pl'itcd w~tli ( ~ ( I ~ ~ con~d~rl<br />

I L I Well,<br />

wcre made In the <strong>plate</strong>\ by u.;ing 9 mm hnier 100 111 of the c~ude pl,~ri~ c\tr,~ct ~.i\<br />

added to the wells The <strong>plate</strong>5 were ~ncuhatcd at 1ooii1 tcnlperatuic 1 or ~o~itrol I00 111<br />

of the solvent was added The <strong>plate</strong>5 were sc~eened for ant~funfal actlblty dftet<br />

6 I:! 18.24 and 48 h of tncubation<br />

5.2. I'urification of the bioactive compounds of A.trrlrvum crude plant eltract I]\<br />

sil~ra gel column chromatography (brthlhdi alu 2002)<br />

5.3.1. Packing of the column<br />

'The column was packed by slurrv method In 11i1\<br />

method ~IIIL~ gel .\lur~) ~ d \<br />

prepared 111 chloroform and poured ~ns~dc the ~olumn and allo\\ed to XI wit11<br />

chlorolorm on the top of the mluntn<br />

5.2.2. I.uading and elutlnn of tt~r ant~fungal compounds It.on~ thc crude plant<br />

erlnlcf<br />

I hs rude plant extract to be stparaled \\a\ lo'ided on IIIC top ot [lie ~olumn<br />

dic11 Ihrec ml of thc sample contatntns round 200 ni:<br />

ol the co~npound\ v,a\<br />

lo,idcJ on the column and allowed to settle oil rlie ~ut~ning \ol\cti~ ~hlotolortii Al~ct<br />

the e\tmct entered the column gradlent eluticln ot the cornp~inti~ \\rrri petlormcd I hi.<br />

\ol\cnt\ (25 ml) used for elut~on weir 100% ~hlorolaiii~ 9 I clii~~tolorrn nisthdnol 8 7<br />

chlorotorni<br />

methanol 7 1 chlorolo~m nltthdnol h 4 ~hl~~~ilo~ili ~~ieth.~ii~l 5 1<br />

clllotolorni methanol. 4 6 clilorolo~nl nlttlianol ; 7 chlori~torill ~ilcthatiol 2 8<br />

chlorolorm methanol. 1 9 chlorolo~ri~ rncrll,~nol and 100% u~li~ill~~iiol I I~ILIIOI~\<br />

W~IC<br />

cc~llc~tcd and dssa!ed lor antilungdl dcli\it\ hot11 011 ~onid13l ,'_LII~III~~~IOI~ dnd iddi~l<br />

n~\ccli.~l growth as descrlhed in Yccrion 5 l I,.~nd 5 2 :<br />

01 the dhsdted lrd~t1011\ onI\ tll~rd (\.~rilpl~ I \ %111d lo~~~tli<br />

6<br />

(\,II~I~~L<br />

eluted u ~th 20% methanol w~th chlo~olorn~ \Ilo\~ed ttcihle an~~tungdl .ILII\<br />

7) Ird~Iton\<br />

it\ al 200 ~il<br />

conccntratlon on the conid~al germinalton ol the ( cup\rcr hut not o11 tlic IJJI~II 111\cdl1dl


5.3.3. Solub~l~ty tot& for active I'rncticmh (bnmplc 1 and 2)<br />

llle 20% methdnol exlrdci of the sample I and ? dftc~ C\~IP(II.IIIOII (11 lIIC<br />

uilvcnt\ ucre tested to lind out tlie~r wluh~l~ty 111 d~llc~c~it 'IOIVC~I\ I Iic VII\LI~I\ tl\rit<br />

were d~\t~llcd wdter 0 1 N \od~uni hydrox~de dehydrdted dlcoliol 1iictl1d1101 .ILLIIL<br />

ilcld. dlmethyl sulphox~de. d~chloroniethane, ethyl acetate !so-hutyl ,IILoI~oI 11<br />

propdnol. 150-propdnol. carbon tctrachlor~de, acetone dlnmonld solu~~oti d~clli!l LII~LI<br />

bcn/cnc Iicxane and xylcne Among the solvents tested saniple 1 dnd !. \rclL lotlnd I~I<br />

hc wluhle ~onipletely only In d~sr~lled water and O IN sodium Iivdrox~dc<br />

5.1 Spcctrul, chromntugruph~cal and phytochem~cal nnalj\l\ of \aniplr I ~ ntl ?<br />

\d~iiplc I dnd 2 w~th promising dnt~fungdl ~LIIVI~)<br />

were dgdln \uhlect~d 10 (I\<br />

I. I IIt 'H-NMR "c-NMI< spectral and RP-HI'L< analysls I he te\t\ 101 \ugdl\<br />

p10tc111\ dnd dmlno ac~d\ were alao carr~cd out<br />

5.4.1. Mol~sh a - naphthol test for sugars (Wlnton and Wlnton 1999)<br />

5letl1ud<br />

I. 10% a - naphthol solut~on: 10 g ol a - naphthol \+as d~\sol\ed 111 100 ml 01<br />

dehydrdted alcohol<br />

11. ( ollc l I7504<br />

I Ii~ic n~l ot the \,i~iiplc I and 2 were nu\cd \cpdra~cl\\\it11 1 (0 1 ' d~op\ 01<br />

5.4.2 1 c\t fur protcln\<br />

I\ ~ies~r~hcd 111 \cction 2 7 2 5 3 O ; 1111 of saliiplc 1 and I \\elc tr\cd lo1 th~,<br />

5.4.3. 'Test for umlno acldv<br />

L'\11Cl<br />

4\ descr~hed 111 section 2 7 2 ? 100 p1 of ~aniplc 1 and 2 \\elc uwd lo^ th~\<br />

1111c11t<br />

6. STATISTICAL ANALYSIS<br />

I hc ddta oh~alncd wele buhlectcd to palred student t tc\t ,111,11\\1\


ANNEXURE<br />

1. Preparation of Growth Medium<br />

1. I. I'olalo-l)cxtrosc-agar medium (l'l)A)<br />

'1.0<br />

prepare I 1. ol'the I'DA medium. 250 g of peclcd potalo was made into<br />

thin chips and boiled in 500 nil of distilled water. 'l'o the extracl. 20 g ol'glucosc was<br />

added. 15-18 g of agar (solidifying agent) wa~<br />

melted in 500 ml of distilled watcr and<br />

then mixed with potato-glucose solution and the iolume was ~iiadc up to I I. and thc pl l<br />

was adjustcd lo 6.8 to 7.0 with a pli nlcler using IN IiCI and IN NaOli.<br />

1.2. Czaprk's medium<br />

I:ol. I I. of the medium the Ibllowing chemicals were d~ssol~ed in 1000 ml of<br />

distillcd uater and [he pH was adjusted to 6.8 to 7.0.<br />

2. Stains<br />

2.1. ('otron hlur lactophenol<br />

('atton blue (1OU/u aqueous soluriol~) : 5 ~nl<br />

I'licnol c~ystals<br />

I.;~ct~c ncid<br />

70 g<br />

10 g<br />

(il! ccrinc 40 $<br />

3. 1)isinfectants<br />

3.1. hlcrcuric chloride solution<br />

Slocli solulitrn<br />

hlcrcur~c chloride<br />

: 20 g<br />

('\)nc. HCI : I(K) 1111<br />

i ml oftlie stock solution wasdiluted to I I. with distillcd \\atel


4. Cleaning solution for glassware<br />

Dilute roln. Conc. Soln.<br />

Potassium chrolnate : 60 g 60 g<br />

Water : II 300 rnl<br />

Conc. H2S04 : 60ml 460 nil<br />

I)icliromate was dissolved in warm water. cooled and acid was added slowl!<br />

All the above mentioned reagents werc preparcd by [lie nicthods descrihcd h)<br />

h4ali;ldcvan and Sridhar ( 1996).


OBSERVATIONS<br />

The rcsults ofthe present work arc prchcnted uudct thc li)llr~wt~~p Iicadlng.\<br />

I. GENERAL STUDIES<br />

I<br />

Screening of' aqueous plant extracts on thc conld~al ~C'I.~~III~C~IIOII<br />

01 ( it~j~\ii I<br />

2 Screening of aqueous plant extracts those produced dbovc 50 %I ~nhtir~[tot~<br />

on the conidial germinalion of ('cu/j.trc~ at 4X h<br />

growth of C capsici<br />

(111 thc ~'~dlel ln!ccll,tl<br />

7 Selection of potential aqueous plant extract (thc tesl plan1 c\tract) aylr\l<br />

C' t.Upslt.1<br />

4 I)elcrrn~nal~on of MIC ol'the lest plan1 extracl<br />

5 Ilctcrm~nauon of Ll>~o<br />

6 L)erenn~nat~on of heat tolerance<br />

7 I)c~rrrn~nduon of' shelf l~le<br />

11. PHYTOTOXICITY STUDIES<br />

X<br />

Morphological stud~es<br />

A<br />

I1<br />

Seed germination<br />

Shoo~ length and root Icngth<br />

C 1 resh weight of the shoot and loot<br />

1) [)I? weight of thc shoot and loor<br />

0 I11~l1cn11i'al studies<br />

I<br />

I<br />

I'll~~tosynthctic pign~ents<br />

thohyd hydrates<br />

(i I'llcnols<br />

t4<br />

I<br />

huslc~c acids and prntcln<br />

Ammo acids<br />

J. O\~dat~ve enzymes<br />

111.1.Y L'ITRO STUDlES<br />

10 H~ochem~cal changes in the pathogen<br />

A Cell permeability<br />

17


t3. Nuclcic acids. protein and total lipid synthesis<br />

C. Enzymatic studies<br />

IV. 1N VIVO STUDIES<br />

1 I. 1'111<br />

a. I'cctinolytic<br />

b. ('ellulolytic<br />

c. Amylase<br />

d. Invcrtase<br />

e. Osidative enzymes<br />

I), lixtracellular protein profiling studies<br />

E. Restriction enzymes based genomic DNA profiling studies<br />

I ?. ('ell pcrmeabilit)<br />

13. H~ochen~ical changes<br />

A<br />

Photosynthetic plgments<br />

13 ('arhohydratcs<br />

C<br />

Phenols<br />

I) Kucle~c acids. proteln and amino ac~ds<br />

1. ('apsalcin. cc.llulosc. ascorh~c acid and ami~lo nit1.o~r11<br />

I<br />

I'roluic<br />

(i. I.n/y~natic >ttidics<br />

a<br />

I'ectinolytic<br />

b. ('cllulolytic<br />

c. ,An~ylasc<br />

d. In\.ertase<br />

c<br />

Oxtdative en/! Inch<br />

I{ I .saf protein profiling stud is^<br />

1'. AC'.I.I\'E PHINCII'LE ISOLATION STC'III ES


I. Gcneri~l studies<br />

I. Serrming of aquaour planl catract$ on cenidial germination.<br />

Aqueous extracts ol 275 plant 9pp were tcstcd for thc~r cflect\ 011 the. L~UII~I~~<br />

germmation of ('LUPAILI<br />

(Table 1)<br />

A. Plants with fungicidal ctrect<br />

Based on the~r cflccts the) were class~fied Into Iou~ group,<br />

These planl extracts were found to produce cent pcr cent ~nli~b~tion<br />

thc ionld~dl<br />

germlnatlon both at 24 h and 48 I1 (I-~g 1 B)<br />

U. I'lsnts with fungistatic effect<br />

Ihc per cent ~nh~bit~on produced by thn group of plants \\crc found to hc<br />

rcdu~cd at 48 h compared w~th 24 h<br />

C. Germtube abnormal germ~nation Inducing plants<br />

Thts group of plants induced stout branched and beaded dhllOr111d~ gslnundtlon<br />

ol thc con~dra (Fig 1 C)<br />

L). Plants with no inhibitoiy effect<br />

Ill15 group of plants were not round to produce ~nh~b~t~on<br />

the conldlal<br />

2. Screcnlng of aqueous plant extracts on rad~al mycelial growth<br />

I how aqueous extracts of 27 plants p~oduced dhove 5O0o ~nh~h~t~on<br />

thc<br />

~onldldl gernlrndtlon of ( LU~J~ILI here fi~rrhei screened to find out tlle~r eflc~l on the<br />

rddldl I~~\L~II.~I glowth ol C ~UIJ\ILI<br />

(Idblc I) Of thc 27 tested dquc.ou\ plat11 cxtrdct\<br />

111111 ~111~1/~1 / I/( ll/~~/ll~ ~l!lt~/llOl Ill\ /ill1\lllllll IIlL'l /?I/\ tll?l/ /ll~~lh~'l fl//ll lllll/l\ 11 L'l L'<br />

/~JIII~~/ ro /)I otlrrtr 100. 26. 26. 26. 26. 100 dnd 26% ol lnh~blt~on respect~vcl! on ~dd~dl<br />

I~I\LC'II,II g~o\\tIi Ihe remalnlng 20 pldnt\ \\c~e not lou~ld to produ~c An\ IIII~I~I~IOII<br />

A ctvril~~n hulh and L rnermlr leal aqueous extracts were found to produce maxlmum<br />

~nh~hit~un (1004.0) both on the ~onldldl gc.llnrndtlon and rddldl 111\~c'lldl glowtll 01<br />

( ~~I/I+ICI I Ilc cent per cent ~nh~h~roc ctfc~t of I. 111crn11\ on the ~dd~al ~nyccl~.~l g~outll<br />

ol ( ~(I/HI~I \\as Sound ro bc ~nconslstent Hencc 1 ctr/~i,r~m dqueou, hulh citlnct (thc<br />

tc\t pl.1111 C\II;I~~) was selec[cd lor furthe1 111 IJIIO<br />

'111d 111 i 110 qtuii~c\


Fig. 1. Effect of aqueous plant extracts on the conidial germination of<br />

C. capsici<br />

A. Normnly germinated conidia ofC.capsici<br />

B. Inhibition of germination of conidia of C.capsici by aqucous extracts of<br />

Alliitm sativum and Lawsonia inermis<br />

C. Conidia treated with Mangifera indica and Anacardiunr occidentnle<br />

shoa4ng abnormal germination


Table 1. Effect of aqueous plant extracts on the conidial germination<br />

and radial mycelial growth of C.capsici.<br />

/<br />

S.No.<br />

Plant name<br />

Parts<br />

used inhibition on<br />

the conidial<br />

m<br />

Group 1 Plants with fungici<br />

germination<br />

al effects<br />

%or<br />

inhibition on<br />

the radial<br />

growth on 8"<br />

day<br />

18.<br />

Helio~ropicum indicum L.<br />

Leaves<br />

100<br />

100<br />

0<br />

19.<br />

LowSonia imrmis L.<br />

Leaves<br />

100<br />

I00<br />

100<br />

20.<br />

Par~hsnium hysrerophorus L.<br />

Leaves<br />

100<br />

100<br />

0<br />

' 2 1.<br />

Psdalium murex L.<br />

Leaves<br />

100<br />

100<br />

0<br />

22.<br />

Plumeria alba L.<br />

Lerva<br />

100<br />

100<br />

0


Willd. Ex Klotzsch


orcuuro (Wight 8: Am.)


I 81<br />

. 182<br />

hplodsnra rqcuiala (ReU)<br />

Wlghr k Am<br />

Leprsan~hes retraphylla<br />

Leava<br />

Leaves<br />

0<br />

0<br />

0<br />

0<br />

0<br />

-:<br />

.<br />

. , , "fl<br />

I


Table 2. Determination of MIC of A.sativum aqueous bulb extract<br />

Control<br />

F<br />

Table 3. Determination of shelf life of A.sativum aqueous bulb extract<br />

Mean + S.D


w. Metmination of LDa vallre of A.salivum aqueous bulb<br />

extract against C.epsici<br />

0 0.1 0.3 0.5 0.7 0.9<br />

CONCENTRATION OF THE PLANT EXTRACT IN %


3. Determination of MlC<br />

The test plant extract diluted to 10, 5, 2 5, 1, 0 5, 0 1, 0 05 and 0 02% of<br />

concentmttons were fourid to produce 100, 100, 100, 100, 100, 100. 18 66 and 0% of<br />

lnh~bltlon respectlvely on conldlal germlnat~on at 24 h and 100. 100. 100. 100. 100.<br />

100, 13 66 and 0% of lnhlbltlon respect~vely on con~dial germlnatlon dt 48 h and 100<br />

81. 69. 58, 43 66, 32 33, 0 and 0% of ~nhlbltlon respectlvely on radldl mycellal growth<br />

of C' cupsrcr (Table 2)<br />

4. Determination of LDso<br />

The test plant extract diluted to 0 1, 0 3, 0 5, 0 7 and 0 9% of concentrations<br />

were used to find out the LDso of the test plant extract agalnst C'capsrcr<br />

percentage of lnhlblt~on produced were 25 21, 36 72, 42 12, 50 and 61 48 respectlvely<br />

The LD5" concentration of the test plant extract was found to be 0 7% (Fig 2)<br />

5. Determination of heat tolerance<br />

The test plant extract heated at 100uC for 10 mln was not found to lose 11s cent<br />

per cent lnhlb~tory effect both on conldlal germlnatlon and rad~al mycellal growth.<br />

The<br />

6. 1)eterminntron of shelf life<br />

The test plant extract tested at 7, 14, 21, 28. 35, 42 and 49 days intervals were<br />

found to produce 100, 100, 100, 100, 84, 32 and 0% of lnhlb~t~on respectlvely on<br />

conldlal gennlnatlon at 24 h and 100, 100, 100, 100, 61, 19 and 0% of lnhlbitlon<br />

respectlvely on con~dlal genlnation at 48 h and 100, 100, 100, 43. 15. 0 and 0%<br />

~nhlbltlon respectively on radial mycellal growth (Table 3)<br />

11. Phytotoxicity Studies<br />

The effect of the test plant extract on the seed germ~nat~on and 25 days old chllll<br />

seedlings arc glven below<br />

7. Morphological studies<br />

A. Seed gemins tion<br />

The test plant extract was found to lnhlblt seed gerrnlnatlon (91 30%) compared<br />

with that of control seeds (98 33%) (Table 4)


Table 4. Effect of A.sativum aqueous bulb extract on the seed<br />

germination, morphologicrl and biochemical changes in the chilli<br />

seedlings<br />

Parameters<br />

Seed gemiination<br />

Shoot len* f;- --I<br />

_Root len! th (in cm)<br />

Fresh we1<br />

(in g)<br />

Fresh weight of the Root<br />

(in g)<br />

Dry weight of the Shoot<br />

Contd<br />

SEED GERMINATION<br />

98.33 i 1.24<br />

MORPH0UX;ICAL CHANGES<br />

B..' 1".<br />

1<br />

".I, I<br />

?nlQ L I QC<br />

L".IO Z c.0,<br />

12.01 tlL7 a.ur<br />

0.10<br />

ght of the Shoot 1 1.17 +<br />

0.74 i0.10<br />

0.25 * 0.02<br />

A. sarivwn--<br />

91.30 t 1.24.'<br />

24.77 i 1.44*<br />

15.60 t 0.61'<br />

2.12 t 0.04.<br />

1.12 *0.03**<br />

0.36 i 0.02**


It. Sh1n11 and root length<br />

I hc nrilxlmum shoot and root length wa\ lound In the test pla~lt extr'ict t~c,~t~d<br />

\c.cdl~ngs(24 77 d~id I5 GO cni I~L~CLII\CIY) co~iil~~i~cd w~th thdt 01' c01it101 \CC~IIII~\<br />

(20 18 and 12 01 cm respct~vely) (l'ahlt. 4)<br />

( . Fresh wcight of the shoot and root<br />

I he maxlmum shoo1 dnd root \\SI;II~<br />

wd\ found ~n 1r~~ilt.d \eedl~~lg\ (7 I :! and<br />

1 12 g respect~vely) colnpdred \81th tli~~t of cont~ol seedl1ng5 (1 17 and O 74 g<br />

I cspect~\ cly) ( l able 4)<br />

I). I)ry wc~ght of thc shoot and root<br />

I hc Ilir~XlIll~Ill \hoot dnd 1001 \\LI~~II<br />

Iound In trcdtcd jccdl~ng\ I0<br />

000 f ~cspecl~\cl!) colllpdrcd u~tii llldl ol ~o1111oI seedll~igs (025 ,~nd 00; 2<br />

~c\pcct~\c.l! ) ( I dble 4)<br />

X. Biochemical changes<br />

I-. I'hotosj nthetr pigments<br />

'111d<br />

1 hc mahlmum Chi 'a'. ('111 h lotdl Chi dnd cdrotena~d contents wcrc lound in<br />

11cdtcd secdllng\ (I 38. 0 48. I 91 dnd 0 78 nig ~syxct~vely) compared w~tll thow 01<br />

control secdllngs (1 18.0 78. 1 62 and 0 57 ntg respcct~uely) (Table 4)<br />

Is. Carboh\dratcs<br />

1 he mahrmum rcducmg sugal\ 1oi.11 \Li:al> lion-~uduc~~ig iugd15 dnd \t'i~ch<br />

Lolltents \\z~c found In tredtcd \ccd1111;\ (2; 15 40 75 1 h 62 dnd 56 4 l 111;<br />

IC\I~CCII\CI\) ~~lnpdrcd \\~tIi ~Iio\c ot ~o111101 beedlulg\ (1941 32 84. 12 76 d11d 44 I(()<br />

111~ rc\pcct~\cl!) ( I ahle 4)<br />

(8. I1henol\<br />

I hc nld\lnluni 0 D phs~iols dlid io1.11 plic~iols \\ere found 111 trea~ed \ct.dh~lg\<br />

(; 64 nnd 9 05 mg respectlvcl!) compa~cd iiltli those of control seedl~ngs (1 75 'ind<br />

5 10 nip ~c~puct~vel!) (7able 4)<br />

II. Nuclcic acids and protcln<br />

nit. motmum DNA. RN.4 dnd ~IOLCIII colilents ive~c found 111 trcd~cd \ecdl~~ig\<br />

(0 17, 0 80 ,411d 0 51 nig respect~\cl)) ~o~iqi.i~td \\1t11 II~O\C 01 COIIIIOI \ccdl~~if\ (024<br />

0 58 and 0 !.: mg rcspect~iely) ( I dhlc 4)


Table 5. Effect of A.sativum aqueous plant extract on the cell<br />

permeability (rn~lcrn~) of ccapsici - in vitro<br />

Treatment<br />

Cell permeability<br />

Control<br />

A. sativum<br />

Mean iS.D<br />

* fl.05; **p


I. Amino acids<br />

'['he maximum annino acid5 contents ~4ct.e li)~i~id 111 treatcd seedlilnyh (0.36 my)<br />

compared with those of control seedlings (0.26 ~ng) ('I ahlc 4 J.<br />

.I. Oxidative enzymrs<br />

'l'hc maximum actlvitlss ol laccase. p)lyphcnol oxidase. pcro\idac illit1 cat~tlilsc<br />

were found in treated seedlings (0.04. O.lj. 0.003 and 11.01 ul~i~\ ~c\pccti\cl~j<br />

conipared with those ot'conirol seedlings (0.02. 0.10. 0 001 and X 70 u~iirs ~.cspecrivcl~)<br />

(I ahlc 4).<br />

Ill. In ~itro studies<br />

A. ('ell permeability<br />

'l'hc maximum cell pcrlncability \a> loul\d 111 t l \cs\ ~ plan1 c\tract trcaled<br />

myccl~al (treatment) ma1 (11' ('co,,~ici hotli a! 21 h (0.37 rn~~cm') and 48 1 (0.4;<br />

mS ~111') compared w~rh ~l~ar of control (0.30 id 0 36 ~ii~lcni' ~.cspt.crl\i.l! at 14 h and<br />

48 I1 I I I ahlc 5 ).<br />

H. Nucleic acids, prutein and totrl lipid<br />

flic rfl'ecl<br />

of the lest plant extract on tlit nucle~c acids. protcili and toral lipid<br />

contents of treated ('c,u/,sir~ on fourth and r~glith da! are given helo\\.<br />

Fourtb da!<br />

I'hc masin~u~n I?NA. KM. prorein and [oral lipid collrclnc.; \ii.lc lburid in<br />

control ~n!cc.lial mar (0.23. 0.86. 0 65 and 0.05 mg rtspectivel! ) col?lpari.ii \~itll ~liat 01'<br />

trcatcii ~nl!ct.llal mat (0.10. 0 XO. O.sX and 0.02 mg rt.spcctively) ('I,lbli. 01<br />

Eigi~tll dr!<br />

I'Iic ~niasimu~n I)N:\.<br />

IINA. protciii .11i~1 total lipid contcni\<br />

~irund in<br />

coritrirl ~n!cchal mat (0.26, 091. 0.72 and 0 Oh mg rcspectivcl!) ct~rnpal.c~i \\ith \ha\ 111'<br />

II.~;II~~ ~in!ccllaI ma1 (0.27. O 71. 0.53 and 0.01 111;<br />

('. k:ntymatic studies<br />

;im!lasc.<br />

rc.spccr~\lely) (labit. 01<br />

Et'i~ct of the test plant extract on rlic acti~ities ol' pecri~it~l!ti~~. cclluloly~ic.<br />

~li\cllasc and "sidaiive cnlynlcs oi ('c.oln~c.~ ikas sliid~cd. I IIC rc


Fig 3 Actlv~ty of PME of C,'.cap.s~c~<br />

- in vitro<br />

Control


F1g.4. Activity of endo-PMG of ( ' L,ap.s,a<br />

- ~n vrlro<br />

0 >O 60 90 I20 150 180<br />

Time interval (in mill)<br />

Fig.5 Activity of exo-PMG of C.capsici<br />

- In villa


0 3 0 60 90 120 150 180<br />

Time interval ( ~n min)<br />

Fig.7. Activity of eso-PTE of C.cap.vici<br />

- n7 lv/lro<br />

: Control<br />

1 W A.sa/r~*t~n~


0 30 60 00 170 1.50 1 SO<br />

Time inte~val (in min)


Flg 10 Actrvlt~es of Exo 1,4 B-glocal~ase dnd celloblase<br />

of (' ~ap~lct - m vilro<br />

Exo- 1,4 B glucanase<br />

Cellob~ase<br />

Fig 1 1 Act~v~tles of amylase and lnvertase of<br />

C capsla - m vrlro<br />

0181<br />

016-<br />

5 014-<br />

012-<br />

F Ol-<br />

C<br />

oos-<br />

006-<br />

1 OM-<br />

002-<br />

0 1<br />

1<br />

Amylase<br />

r<br />

lnvertase<br />

t


Fig. 12. Activities of laccase and perox~dase of<br />

(:.cap.srci- m vllro<br />

Laccase<br />

Peroxidase<br />

Fig 13 Activities of polyphenol oxidase and<br />

catalase of C'. capsic1 - 111 vltro<br />

Polyphenol oKidase<br />

Catalase


Fig. 14. Effect of A..valrvun~ aqueous bulb<br />

extract on tile PDI<br />

of C:.cap.s~cr<br />

Control<br />

F3 Infected


a. Peetfndyticcnzymer<br />

i Peetin methyl estcraae<br />

The h u m PME activity<br />

of treatment (5.13~~) (Fig. 3).<br />

ii. Polymethyl galrcturonare<br />

found In ~~~~trol(l 1.68%~) compared with that<br />

The maximum endo-PME and exo-PME activities wen found in control<br />

(56.84% and 0 .23~~ respectively) compared with that of treatment (8.87% and 0.02uu<br />

respectively) (Figs. 4 and 5).<br />

iii. Pectin trans eliminrse<br />

The maximum endo-PTE and exo-PTE activities were found in control (59.65%<br />

and 38.27~~~ respectively) compared with that of treatment (15.27% and 0.0SsAu<br />

respectively) (Figs. 6 and 7).<br />

b. Cellulolytic enzymes<br />

i. 1,4 p - endo-glucanase and exo endo P 1,4 - glucanase<br />

The maximum 1, 4 0-endo-glucanase and exo endo P 1,Cglucanase activities<br />

were found in control (57.43% and 0.27~~~ respectively) compared with that of<br />

treatment (13.39% and 0.02s~u respectively) (Figs. 8 and 9).<br />

ii. 1,4, p-exo glucannse and cellulobinse<br />

The maximum 1,4, P-exo-gluwulse and cellulobiase activities were found in<br />

control (0.38%" and 0.19 sAu respectively) compared yith that of treatment (0.09s~~<br />

and 0.02sAu resespcctively) (Fig. 10).<br />

c. Amylase and invertase<br />

The maximum amylase and invertase activities were found in control ( 0.15~~~<br />

and O.l&,,u respectively) compared with that of treatment (0.07~~~ and 0.08~~~<br />

respcctively) (Fig. 1 1).<br />

d. Oxidative enzymes<br />

activitja<br />

The maximum activities of laccase, polyphenol oxidasc, pcroxidase and catalase<br />

found in treatment (0.005, 0.03, 0.004 and 0.14 units mpe~tivel~)<br />

corn@ with that of control (0.002,0.01,0.002 and 0.12 units respectively) (Figs. 12<br />

and 13).


Tabk 8. Effect of A.s&vum aqueous bulb extract on the biochemical<br />

changei of chilli fruits infected with C.capsici - in vivo


D. Edracelluar protein profiling studies<br />

Studies on the effects of the test plant cxtract on the extraccllulal. protein<br />

profiling suggested that there was marked difference in the extracellular protein proliles<br />

between control and treatment.<br />

E. Restriction enzymes based genomic DNA profiling studics<br />

Studies on the effect of the test plant extract on the gcnomic ONA proiilrng<br />

suggested that there was no marked difference in the restriction cclzyrnr: bascd geiloii~ic<br />

DNA profiles between control and treatment.<br />

IV. In vivo studies<br />

11. PDI<br />

The minimum PDI was found in treated fruits (2.5%) cornpal-td with tllose of<br />

infected fruits ( I 7 %) (Fig. 14).<br />

12.Cell permeability<br />

The maximum cell permeability was found in infected frsits horh at 24 11 arid 48<br />

h (0.47 and 0.54 ms/cm2 respect~vely) followed by treated (0.39 and 0.43 ~IS'C~I'<br />

respectively) and control fruits (0.36 and 0.40 m~/cm' respect~vely) (Tablc 7).<br />

13. Biochemical changes<br />

A. Photosynthetic pigments<br />

The ~naximum Chl 'a' Chl 'b', total Chl and calaterioid conlenls trcrc lburid in<br />

control fnrits (3.50. 2.22. 5.46, and 2.20 mg respectively) comparcd \\it11 thosc of<br />

treated (3.02. 2.03. 5.08 and 1.97 mg respectively) and infected li.uits ( 1.71. 0.70. 2.17<br />

and (1.84 mg respectively) (l'ahle 8).<br />

B. Carbohydrates<br />

The maximum reducing sugars. total sugars. non-reducing sugars and aarcli<br />

contents were found in control fruits (39.76. 53.78, 13.51 and 94.06 Ing respect~\el!.)<br />

cornpitred with those of treated (37.76. 51.17. 12.73 and 91.65 rug rr.specti\el!.) and<br />

infected fruits (27.81. 30.88, 2.9 1 and 5 I .3J nig respectively) (.['able 8)<br />

C. Phenols<br />

l'he maximum 0.D. Phenols and total phenols werc found in infected ti.uits<br />

(12.89 e& 31.56 mg respectively) followed by treated (7.78 and 18.49 mg ~espccti\el!')<br />

and control fruits (5.77 and 14.71 mg rcsptctively) ('l'ablc. 8).<br />

54


Fig. 15. Activity of PME of C.cap.vrcl<br />

- m vivo


Fig. 16. Act~vity of endo-PMG of (',capsrcr - 117 vrvo<br />

(4- Infected<br />

I<br />

0 30 60 90 120 150 180<br />

Time interval (in min)<br />

Fig.17. Activity of exo-PMG of C.capsici - /I? vivo


F;~. 1 8. Actlvlty of endo-PTE of C. capslci - in vivo<br />

0 30 60 90 120 150 180<br />

Time interval (in min)<br />

Fig. 19. Activity of exo-PTE of C. capsici - in vivo<br />

. A.sativum<br />

El Infected


Fig.20. Activity of endo-Cx of (.'.capsici - in vivo<br />

30 60 90 120 150 IRO<br />

Time interval (in min)<br />

Fig.21. Activity of exo-Cx of C.capsici - in vivo<br />

O Control<br />

A.satiwrm<br />

Infected


I-$22.<br />

Activities of exo 1,4 B-glucanase and cellobiase<br />

of (.'.cap.~ici - 111 vlvo<br />

/ El Infected<br />

Eso- 1.4 B glucanase<br />

Cellobiase<br />

Fig.23. Activities of arnylase and invertase of<br />

C.capsici - in Irvo<br />

I A. sativt~~?i<br />

0.35 1 I Infected<br />

Amylase<br />

lnvertase


i;'ig 24. Activities of laccase and peroxidase of<br />

t,'. cap.ricr - in vivo<br />

I-<br />

D Control<br />

m A. sa/r\~~mi<br />

H lnfected<br />

Peroxidase<br />

Laccase<br />

Fig.25. Activities of polyphenol oxidase,<br />

catalase and ascorbic acid oxidase of<br />

C.capsici - in vivo<br />

B Infected<br />

Polyphenol Catalase Ascorbic acid<br />

oxidase<br />

oxidase


D. Nucleic acids, protein and amino acids<br />

I'he maximum DNA, RNA, protein and amlno ac~ds were found In control fruit5<br />

(0 79, 1 56. 1 16 and 0 85 mg respectively) compared with those of treated (0 77, 1 Si,<br />

1 12 and 0 80 mg respect~vely) dnd infected fru~ts (0 39, 0 87, 0 69 and 066 mg<br />

respect~vely) (Table 8)<br />

E. Capsaicin, cellulose, amino nitrogen and ascorbic acid<br />

The maxrmum capsalcrn, cellulose, ammo nttrogen and ascorb~c ac~d contents<br />

were found In control fruits (0 07, 0 22. 33 88 and 21 97 mg respect~vely) compared<br />

with thox of treated (0 06, 0 20, 32 03 and 19 74 mg respectively) and infected fru~ts<br />

(0 03.0 l I. 20 49 and 8 08 mg respect~vely) (Table 8)<br />

F. Proline<br />

The niaximum prol~ne content was found in infected plants (0 26 mg) followed<br />

by treated (0 I3 mg) and control plants (0 10 mp) (1 able 8)<br />

G. Enzymatic stud!es<br />

a. Pectinolytic enzymes<br />

I. Prct~n methyl esterase<br />

The maximum PME actlvlty was found In ~nfected fru~ts (25 525~~)<br />

followed by<br />

tredted (I692\A,,) and control fru~ts (I404\41 ) ( FI~ 15)<br />

ii. Pol! methyl galacturonase<br />

1 he nlaxlmum endo-PMG and exo-PMG actnltles were found In ~nfected fru~ts<br />

(54% and 0 19SAl respect~vely) followed by treated (13 16% and 0 035~~1<br />

~espcct~vely)<br />

and control fruits (I0 54% and 0 02jAk! respect~vely) (Figs 16 and 17)<br />

ii~. Pect~n trans eliminasc<br />

I he maxlnlum cndo-I'I'C and exo-PI t d ~t~\ !ties were found in ~nfec~cd frwts<br />

(5 I 67% ~ n d 35 6IsA1 reqpectlvely) followed b! treated (23 37% dnd 0 12%~<br />

respectnel! ) and control fru~ts (20 79% and 0 0 9 respect~vely) ~ (F~gs 18 and 19)<br />

b. Cellulolytic enzymes<br />

i. 1,4, p - endo glucanase and exo endo P 1,4-glucanase<br />

I IIC. mailmum I I f3-endo-glucanase and eio endo P I,4-glucandsc dct~vttles<br />

were lound In rnfected fru~ts (63 96% and 0 27~~~1<br />

respect~vely) followed by treated


Fig. 26.UV - SPECTRUM OF SAMPLE 1<br />

Nanometer = 223 Absorbance = 1 A 18<br />

Fig. 27. UV- SPECTRUM OF SAMPLE 2<br />

Nanometer = 2 19 AMwbance = 1 A 12


N<br />

r;;<br />

cl<br />

r<br />

2 6E,& E<br />

2 L60G E<br />

I8955 E<br />

91895 E<br />

0 E6L5 E<br />

5 :; :<br />

g 9E959 E<br />

+ 61099 E<br />

15519 E-<br />

y 66E89 E<br />

b 6%2L E<br />

REEL I<br />

I L5629 V<br />

g 69969 V<br />

E z<br />

I<br />

E<br />

i


I801 POI 1<br />

U<br />

3


Fig. 34 RP - HPLC - SI'I


Fig. 35. RP - HPLC SPECTIWM OF SAMPLE 2<br />

SatnpIcNanLl:<br />

VlVl<br />

l",CCllO" 1<br />

I",CCl,O" VPIIICIII.<br />

Channel<br />

RU" nnic<br />

,..>#11f,lc4<br />

I<br />

lo 00 ill<br />

>nBiCl~ann~I I<br />

70 o M ~~I~TCS<br />

Sampla Type<br />

Dalc Acquired<br />

Unknoun<br />

1012812002 3 35 H PM<br />

AcQ Method Scl WA-MEW<br />

PIOCLSSIIIQ Melhod ENW<br />

Dale Plaeerred<br />

1112812002 4 03 46 PM<br />

--<br />

Peak Rcwlt.<br />

7 ..<br />

, . .l.n 1 KT 1 Arc0 / M.'


(22.13% and 0.06~~~ respmlivel~) and control liu~ts (10,4i1X, 2nd 0.05, ,: rcsl,cctivcly,<br />

(Figs. 20 ~d 2 1 ).<br />

ii. 1,4 p - Exo-glucana~e and ~ellulobias~<br />

The maximum 1, 4 P ex0 - giucanase and celluli,hiasc ,lctivilics<br />

f;ound in<br />

infected fruits (0.62 and 0.43\~1: respectively) lbllowed h) rl.cstcd (0 50 and 0.i j,,l,<br />

respectively) and control fruits 10.44 and 0. I&,,<br />

c. Amylase and invertase<br />

respecr~vcl) I<br />

Maximum amylase and invertase activities wcrc hunt1 ill infccled ii.tllls (0.25<br />

and 0.?0$4\1 respectively) followed by treated (0.17 and 0<br />

control fruits (0.18 and 0.17~A1 respectively) (FI~. 23).<br />

22)<br />

rsspecti\cly) and<br />

d. Oxidative enzymes<br />

. .<br />

Ihe niaximum activities of laccase, polyphencil oxida,c. perci\~dasc. catalase<br />

and ascorbic acid oxidase activities were found in infected fruits (0.09.0.7-0, 0,008.0.1 7<br />

and 0.17 units respectively) followed by treated (0.05. 0 16. 0.005. 0.15 and 0 I3 units<br />

respectively) and control fruits (0.04. 0.15. 0.004. 0 14 and 0.1 l uu~th respectively)<br />

(Figs. 24 and 25).<br />

c. Leaf protein profiling studies<br />

[.car protein<br />

studies suggested that thcrc was difference. In the pl.otcin<br />

pl.i)lilcs hetv,\.rell [he leaves of control. treated arid in1'c.cti.d plallrs<br />

V. Active principle isolation studies<br />

UV (Figs. 26 and 27). FTIR (Figs. 28 and 29). H I<br />

NMR (Figs. 30 and 31) and<br />

C" NMR (Figs, 32 and 33) spectral, RP-HPLC' (Figs. 3 and 35) anaI!>is and<br />

i~~l\~oc~lr.nllcal tests sowed the presence of mixture of sugars. proteins and anlilio ~tcids<br />

In rhc acti\e fractions (sample 1 and 2).


DISCUSSION<br />

The present study brings out the effect oiaqueous extracts of 275 plant spp, on<br />

the conidial germination of Cq.cupsici and those of 27 aqueous plant extracts which<br />

produced above 50% inhibition on the conidial germillation both at 24 h and 48 h, on<br />

the radial mycelial growth of C.capsici and that of A.sa/ivum aqueous bulb extract<br />

which produced cent per cent inhibition both on the conidial germination and radial<br />

mycelial growth. on the in vitro and in viva physiological and biochemical activities of<br />

('. capsici.<br />

Aqueous extracts of 275 plant spp. based on their effects on the conidial<br />

germination of ('capsici were divided into 4 groups.<br />

Group 1: Aqueous extracts of plants completely inhibited the conidial<br />

germination of ('cupsici both at 24 h and 48 h. which showed their fungicidal effect on<br />

the conidial germination of C cupsici.<br />

Chitra and Ka~abiran (2002) reported the fungicidal effect of aquzous plant<br />

extracts on the conidial germination of C'cupsrci.<br />

Group 2: Per cent of ~nhibition produced by the aqueous plant cstracts on the<br />

conidial ger~iiinaiion of c cup sic,^ was found to be reduced at 48 11 compared w~th 24 h.<br />

which slio\\s their fungistatic effect on the conidial germination of(' ctrp.~icr.<br />

Gaticsali and Naidu (1999) reported the fungisraric effect of petal e\tracts on the<br />

conidial germination of D ory:ucJ.<br />

Group 3. Aqueous extracts of plants induced stout. kaded atid branched<br />

abnornial getmination of I' capsici conidia.<br />

;\h~iomial gc~mination inducing effect of aqueous leaf estracts on the cotiidial<br />

germination of ('.capsici has reported by Gomathi and Kannabirdri (1000).


Group 4 Aqueous extracts of plants were not found to have lnh~b~tory effect on<br />

the con~d~al germlnatlon of C capstcr<br />

Ch~tra and Kannablran (2001) reported aqueous plant extracts w~th out any<br />

lnhtb~tory effect on the con~d~al germlnatlon of C capsrcr<br />

Of the aqueous extracts of 275 plant spp tested on the con~d~al germlnatlon of<br />

C tapstcr, only those of 27 plant spp were found to produce above 50% lnh~blt~on<br />

the con~d~al germlnatlon of C capsrcr both at 24 h and 48 h They were further screened<br />

for thew effects on the rad~al mycellal growth of C capsrcr<br />

Eventhough aqueous extracts of Adharoda vasrca, Asparagus racemosus,<br />

Bauhrnra purpurea, Carrca papaya, Cassra fistula, Casuarrna eqursetrfolra. Cesrrum<br />

drurnum. Coleus barbatus, Cordra sebesrena, Cor~andrum satrvum, Courouptra<br />

gurunemts, Dol~chos rrrlobus, Helrorroptum rndrcum, Parrhenrum hysrerophorur<br />

Pedalrum murex, Plumerta alba and Solanum melongena produced cent per cent<br />

lnh~b~t~on<br />

the con~d~al germlnatlon of Ccapslcr they faded to produce ~nh~b~tory<br />

effect on the radlal rnycel~al growth of C capsrct<br />

In the present study the rate of lnhlb~t~on of con~d~al germlnatlon could not be<br />

correlated wlth radlal mycellal growth Because of the avrulabillty of more tlme and<br />

nutrients the plant extract could not act upon the growth of the fungus depending upon<br />

thew chemlcal const~tuents (SenUul Kumaran, 1998) Of the aqueous extracts of 27<br />

plant spp screened for thelr effects on the rad~al mycelral growth of Ccapsrcr<br />

maxlmum lnhrb~t~on (100%) both on the con~d~al germlnatlon and rad~al mycel~al<br />

growth were produced by L tnermts leaf and A sanvum bulb aqueous extracts (Plate 2)<br />

The ant~fungal actlvlty of L tnermrs was found to be ~ncons~stent agrunst Ccapsrcr<br />

However the antlfungal actlvlty of A satrvum was found to be consistent Hence ~t was<br />

selected for further m vrtro and m vrvo studes Numerous prel~m~nary reports are<br />

avlulable on ;he antlfungal actlvlty of A sot~vum (Mlsra and D~xlt, 1976, Lakshmanan,<br />

1990, Gohll and Val& 1996, Nandan and Anup, 2002)


PLATE 2<br />

Effect of plant extracts on C.capsici<br />

1. Control -Culture of C.capsici<br />

2. Effect of A.salivum aqueous bulb extract on the radial<br />

mycelial growth of C cupsici<br />

3 Effect of L.inermis aqueous leaf extract on the radial<br />

mycelial growth of C.cup.~ici<br />

I<br />

Effect of three weeks stored A.sarivum aqueous bulb<br />

extract on the radial mycelial growth of C.capsici<br />

5. Effect of hear treated A surivum aqueous bulb extract<br />

on the radial mycelial growth of Ccapsici


PLATE 2


. .<br />

Ihe active principles of A.suril:um were found to be thennostable against<br />

C'.cup.~tci (piate 2).<br />

Gomathi e/ ul. (2001) reported the thermostable nature of the aqueous leaf<br />

extracts of Soianum rorvum, Daturu melul and Prosupis julifloru against Ccupsici and<br />

C:giorosporioides.<br />

Chitra er a/. (1999) reported the thermostable nature of D.innoxla flower extract<br />

against Ccapsici.<br />

The shelf life of A.sa/ivum aqueous bulb extract was found to persist upto 6<br />

weeks on the conidial germination and 5 weeks on the radial mycelial growth (Plate 2)<br />

of (' ctr/~sici.<br />

Active principles present in Foeniculum vulgarue and Pimpinella unisum were<br />

found to be stable upto 240 days in stored materials (Shukla er ul., 1989).<br />

'The antifungal effect of Mangifera irtdica against Bi~alaris sorokiniunu wa<br />

found to persist upto 50 days in stored materials (Muhesh Kumar e/ al., 2001).<br />

.4 srr/i~~lmr aqueous bulb extract was found to significantly inhibit the seed<br />

germination of chilli compared with control.<br />

It \\as reported earlier that ..lrrcrho/rp hexuperulo~cs leal' and Slc~iercniu<br />

muhctgonr bark extracts besides being strongly fungitoxic. severel! inhibited seed<br />

germination of' brassica (Grainge and Alvarez, 1987) and paddy seeds (Sellapandi,<br />

2001) respectively.<br />

011 the contrary. when sprayedon 25 days old chilli seedlings (Plate 3) the same<br />

extract \\.as found to stimulate the growth. synthesis of photosynthetic pigments.<br />

carbohydrates. nucleic acids, protein, amino acids, phenols and the activities of<br />

oxidatitc enzymes similar to that of groNh hornione compared with co~ltrol.


PLATE 3<br />

Effect ofA.sativum aqueous bulb extract on chilli<br />

seedlings - in vivo<br />

1. Control seedlings<br />

2. Seedlings sprayed with A.salivurn aqueous bulb extract


PLATE 3


The psltrve effect of Lcuca~ o5prru root extract on the growth d11d<br />

photosynthetic plgments contents of paddy and green gram seedlings was repned by<br />

Sangodldmmalle (2000)<br />

Rajeswarr dnd Marlappan (1991) reported the Increased d~trvrt~es 01 ox~ddt~v~<br />

enLyme.i In I'yrrculuria oryzuc - inoculated paddy plants sprayed with A ~~u\rtu dnd<br />

Prosopr~ /ullfloru extracts<br />

Antifungal compounds In general Interfere wlth any one 01 the several<br />

h~osynthet~c pathways (or) energy production pdthway5 Otren antrtungal agent5<br />

Interfere strongly at a spec~fic stage In a metabolrc pathway, whlclr soan spreads to<br />

other pathways, as the metabol~c pathways are all In one way (or) other ~nterconnected<br />

to each other leadrng to total arrest of the cellular activities and even klll~ng of the<br />

organism Slna the queous bulb extract of A sativum exlub~ted strong dntlfungal<br />

act11 I[\ the b~ochemlcal Impact of the lnh~b~t~on<br />

the pathogen was invest~gated<br />

I he In vrrro blochemrcal analvsis of' treated mycelldl mat of C cupsro on fourth<br />

dnd c~phth dav was found to show lns~gnlficant rrductlon in the DNA and s~gn~firdnt<br />

reductron In the RNA pmteln and lipid synthes~s compared w~th control benom~c<br />

DNA prolillng studres based on different restrlctlon enzymes suggest that there wds no<br />

s~gr~ificant drllerence In the restriction enzimes based genornic DNA profile., between<br />

colurol ,~nd treatcd m\cel~al mat of ( cup3icr (Plate 4)<br />

A feu workers have reported the alterat~ons In the nucle~c acrds protelns dnd<br />

lrprd a\ nthes~s of fungal mycellurn<br />

\ataralan and : allthakumarl (1987) repnrred the rnh~b~tor\ effect of I ~nernilc<br />

lcal e\lr,ict on the nuclelc aclds dnd proteln ,)nthes~a of D oryIup<br />

I'atcha1vd71arnman (2002) reported the 111111b1tory etTect of bdih extract of Aglulcc<br />

eIueogritirde\ on the nuclelc actds, protern and total lrptd synthesrs of R solanr


PLATE 4<br />

Effect of A.sativum aqueous bulb extract on the restriction enzymes based<br />

genomic DNA profiles of C. capsici<br />

Lane 1: 1 Kb Ladder<br />

Lane 2: Control: Hind IIIMot I digest<br />

Lane 3: Treatment: H i IIUNot 1 digest<br />

Lane 4: Control: Not YSal I digest<br />

Lute S: Tnatment: Not YSal I digest<br />

Lane 1: 1 Kb Laddm<br />

Lane 2: Conml: EcoRlMind 111 digest<br />

Lane 3: Treatment: EcoRlMInd 111 digest<br />

Lane 4: Control: EcoRlMotl digest<br />

Lane 5: Treatment: EcoRlMotl digest<br />

Luc 6: Control: EcoRllSal I digest<br />

k c 7: Tnatment: EcoRllSal I digest


llew~tt (1999) rcported the ~nliihitory effe~t of the fuiig~~~de Iiymcx'w~i on 111'<br />

nucleic acids and protein synthesrs of plant pathogens Fungic~de melalaxyl ~nhibited<br />

the plant pathogens by specrfically ~nh~biting the synthes~s of nbosomdl RNA via the<br />

KNA plymer~~e I - tem<strong>plate</strong> complex result~ng in the disrupt~on of protein \ynrhesis<br />

(Dav~dse and van der Beiy - Valthius, 1989)<br />

In the present study the processes of transcription and tranaldtion ueic h~glily<br />

affected compdred with DNA synthes~s as a result of which there wds \~giiificant<br />

reducr~on in the synthes~s ofI1NA and proteln<br />

I)i~function (or) mallunction of the memhrdne wds evrdeut from th~ lii~redsed<br />

ele~trolyt~c leakage of treated C capsrc~ mycelium compared with control<br />

Portelvy (2000) reported the increased electrolyt~c leakage of R solu~~r mycel~al<br />

mat tr~ared with bark extract of Anacardrum occ~dentale<br />

'I he Increased eltctrolyt~c leakage from the treated mycelrum may be attributed<br />

ro thc arrong ~nhib~tion of protein and hpid synthe~is This observation derites support<br />

from rhe observations of Rao (1984), who reported that all the funglc~des thar ~edu~ed<br />

l~p~d content In D oryzae also induced electrolyt~c leakage<br />

I n7tnies produced by plant pathogens play a very unportant role in thc 'ntr!<br />

rlie pdtliogcnc Into the host tissue by degrading the cell wall Any inh~b~t~on<br />

tli~ aboie<br />

rnenr~c~ned process would cause a deletenous effect on the pathogen<br />

of<br />

In the present stud) the activities of pect~nolyt~cellulolyt~c am\lase dild<br />

Intertdse enzymes of C'cupcprro were srgnificantly (P


PLATE 5<br />

Effect of A.sativum aqueous bulb extract on the extracellular protein profile<br />

of C.capsici - in viiro.<br />

Lrnc 1: Protein Marka (BSA, 66 kDa)<br />

hat 2: Control<br />

Lrpc 3: Treetmk~lt


Inhibitory effect of Daturcr innoxia fruit and flower extracts on tllc cnzymallc<br />

activities of Ccapsici was reported by Chitra el ul. (2000).<br />

Kiraley el al. (1985) reported the inhibitory effect of the fungicide fenitropan on<br />

the protein synthesis and enzymatic activities of plant pathogens.<br />

The fungicide tilt was found to inhibit the enzymatic activities of C.capsici in in<br />

vitro condition (Gopinath et a/., 1999).<br />

On the contrary, in the present study the activities of oxidative enzymes were<br />

found to increase in in vifro condition.<br />

Decreased activities of call wall degrading enzymes and increased activities of<br />

ox~dative enzymes of Cgloeosporioides treated with Ainnoxia aqueous extract was<br />

already reprted by Pugazhenthi (2001).<br />

This shows that the activities of oxidative enzymes of plant pathogens were<br />

found to increase under stressed condition (Rajaswari, 2002).<br />

SDS-PAGE analysis of extracellular protein profiling studies showed significant<br />

difference between control and treated I'cupsici extracellular protein profiles. In the<br />

case of treatment the intensity and width of the protein bands were reduced while some<br />

of' the bands were missing compared with control (Plate 5). This shows the toxic effect<br />

of tllr .4 .\[r~ir,um aqueous bulb extract on the extracellular protein profile of (:cu/~\ici<br />

(Kuruchc\ e and Padmavathi, 1997).<br />

h4illl) lungicides were reported 2 inhibit the protein synthesis of fungal plant<br />

pathogens (Buchenaur, 1978; Mahrotra. 1996).<br />

In in viw condition Ccapsici - inoculated chilli fruits treated with A.sa/ivum<br />

aqueous hulh extract showed significant reduction in the PDI (P


PLATE 6<br />

Effect of A.sntivum aqueous bulb extract on<br />

C.cnpsici - in vivo<br />

1. Control - Healthy chilli plants<br />

2, infected chilli plants sprayed with A sa/l~.um aqueous bulb extract<br />

3, Infected plants


PLATE 6


Kaoialakannan (2001) reporled he antifungal erfect of Prosopi.c ,jul~/lorcr,<br />

Ziziphus tujuhu and Aitrdiruchla indtcu in reducing the PDI of t'yrrcuiuriu grisco -<br />

~noculeied paddy plants.<br />

S~ngli el ul (2001) reported the effect of' the fungicide ridomil in reducing the<br />

PDI of'I'l~y~o/~hrhoru cinnamoni on pointed guard.<br />

I lierc was significant increase in the electrolytic leakage of infcctcd fruits<br />

coniparcd with control fruits due to the disruption of the cell plasma membrane and cell<br />

wall b! 1111. penetration process of C cupslri (Mahadevan and Sridhar, 1996).<br />

Singh L'I ul (2001) reported the increased electrolytic leakage ofthc paddy seeds<br />

infected \\~tll different fungal spp.<br />

I Ile reduction in the electrolytic leakage of the treated fruits could be attributed<br />

to the I'unglc~dal compounds present in the test plant extract. which nii~ht have ~nhibited<br />

the groutll and penetration process of C cnpsici (Singh er ul.. 1993).<br />

In rlie infected fruits compared with control fruits there was significant reduction<br />

In tlie pl~otos~nthcti pigments. carbohydrates. nucleic acids. protein. amino acids.<br />

capsaic111. ccllulosr. amlno nitrogen and ascorbic acid contents.<br />

'1 hi. decreased level of biochemical constituents in the infected fruits lilight be<br />

du' to IIIC tos~c metabolites produced b) the C.cupsrci. which affect tlie host<br />

1net3holl.1n (V~rpn~a el ~rl.. 1997).<br />

ltl rrtated liuits insignificant decrease uas noticed in all the aho\ementioned<br />

hiocIirn~i~~,il cc~nstituenrs compared with control fruits. As the PLII \\as found to hc<br />

reduced 111 treated fiuits. there was insignificant reduction In the hlocliemical<br />

cons~ituclits compared \\ ith conlrol I'ruits (V~dhyesekaran el crl.. 10971


I'arirnalan (1999) reported the decreased PDI and increased synthesis of<br />

biochemical constituents in Ccapsici - inoculated chilli seedlings treated with aqueous<br />

plant extracts compared with infected seedlings.<br />

Phenols, proline contents and activities of oxidative enzymes (p


PLATE 7<br />

Effect of A.sativum aqueous extract on the total soluble leaf protein profile<br />

of C.annum plants infected with C.capsici - in vivo.<br />

Lane 1: Protein Marker (BSA, 66 kDa)<br />

Lsac 2: Control<br />

Lane 3: TRatmmt<br />

h 4: Infected


iosynthesis of lytic fungal enzymes i~~volved in cell lysis (or) their secretion at rl~c<br />

point of fungal penetration (Daniel and I,ucas, lYY5; Milling and Richardson, 1995).<br />

SDS-PAGE analysis of total soluble leaf protein profiling studies did 11ot shou<br />

any significant difference between leaf protein profiles of control and treated plants<br />

(Plate 7). This shows the alleviating effect of the test plant extract on the harmful eRi.ct<br />

of C'cupsici on the protein synthesis of treated plants (Mutliulakshmi and Sectharaniaci.<br />

1987). However, in the infected plants the protein synthesis was found to be inhibited.<br />

which is etident from the lesser intensity and width of the Icaf protein bands compared<br />

with control and treated plants (Plate 7).<br />

'Thc inhibition of foliar prote~n synthesis during pathogenesis has already<br />

reported (Jabakuniar rt ul., 2002: Chakrabony et 01.. 2002).<br />

'I'lle antifungal compounds present in the A saiivum aqueous bulb extract were<br />

Sound lo he tnixture of sugars. proteins and amino acids.<br />

In tlic present study both the crude .l .vurivum solvent extract and the purilied<br />

active fractions (sample 1 and 2), which produced cent per cent inhibition on the<br />

conid~al germination of ('cupsici failed to. produce an!,<br />

inhibition on the radial<br />

~nycelial pro~h This could be attributed to the sufficient concentrations oi' the active<br />

princip1e.i presenr in the crude extract and the activc fractions. which could bring out the<br />

inhihit~on on conidial germination but not 011 rhe radial mycelial grou~li (Chitra. 1998).<br />

l'lic heat stablc nature of Mirtrhrl~\ julcipu antiviral protein \(as reported b!<br />

IiabuLi~ i3/ 111. (I%9).<br />

I'lic ant~li~tigal activity of peptides from Heliunrhus co1nu.s flower against<br />

Sclerorotlrtr sclcroirr~m was reported by Mariana ei a/. (1997).<br />

It (Anonymous. 2002 b) was reported that sugars and proteins of A saiilstrm<br />

showed antifungal and antibacterial activit! against yeast and Pediococcus.


Antifungal amino acids was reported earlier from whey protein of milk<br />

(Anonynlous. 2002 c).<br />

The results or the present study suggest that the A.sulivun~ aqueous bulb extract<br />

because of'its strong antifungal activity against C'.cqsici both in in vicro and in vi,ro<br />

conditions with non phytotoxic effect ma! prove to be an effectiic eco-friendly phyto<br />

fungicide for controlling the fruit rot of chilli.


SUMMARY<br />

The present study brings out the cfleci ol'aquuous extracis 01'275 plan1 spp otl<br />

the conidial germination of chilli Fruit rot Fungus ('cupsic; and thc cl'kcts of aqucous<br />

extracis of 27 plant spp. which produced above 50% inhibition on the conidial<br />

gernlination both at 24 h and 48 h, on the radial mycelial growl11 01' C'.cul~sici, 01' the<br />

aqueous extracts of 27 plant spp, screened only thosc of L.incrmi.~ leaf and .I su/ii~um<br />

bulb aqueous extracts were found to produce nlaxlnium inhibition ( IOOU/o) ho~h 011 the<br />

conidial gerniination and radial mycelial grohth ol' ('.iul7src1. I'hc rcs~~lt ol' I. iner-1111s<br />

has found to be inconsistent. Hence. A.suli!~uni aqueous bulh extraci (the icst plant<br />

extraci) was selected for further in viiro and in i'irbo studies against ( ' [.U/,SIL,I<br />

Thc shelf life of the test plant exiracr was Sound to persist upio 6 ~ccks agai~ist<br />

('cupalcr and the antirungal compounds were Uound to be stahlc on heat trcatmcnt.<br />

Regarding phyiotoxicity studies. the test plant extract was lound to inhibit the<br />

seed germ~nation of chilli. On the contrary. when sprayed on 25 days old chilli<br />

seedlings it was found to stimulate the gro~.th and the s!.nthesis ol' photosynthetic<br />

pigments. carhnhydrates. nucleic ac~ds. protein. amino acids. phellols and the acti\,ities<br />

r)So\~daii\cn/!nlcs.<br />

studics.<br />

At I.l)i,, (0.7%) concentration the rest plant extract \+as uscil lilr ti~rrhcr in vi~ln<br />

'I'licrc \+as signilicant increaw in the cell pcrmeahilii! 01'<br />

rrsarcd ('cccl)r~r;<br />

compared \\~rh control. The DNA s!~nthesis was I'ound to he insig~nlica~ltl! afictcd in<br />

trcaied ('~~,psrcr. Similarly there werc insignificant changes in iOc d~l'l'crcnt rcsiliction<br />

enzynles based gcnoniic DNA profiles ol' treated i'.capsrcr compared with control.<br />

However the synthesis of RNA. protein, I'ipid cc3ntents and the activities of pectinolytic.<br />

cellulol!\ic.<br />

alnylase and invertase enzymes of treated ('r(ri).\ic.r \+ere lbutld to be<br />

significa,jtl! inhihilcd colnpared with control. On the contrar! thc acti\ iticb of'oxidative


enzymes of treated C.capsici were found to be significantly increased compared with<br />

control.<br />

Extracellular protein profiling studies of treated C capsici showed significant<br />

difference in the protein profile in terms of width and intensity ofthe protein bands and<br />

even some of the bands were fbund to he missing compared with the protein prolile of<br />

control.<br />

10% concentration of the test plant extract was used for in vita studies<br />

There was significant reduction in the PDI of treated chilli fruits compared with<br />

infected chilli fruits. There was significant and insignificant increase in the cell<br />

permeability of infected and treated fruits respectively compared with control fruits.<br />

l'he synthesis of photosynthetic pigments, carbohydrates. nucleic acids, protein,<br />

amino acids, capsaicin. cellulose, amino nitrogen and ascorbic acid were found to be<br />

significantly inhibited in infected fruits compared with control fruits. In lreatd fruits<br />

there was insignifiiant decrease in the above mentioned biochemical constituents<br />

conlpared with control fruits.<br />

Phenols. prol~ne contents and the activities of hydrolytic and 0xidatij.e enzymes<br />

werc found to he iiioderatelg'. highly and slightly significantly increased respec~ively in<br />

infected fruits compared with control fruits. where as in the treated fruits only in the<br />

case of h!drolytic enzymes a slight significant increase was observed. Phenols. prol~nc<br />

contents and thc activities of oxidative enzymes were found to be insignificantly<br />

increased co~nparcd with control fruits.<br />

'I'otal soluble leaf protein profiling studies showed signtlicant differencc in thc<br />

protcln hands of inkcled plants leaves in terms of lesser width and intensit! of protein<br />

bands compared with control plants leaf protein profile. 'l'herc was ~nsignificanl<br />

dilkrcilct. In thc protein profiles betwocn treated and control plank.


, .<br />

I hc active conlpsunds present in thc A sulivuni aqueous bulb extract were found<br />

10 be the mixture of sugars, protein and amino acids.<br />

The results of the present work establishes the antifungal effect or A swrvum<br />

aqueoui bulb extract against C'cupsici both in in vilro and in 1i18o condition with non<br />

phytotoxic effects. Hence A solivum aqueous bulb extract could be used as an<br />

alternative. hiodegradable and environmnentally salcr bioh~lgicide against the chilli<br />

anthracnose fungus C cupsici.


REFERENCES<br />

Anbazhagan.I!.<br />

(1985). Alrernuriu leaf'sp~t of brin,ial. Al I'hil, l)i,\ter/~trron, Annamalai<br />

<strong>University</strong>. Annamalai Nagar. India<br />

Anonymous (2002 c).http:/www.custornprobiotics.com/whey.htm.<br />

Agarual.M.1 Satish Kumar. Goe1.A.K. and Taya1.M.S. (1982). Biochemical analysis<br />

of turmeric: some hydrolysing and oxidative enzymes and related chemical<br />

metabolites. Indian Phyiopath.. 35: 438-441<br />

Amodioha.A.C. (1998). Control of powder! mildeu in pepper (('al~srruril annurri L.) h!<br />

leuf cxtrdcls of papaya (Curicu /)u/?tr~.rr L.). J Herbs. Spree.\ h !tdrcinul PIonr\.<br />

6: 4 1-44.<br />

Anandarq.hl, and Lee1a.N.K. (1996), losic effec~ of somc plant extracts oil<br />

l'l!~ ioll~hihoru cupsicr, the foot rot pathogen of black pepper. lntlran Phi,ro~~ctrh..<br />

19. 181-184.<br />

Hanibaualc.0.M. M0han.P. and Charahart!.M. (1995). Ellicac! ol' some medicinal<br />

plants against cotton pathogens. Ad Pluni Sci., 8: 224-229.<br />

'Bligh.1. C; and I1ycr.W.J. (1959). A rapid rnethod ol'toial extl.ac~io~i an~i pur~lica~ion<br />

('err .I Biochem Ph~:vrol.. 37. 01 1-01 7.<br />

*Bora.R.S.. Murthy.M.Ci., Shenbagarithai.~~. and Sekar.V. (1994). Introduction to ;I<br />

l.cpidop1cra11 specific iasecticidal cr! stal protcill gcnc of Il~rc~illtr~ ihuri11girnrir<br />

sub sp. ktrrsraki by conjugal transfer in to a Bacillus ntc~lctcrirtni strain that<br />

persists in the cotton phyllosphere. .4ppl. Environ Microhiol.. 60: 114-222.<br />

70


*Bray,G.H. and Thrope, W.V. (1954). Analysis of phenolic components of interest in<br />

metabolism. Method in Bio. Chem. Anal., 1: 27-52.<br />

Britto,S.J., Leo,M.B.N., NatarajqE. and Arochiasamy,D.I. (2002). In vi~o antifuagal<br />

properties of Tinospora cordifolia (Willd) Hookf and Thomm l Swalny Bot.<br />

CI., 19: 35-36.<br />

Buchenaur,H. (1 978). Anology in the m& of action of fluotrimaarle and chlotrimamle<br />

in Ustilago avenae. Pest.Biochem. Physiol., 8: 15<br />

'Burt0nA.J. (1956). The study of the condition and mechanism of the diphenylamine<br />

reaction for the calorimetric estimation of DNA. Biochem. J., 62: 315-323.<br />

Ce~one,F., Andebrhan,T., Coutts,R.H. and Wood,R.K.S. (1981). Effect of french bean<br />

tissue and leaf protoplast on CoNetotrichum Iindemuthiunum polygalacturonase.<br />

Phyroparh. Z., 102: 238-246.<br />

Chacko,S., Khare,M.N. and Aganval,S.C. (1978). Cellulolytic and pectinolytic enzymes<br />

production by Collerorrichum demarium f. sp. fruncatum causing anthracnose of<br />

soybean. Indian Phyropath., 31: 69-72<br />

Chakraborty,B.N., Dutta,S. and Chakraborty,U. (2002). Biochemical responses of tea<br />

plants induced by foliar infection with Exobaridium vexans. Indian Phylopath.,<br />

55: 8-13.<br />

Chakravarty,D.K., Khanna,D.C. and Giri,D.N. (1981). Evaluation of some chemical<br />

dips for the post harvest anthnicnose of chilli fruits. Indian l Mycol . PI. Prrthol.,<br />

10: 243-245.<br />

*Chance,B. and Malchly,A:C. (1955). Assay of cataleses and pxidases. Method!<br />

Enrymologv, 2: 764-775.<br />

ChitqH. (1998). In viko studies on the effect of e mts of the flower, fruit and root<br />

parts of the Dafura innoxia M. on the anthracnosc fungas, Co~leto~ichrun


cap.sici (Syd.) Butler and Bisby infecting Capsicum annum I*.<br />

Dissrrrulion, <strong>Pondicherry</strong> <strong>University</strong>, India.<br />

Ml'hil<br />

(:hitra.ll. and ~alinabiran,~. (2001). Antifungal effect of L)rrturcr innoriu M. on the<br />

anthracnose fungas Colle!orrichum cupsici, in 17irro. Ad. Piunt Scr., 14: 3 17-320<br />

Chi1ra.H. and Kannabiran-B. (2001). Effects of aqueous leaf extracts on the spore<br />

germination of Colle~otrichum cupsici (Syd.) Butler and Bisby. fiol En),. &<br />

('on.\.. 7: 53-56.<br />

Ch11ra.l-1, and Kannabiran,B. (2002). Screening of aqueous extracIs of some plants on<br />

the conidial germination and mycelial growth of Colletotrichum capsici (Syd.)<br />

Butler and Bisby. Gcohios, 29: 185-186.<br />

('liitra.1-I.. Golnall1l.V. and Kannabiran,D. (1909). Effccts of extracts of Duturo innoxirr<br />

Miller on thc spore germination and mycelial growth of C'olletotricltum ccrpsici<br />

(S!d.) Hurler and Bisby. Geohros. 26: 177-178.<br />

Chitra.H.. Gon1athi.V. atid Kamabiran.B. (2000). Inhibitory effect of Da~uru innoxio<br />

h4iller on the enzymatic activities of the anthracnose fungus ('oilr/r~/ric.hrr~,i<br />

c'ri/l.%ii'l iii ~.//ro. lndiun Ph,vtoputh.. 54: 353-255<br />

('llo\\dIiur! .S 1 1957). Studies on the dcvelop~nrnt and control of fruit rol of chillics<br />

1ir~i1~111 l'li~~opa/h.. 10: 55-61<br />

lo lo^. 1 ..1. Lorh. \.A, and Chandler.l'.M. (1989). A c-DNA based conlparison 01'<br />

deli!dr,~tiol\ induced proteins (dehydran) in barley and corn. Plfrn~ A401<br />

13 10-108<br />

Danirls.:\, alld I.ucas.J.A<br />

Biol..<br />

(1995). Mode of action studies of the anilinopyrimidint.<br />

f~~~igicide p! rimethanil on Borrytis s/vlq,. 1. br virro activily against B./irhoi, 011<br />

hroad k an (I 'icia fuhu) leaves. Pesricide Scieni.r. 45: 33-4 l


Uastur.J.l:.M.S. (1921). Die hack ofchilllcs (Cu/>sicrrm spp.) in Bihar. Men? /)el)/ Ayri<br />

lndiu Uor Soc., 11: 129-144.<br />

l)atar.V.V.(1995). Pathogenicity and effect of temperature on six fungi causing fruit rot<br />

ol'chilli. 1ndron.J Mycol. 1'1. I'ulhoi.. 25: 195-197.<br />

I)avidsc.l..G.<br />

and van der Berg-Valthius.(j.C.M. (1989). Biochemical and molecular<br />

aspects of the phenylamide l'ungicide receptor interaction in plant pathogenic<br />

l'h~~/ophlhoru spp. In: Lugtenberg.0.J.J. (ed.) Signal Molecules in I'lon~s ond<br />

I'lim/-Microhe ln/eru~/ion.r. Springer-Verlag. I3erlin.<br />

1)hanapal.K.. Joseph,'l', and Naidu,k. (1993). Use of neem in integrated management of<br />

rot diseases of small cardarnon) (Ele/iuria cardornomum). World Neem<br />

('onfcrcnce. India. kern and En~r/.unmen/. 2: 793-798.<br />

1)hawale.S.D. and Kodmelvan.R.V. ( 19781 Studies on mycoflora of seed. Seer/ Rea.. 6:<br />

23-30.<br />

1)lsli.S U . 1'npathi.S.C. and Ilpadh!.ay.ll K.. (1076). The antifungal substance of rosc<br />

tlo\\lers (Hosu rndrcrr). Don Bortrrii . 30: 37 I -3 74.<br />

I)uhc K C ( 1991). I ungicldal effect of es\i.ntial oils of three higher plants (111 sclen~ia<br />

of .\t(rc~.up/to~nr~tir phlrceolinu. 1n(lr(111 I'h~~folxtrh.. 44: 741 -714.<br />

I)uhios.ll . Gi1lies.K \I.. 1lamilton.l.K.. 1l;ihers. P.K. and Smith.1:. (1951). Calorimeiric<br />

nlethod for the deternrination of'suyrs and related substances .-lnrrl Chcm.. 28:<br />

310-356.<br />

I)urairql.\<br />

(1950). Growl1 of ('oll(%~it~ic.hurr, ctrpsici in ptcrc culrurc. Inilior~<br />

I'ln./r~l)i~/h.. 10: 109-4 13.


*I urlong,C I . C~rakaglu.(' Willrs II C and Sanly. I' A (1973) A jnnplc ptcpalatlvc<br />

polyacrylarn~dc gel clectrophoresl~ apparatus pur~ficatlon 01<br />

three branched<br />

chtl~n ?mlnoacld b~ndlng protelns lion Etcherrthru colr A1iu1 Urotiioil. 51<br />

297-3 I1<br />

Ganesan.1 (2000) M!cotouc volatlle omp pounds ol plant orlgln (~cohro\. 27 134-<br />

135<br />

(ianesru1.7<br />

and Krlshnara~u,J (1995) Antlrungal properties of w~ld piant5 -11 Ad11<br />

PIUI~ISLI.~ 194-196<br />

(ianesan.1<br />

and Lal~th S Naldu (1999) I flcct o! petal extracts all iot~~dtal gcmlnatlon<br />

of'Drcthsleru oQzue Geobiot, 18 71 -73<br />

(ido.S . and Shaln,l<br />

( 19%) Actlv~ty of pol!falacturonaw produced by Crvllhonccirru<br />

piirrr\~/r~u In chestnut bark and I(\ ~nh~bltlon h) extracts llorn amerlcan and<br />

chlncse chehtnut Ph,z.\ro/ Ado/ PI I'ci/hol .46 199-21 3<br />

(;arg.S C and .lain, R K (1998) Ant~m~~lob~al efficacq ol essc.ilt~aI o~l from ('ut~urnu<br />

ccrccrcr Indrun .I Idrcrobrol . 38 169-1 70<br />

(iehlot.1) and Hohra.4 (1997) Eflect 01 r.\tlacts of \omc haloph!tei on the growth ol<br />

Ilrr~nurra co1[111r 1ndron.l ih


G0mathi.V. (2001). Studies on the antifungal effects ol'plant extracts r~n (i~lle/o/richtrrn<br />

spp. infecting Cbpsicum annum L. Oh 11. Thesis. I'ondicherr! I~I~Iv~~sIL!. India<br />

G0mathi.V. and Kannabiran.R. (1999). Effects of plant extracts on the cull wall<br />

degrading enzymes of Coilerofrichum cupsici (Syd.) Butler and Iiish!<br />

111 the<br />

host plant Capsicum onnum 1.. Proc. In11 ('on/ I;i.oct/iers 111 /.'11nyr11 Ilirj/c,cl~ K.<br />

I'bnr Parhogen lnlerucrion. Osmania linivcrsity. I ljderahad. India.<br />

Ci0mathi.V.. Chitra,H. and Kannabiran,U. (2001). Effect of licat and organic soi\cnts on<br />

the antifungal activity of leaf extracts against ('ollr~orrichuii~ spp. (irohioc. 28.<br />

12.5-128.<br />

Ciopinath,K.. Jayaraj,J., Senthil,N. and Kadhakrishnan. (1999). It? l,irr-o evaluation of the<br />

fungicide 'tilt' against the growth and enrynie produciorl of C'ollcro/ric~ht~~rr<br />

ccrpsici, incitant of anthracnose of chillies. Proc. lt~rl. C'ot7f F1.ontiei.r III l.'tr~?,oal<br />

lliorech & I'lonl Pathogen In/eruci~on, Os~nan~a l Jni\ersit!. H!derahad. India.<br />

(;raingr.bl.I),<br />

and A1varze.A.M. (1987). Antibacterial and antifungal acri\i~! of<br />

.41~1trhorr)~s hexopeiolous leaf extracts. Inr .I<br />

179.<br />

7i.n/~ical I'1oi11 Discrnc,~. 5: 17i-<br />

(ircual.:\.S and (.rover.K.II (1974). Changes in amino acids. carhoh!dr,ttc.s and<br />

capsaicin contents of red fruits of chillir> infrcted \\lrli<br />

pcpei.u/~tn~. Indian Phyroparh., 27: 003-604.<br />

('olle~(~i~.~chtrn~<br />

Iiabul\a..l.l:.. Murakarni.Y.. Noma.M.. Kudo.'l'. and Horiloshi.K, I loS9) ..\tiuno acid<br />

sequence of Mirabili, ,jalapu antiv~ral protrln. total s).nthi.sil;. its sene and<br />

rsprcssion in Eschrrichlu coli. J. Biol. ('hr~ti.. 264. 1629-163-.<br />

Hakki.A.h,l.. 1lcim.A. and Sm.S. (2002). Anlihal.lerial ,and antifungal elf'ects ol' various<br />

plant extracts. http:llwww.gec~itcs,co1111n1dig~ah.gc~~~yayi1 Ilr~nl.


*Hampton.l


infecting Cap.~iici~rit annum L. M.lJhil. Dissertalion., I'ondicherry linivenity.<br />

India<br />

Jaspal singh and 'fripatl1i.N.N. (1993). Eficacy 01' plant extracts agalnsl I~ir.\uriun~<br />

axysporum f. sp. I~ntis on kn.\ esculeniu. .I Indian hoi Soc.. 72. 5 1-53,<br />

Jeyarajan.8. (1988). Use of botanicals for [he control of fungal and viral discases of<br />

crops in rice-based cropping systems. Finn1 WorkFhop qf IRRI-ADB-EWC<br />

Projeci on Bottrnicul Pe~r l~anirol in Ilice-hosed ('rorpprng Sysrcms.<br />

International Rice Research Institute. Man~la. Phillippines.<br />

Jindal,K.K., Gupta,S.K. and Shyam,K.R. (1994). Studies on gernilnation. vigour and<br />

microflora on bell pepper seeds from healthy and diseased fruits, lndiun J<br />

Mycol PI Pathul.. 24: 227-228.<br />

Johal.G.S., Gray,l.. Gruis.D and Rriggs.S f'. (1995). Convcr~cnt insights into<br />

mechanism deetermining disease and resistance response in plant fungal<br />

interactions. Chn .I Boi., 73: 461-474.<br />

Kalaichelvan.P.'i'. and Sumathi.L. (1994) A fungitoxic subslancc from Solununi<br />

rtrgrctr". Indiun Phr.ri~path.. 15: 112-25.;<br />

Kama1akannan.A.. Shann~ugam,V.. Surendran.M. and Srin1vasan.R. (1001 ). Antifungal<br />

propenlrs of planr extracts against I?rrccrlirrro grrsco. thc I I ~ C blast pathogen.<br />

lnditrn I'h,v~opuih.. 54: 490-491.<br />

Kapoor.A.. Kekha Mahor. Vaishampaya11.N. and Gaut11am.N. \ 198 I).<br />

spcctruni or some plant extracls. (;erlhro.\. 8: 66-67.<br />

Andfungal<br />

Karthikayalu.S. (2002). S4icrobiological and b~ochemical isolat~o~l. charactcri~iicion<br />

and purification of antibacterial. ani~fungal and anticancer compounds from<br />

~uedical plants. M.Tc Thesi.~. Pondiche17-y [iniversi~!. I~dia.


Klrdl! I<br />

1akucs.E , Race,[, Idmes.1. and Las7tlty.D (1985) Effect of the fung~~~dc<br />

lcnrtropan on the metabol~sm of some hrgher plants ~ nd I;usurrum oxj~,por rrin<br />

I'etrrc,dc ,Science. 16 1-9<br />

Kul\hre?tha,[) D , Mathur,S B and Neergdard,P (1976) Identification 01 seed bornc<br />

'Kuruc1ieve.V<br />

spe~~cs of Col/e~o/rrchum / rre\ru. 11 1 16-125<br />

and Padmavath1.1l (1997) l'ung~tox~c~ty of wlected plant products<br />

agdlnst Pyrhrum aphanldermu~um Indian Phyroputh .SO 529-535<br />

'lde~ii~nl~ li K (1970) Clevage of structu~al protellis dur~ng the assembly of the head<br />

of hdctenophage 14 Nulure. 222 680-685<br />

1 nlshnianan P (1990) 1 ffect of certaln plant extracts against (orynrsporu tutrrcolo<br />

I<br />

III~ I<br />

Intirun J A4vcol PI Purhol 20 267-669<br />

dnd I in I< R (1944) 011 the occuielice of Co//erorrrth~rrn cupsrcr In Chlnd<br />

I~~ttirrn ~RIU Stre~ice\ 11 102 167<br />

l ooliii\ I\ L dild SIiuII C A ( I 937) In \krhollc rn Plan/ Phj \rolog~(Mc Cirdu 11111<br />

t3oiA ( o) Neu ! ork<br />

'1 oi\~\ O H Rosenbergh N 1 l arl A L and Randall K I (1951) Protc~n<br />

drtern~lnatron using 1 ol~t~-c~ocal~sau reagent J B~ol C hen1 . 193 265-27.5<br />

Mc h~~int-\ Ii I4 (1923) A ncu $>\tern of grad~~ig of plant diseases J 4grrc Kc\ .26<br />

105-218<br />

Mahadtian./\ and Slid11dr.R (1096) hk~hotl\ In /'h)~&ro/ogrc~r/ plunl Pu~holog~j (4 "'<br />

l di ) SnaLam~ Publ~cauon Chennd~


Mahrotm,R.S. (1996). Plan1 Physiology. Tats Mc Graw llill Pub. Com. Lim~td. New<br />

Deihi.<br />

Munandhar.J.B:,<br />

Hartmsn,G.L, and Wang,T.C (1995). Conidial germination and<br />

appresorial formation of (.'olletorrichum cul~.~ici and (:doeosl~oriordc.s isolates<br />

from pepper. Phnt Diseu.rc.s. 79: 361-366.<br />

Manjeet Kaur and Deshpande.K.U. (1980). Studies on pectinolytic enzymes of certain<br />

fungi causing leaf spot diseases. lnditrn Phyropurh., 33: 333-334.<br />

Mariana.R.(:., Bruno,C.P.A., Wil1iam.F.B. and Laura.D.L.C. ( 1997). 'l'hr anii(irnga1<br />

activity of peptides from Heliunrhus unnus flower against Sclerotiniu<br />

scleroliorum. http:/labstract.aspb.org/aspb1997/j4-20k.<br />

Mar0on.S.. C1arissa.J.. 0pina.O.S. and Mo1ina.Jr.A.B. (1984). Evaluation of crude plant<br />

cxtracts as fungicides for the control of C'crco.~poru leaf spot of Munghean<br />

(I'i~niradiufu (L,.) welzeck.). Phil Phyopurh.. 20: 27-38.<br />

Mc Creadg.K.M., Guggolz,J., Si1viera.V. and 0wens.H.S. (1950). Determination of<br />

starch and amylases in vegetables. Applicatio~~ to peas. Ind DI~. ('hen1 ilncrl<br />

1:'iI.. 22: 1 156.<br />

Mc1irc1~ra.R S and Ane1a.K.R. (1990). An I~rr~~o~lut~~ror~ to Mycoloa,. Wile! 1:astern I.id.<br />

*Millinp.K.J. and Kichardson.C.J. (1995). Mode of action studies of the<br />

anilinopyrimidine fungicide pyrimethanil on Borrytis spp. 2. Effects on enzyme<br />

secretion. Pesticide Science. 45: 43-48,<br />

Misra.A.P, and Mahm0od.M. (1961). Effect or vita~nins and horrllones on growtlr and<br />

sporulation of C'ollerofrich~rm caps/t,r. Iitdiun ph!,topath., 14: 20-22.<br />

Mism.S.B. and Dixi1.S.N. (1976). Fungicidal spectrum of the leaf extract of Allium<br />

~u~rrum. Inrlicln Phylopurh., 29: 448-1.19.


*Moore,S. and Stein.W.tl (1948). I'hotometric ilinhydrin method Ibi II\C ill tllc<br />

chromatography ofamino acids ,I Biol. C'hmi.. 176 367-388<br />

Mukesll Kumar pandey. Singll.A K and Singh.1t.R. (2001 ) Mycoto\ic stc~dic, (11 \olnc<br />

lugher plants. lndrun IJ/i,yiolxr~h.. 54; SOY<br />

Murugaaandan~,V., Suryanarayana.R S and Venkatacl1alam.S. ( 1987) I:orili,~tion of<br />

infection structure ~n Colle/o/rrr.hum cu/nrci as influenced b! nirogen sources<br />

and cellophane ('rrrr Br . 13 671-675<br />

MuthulaLslimi.l' and Seuthaian1an.K (1087) \ sr of plaiit extract.; 111 the nlanagcmcnl<br />

of fruit rot disease of chilli caused b! Alrerrictr~rtr len~ric hces I'ro~ Brol<br />

('ortlrol of Plunr I>r\c~cicor. Natio~lal WorLshop. Coln1batol.e India<br />

Nanddn.K.J and Anup.K.J (2002) Allrrrrn ,~u/~~~irm Garllc I.ashun IJliv/op/ior.r~i. 3 h-<br />

I h<br />

Nan1r.S I' and Kadu.H I3 (1987) H'l'ci.[ ol' somc med~cinal plant< cutracl on ,oilre<br />

tungi Arra Uorunrcu Ilidru. 15 170-175<br />

Narai~l.\ and I)as.I)S (1970) luxiii ~voduction during ~~~I~O~CI\C?<br />

01<br />

('oll~~orrrcbirrn CCI/~\~CI causlnf ,inthracno\t. nt' chillies Irltli~oi Ph)'r~l~~r~h 23<br />

484-390<br />

Narain.A and I'anlgrah1.C ( 197 1 ) hfficac! of' wnr. fuiigtc~dal cc~nilioundi to coiitrol<br />

('olle~orrrchum cup~crrn ~r\c,crses. \ar~trnal \\orh\lrop.<br />

Cormbatore. India<br />

Natarqlail.M.K. and La1ithaLumari.I) (1987) L.mf extracts of Lcn~ \orsru riii,r.nii\ as<br />

a~~~iiungal agent. ('un. Scr.. 56 1021- 1022


I'alqmwer.M.Y. (19117). Growth and sporulation of C.capsici and C'.curcuniue on<br />

different culture media. Indian J. Mycol PI Pathi., 17: 208.<br />

Pa1arpawer.M.Y: and Ghrude,V.K. (1997). Influence of different nitrogen sources on<br />

growth and sporulation of C.capsici and C.curcumae. lndiun J. Mycd. 1'1.<br />

P~/hol., 27: 227-228.<br />

l'andey.l).K.. l'ripathi,N.N., T'tripathi.R.D. and Dixit,S.N. (1982). t:ungitoxic and<br />

Pande!,K.K.<br />

phytotoxic properties of the essential oil of Hptis suuveolens. Phytoplh.Z..<br />

344-$49.<br />

(1983). Antifungal activity of some medicinal plants on stored seeds of<br />

Eleusine corucana. Indian Phylopath., 35: 499-501.<br />

I'arr~nala~l:I. (1999) Studies on the effects of culture filtrate of C'olle~orrrchum cccp,\icr<br />

(S!d ) Butler and Bisby on seedlings of Cupsicunl rtnnoni L. A4.Phil.<br />

I)r\\c~r~u/roti. <strong>Pondicherry</strong> <strong>University</strong>. India.<br />

I'atclia~\;c/~nmman.S. (2002). In 11i1ro studies on antifungal acti\it! of Aglriu<br />

~,I~r~~~r,ytior~Ic~' \ ar, coro.1~1lensr.s Gamble, A! Phil ~~.\.\c~f'/i~l~0li. Pondichcrry<br />

\ ln\crsit!. India.<br />

I'at~l.l


I'ug;~/.licntlii.S. (2001 ). IYfecl of aqueous leaf extract of I).innoxiu. culture til~ra~es of<br />

lirchodermu spp. and bavistin on Cb~leiolrichum gloco.sl~urioides (I'enz.) l'enz.<br />

And Sacc. Mphrl. Disserto/ion, <strong>Pondicherry</strong> Ul~iversity. India.<br />

RadI1a.M.. Mala.S.K., Revathy,G. and Solayappan,S.R. (1998). In ~fitro antifungal<br />

properties of garlic (Allium .sa!ivum L.) extracts against Colle~o~richumjhlcarum<br />

kcnt. .I. Hiol C'onlrol. 12. XI -83.<br />

Ralapaise. R.G.A.S. (2002). http:llw.gov.lk/AgricultutelAgridep~1~ordi/Pub-Absl<br />

f


*Kawal.V.M.. 1'atel.U.S.. Ra0.G.N. and Dcsai.K.It. (1977). Chemical and biochemical<br />

siudics oe cataracts md human lenses 111. Quantitative study ol' proteins, I


Senthil Kurnaran,R. (1998). In ilr1r.o phys~olog~cal studlea on the rllecls ol w~ld pldnl<br />

extracts on Cbllerorrrchum cap~~cr (Syd 1 IJutler and Utsb! causing antli~aenose<br />

111 Ctrpsrcunr unrtum L (cli~ll~) M lJlrrl I)r~.serro~ron. I'ond~clicr~) (Jn~tcrs~t!<br />

India.<br />

Sentht1nathan.V and Naras1rnhan.V (1987) Effect of plant exiract3 on mycelr~l you~l~<br />

and spore germtnatlon of Allcrnurru ~enutc\rmu lnc~tlng the bl~ght ol' onion and<br />

the nature of the ant~fungal compounds I'roc Niriror~ul Mi11 k\hop on Ij~olo~~r~ul<br />

('onrrol of I'lunl drreme 1'NAU Colmbatorc, lnd~a<br />

Shuhla.11 S . Chaturved~.R V and I ripath1.S (' ( 1989) h4ycoto\1c ploperrlea oi Iru~ts<br />

of I.oenrculum vulgure and IJrmj~rnel!tr itnrrrrm J Ir~dran hot ';oc . 68 113-144<br />

S1ngh.l l N P . Prasad.M M and S1nha.K K ( 1993) E\ aluat~cin ol mcdlc~nal plant<br />

eltracts agalnst banana rot .I Indrr~ri hol Soc . 72 163-164<br />

Slt~gh.M I . S1ngh.M S and Pandc).R R (1001) Lffrct ot storage t'ilng~ on elcct~ol~tic<br />

lenbayc from I Ice seeds Indron I'ht II~INIII ,51 12;- 125<br />

S1ngh.V . 1'athak.S P . Chakrabo~-t~.D K and S1ngh.S 13 (7001 I tfl'ect of some<br />

lut~g~c~des. orgnlc ammdnients and h~oagent on rnallagclilrnt of vine rot ol<br />

po1111r.d gourd lndrun Philoporb. 54 508<br />

Srl\asia\a.4 K and 1.al.R (1997) Srud~cs on blotuny~c~dai propi.lrlc\ 01 lcal c\tr,cct ol<br />

sonic plants Indrttn Phi~/o/xr/h . 50 408-4 I 1<br />

Sugundlal Keddg.M . Karnapandu.S . and Appa Rao.A (1980) Cross reslstalice ol<br />

ILng~c~dc resistant slralns G'ioeo\lx~r irtm ornprloplrirgrrm ( o!!c~~o/rrchwir c[rp\rc i<br />

nnd I.rr.\crrrtm~ ox,vsporu~i~ I'rp<br />

I'lr~/o~/,t~r,/h . 33 450-455<br />

I~ropcr.\rr~ to olhc~ lu~~g~c~dc\ Irrd/in~<br />

Sutto11.B (' ( 1973) Coelo~nycctes spp 111 th~, hingr Vol IVA I ds C C A~n\\ci~?Ii.<br />

Sparrow.F.K and Suss~uan.A.S., Acadern~c Press New YorA


Sutton.B.C. (1980). The Coelomycetes. Commenfiealth Mycological Ins~~rutc Keu.<br />

England.<br />

Thoppil,l.E., DeenqM.J., Tajo,A., Sreeranjini.K., Kochuthressia.M.V and Leeja.1.<br />

(2002). Antimicrobial potential of the essential oil of Arlin~i.,irr n11:;1.1c.i1 (('larkc)<br />

Pamp. Geohios, 29: 181-182.<br />

. .<br />

1hyagarajan.R. and Krishnamoorthy,N.R. (1999). Antifungal actit ~ty ol' sonic<br />

compounds isolated from Eclipta alha Hask. and Wedeliu /riloho/tr (I..)<br />

Geohios. 26: 91 -94.<br />

Hitche.<br />

I iuar~.R.. IJpadhyaya,P.S. and Mishra, D.N. (1990)..l.oxicity of vapours of some green<br />

p~ants against Aspergilusjlavus and Penici//iccm oxulicum. (;eoh~)s: 1.7: 63-66.<br />

'l'r1patl1i.M.N.. Shuk1a.D.N and Dwivedi.B.K. (1999). EfTect of some aqueous exlracts<br />

of leaves of sonic medicinal plants on spore germination of k'~rs~o.ium spp.<br />

8to1,rd.. 10: 43-44.<br />

* I suda.M.. Ileyama,A.. Nakana.M. and Fujino.Y (1972). Chemical components of the<br />

l~pid ol'fielmin~hosporium oy:uc<br />

.inn l'ln,~o/>urh. Soc.. .lapan. 38 60-07<br />

*l ,ma.S.. Ravisl1ankar.K.V.. Prasad,P.G.. Reid..l.l>, and Uda! akumal..M. (1993).<br />

Abscisic acid responsive proteins induce salinity stress tole~.a~ice in lingermillet<br />

( E~~,u.vIII~, coructrrm Gaerth.) ('urr Sc.i.. 65 514-554.<br />

I lpadli!aya.M.L.. and Gupta.R.C. (1990). tltects of txtracts oi'snmc mcdlclnal plants<br />

(111 thc groulh of ( 'ur~~rrlurio 11mu1cr Ir~dirtrl .I \!11col 1'1 I'uilrol.. 20 111- 145.<br />

v ii~~hnc! ..<br />

.\'.(2001). f'llect of plant extracts on I)~.c~~~hs/rrrr ~runlirwtr. the caubal agent<br />

of stripc disease of barley. lndiun 1'/1~,1(1~xrrh.. 51: 88-90,<br />

Vcc.ra~nolian.li.. (iovindarajulu,'f. atid Kanms\\anl!.V.<br />

(1994) Uiochemical and<br />

ph!.siological changes in chilli leaves inoculated with Alternuria solani.<br />

.kt P~JIII Scr.. 8: 414-416.


Vidhyisekara~i,l'., Rabindran,R., Muthamilan,M., Nayar,K.. Io~h . 54: 393-298.


LIST OF PUBLICATIONS<br />

C11itrt1.l I.. (ic~mathi.\', and Kan11abiran.B. (1 999). Effects of extracts of I)tr/trrtr rn~~o.~irr<br />

\llllCr on the spore gemmination and mycelial growth of' ('ol/c~ro~r.~i~/~rr,rr i r~/)\rc.t<br />

(S!d. I Uutlrr and f3isb). C;eobio.c. 26: 177-1 78.<br />

(.'hitra.li . (jomathi,V, and Kannabiran.B. (2000). Inhibitory rt'frci of l)rr/uro rnr~orro<br />

\lillcl on the en~ymatic activities of the anrhracnosc Sunyus ('o//~~o~rrr III~I~I<br />

~'1/1\11 1 111 1 ,1/~11. 111diun f'l~,v~~~p~r/l~.. 54: 353-255<br />

( i(l~ima[l~~.\ . ('1litri1.l I . itnd Kanr~ahiran.B. (2001) Efkct oChcat and organic \~rl\cnt> oil<br />

~lic ;r~~iiti~ngal act~vity of' leaf extracts against C'o/l~iorricAirr~t spp. L",ohior. 28.<br />

l25-l28.<br />

l11tra.tl 31111 lii~nni~hiran,B. (1001). ESSects of' aqueous leal' e\lraci.: on [hc aporr:<br />

;;:~il~~l.~liti~i (11' ( ~~l/~~~orr.r~~/i~rm<br />

CCIIJ~~L~~ (Syci.~ B~~tler a11d BI+!<br />

( ,!,I! , - j?-5(1,<br />

1;iol 1.111 d<br />

( Il~ir,~.l l .~iid ha111iah1r31m.B. (2002). Screening of aqueous extract2 of' sow plalit3 on<br />

I!); con~d~al germination and rnycclial growth of ('ollcrorr r'.lrrrr~r trr/J\rr r (S!d. 1<br />

RittlL.1 .!!id Rish\ G'eohio\. 29, 185-186.


Vd. 26{4), 1998 177<br />

GEO610S26~l77-178,1999<br />

EFFECTS OF EXTRACTS OF DATURQ INNOXIA MILLER ON THE SPORE GERMINATION AND<br />

MYQLIAL GROWTH OF COlLElULRICHUM CAPSICI ISYD.) BUTLER & BlSBY<br />

H CHITRA, V GOMATHI and 8 KANNABIRAN<br />

School 01 1/19 Suences, Pondidreny UniyBrs~ly, PondrchenydO5 014, India<br />

(Rwived Febmary 27, Rewsed July 26, 1999)<br />

Key wds Extra& of Datum tmwa, spore gemmallon, rad~al growth of ColIelomd,um apsm<br />

ABSTRACT<br />

While all the extracts of Datum ~nnar~a lnhmbfted spore pernunatton ot Cdleotndrum<br />

CBP~CI, only flower hol waler exEnct (BOOC), fmtt ethanol extnrct and Rower methanol<br />

extracl mnhtblted the radlal growth of gemmnated spores<br />

INTRODUCTION Spore suspension of about 8000-12000<br />

Fruit rot of chilly caused by Cd/etotnchum sporeslml of sterile distilled Water was<br />

capsln is one of the important and destructive prepared by using the haemocytometer. The<br />

diseases which causes substantial loss CaVlty slrdes Were maintained Ill tnpllcates<br />

In recent years, several phytoextracts are lnSSlde a moist chamber with 20 per cent<br />

being used as funglc~des for the cdntrol of extract and equal Of Wore<br />

various plant pawens (Gohi1& Vah, 1996). SUSPenslOn. The conlrol was made up of<br />

There are a number of reports on the ~ ~ \ ~ ~ $<br />

antifungal nature of different species of (Nene 1971, ;vas followed to study the<br />

Dau@ ('J~dhyaYa 4 Gu~ta, 1990; Gomathi<br />

of all the exbacts on the<br />

Kannabiran! lgQ9). There Mtems to be no grM of C,<br />

For this purpose PDA<br />

lnfcnation warding the '%Iicida1<br />

Of (Potato dextrose agar) <strong>plate</strong>s containing 10%<br />

9~tura innoxla so far in this connection. em were used, The percentage of<br />

the present investi@tion was taken spore gemination inhibition and mycelial<br />

up lo W out the effect of different exbacts gm was by using the<br />

of D. On ti^ and fm& of (1927).<br />

RdialgrowlhdC.~.<br />

Only fruit, !lower and root of D, imoxia I 1 ~ x 9<br />

were studied for their antifungal awb and I = InhWition of spore gerrninationlmycel~al<br />

their aqueous extracts were prepared by g m ~ c , = gemination I growth In control,<br />

using the method of Senthihathan & and T = gemnation I growth in treatment.<br />

Nuasimhan (1993) and for hot water extrads<br />

ol huit and flower, thek aqueous extracts were RESULTS AND DISCUSSION<br />

heated to different temperatures (40°C ,a the tested extracts of D, bmoxia were<br />

12%) (Narayana Bhat 8 Sivaprakasam, fwnd to produoe varying degrims of inhibition<br />

1803). Ethanol, methanol and acetone in spore gemhation of C. cap&<br />

UWb Offdl and fbW ~rsDared by (We 1). Among them, flower hot water<br />

ruhq the mothod of Natarajan il Lalitha- &~CI (4@i2i°C) produced cent per cent<br />

kumui (1987b). inhibition d spore gmination both after 24


GEOBlOS<br />

178<br />

~~w 1. -01 differant exirec$ of 0. won REFERENCES<br />

the spore gadnatbn ndidgmh ~ohil, V.P. and Vala, 0.G. Effect of axlnrcts of<br />

~tornvm capaidpaid<br />

somemedldrulphntsonthegrowthof<br />

Nam of e m Pereentape inm<br />

F ,,,,, Fwrkun m.wMm6. Indian J. myod. PI.<br />

gemstion wh Palhd., 1996, 26, 110.111.<br />

24h 48h<br />

Gomathi, V, and Kan~biran, 8. Effects of<br />

Flower aqueous exiract 45.73 36.47 31.13 aqueous leaf extracts on spore<br />

FWR aqueous extract 38.61 33.77 22.78 germination and mycelial growth of<br />

w t aqueous extract 37.56 36.66 -<br />

FWr ethanol extract 46.64 44.78 -<br />

anthracnose fungi infecting Capsicum<br />

~de(heno)em 52.74 51.58 51.22 annum L. Proc. Indian Sci. Cong, 86th<br />

Flower methanol exhad 41.65 41.14 51.22 Session, Chennai, 1999, pp. 43-44.<br />

FN& methanol exiract 29.82 29.22 17.07<br />

vhro on the<br />

Flower &&one emcf 36.61 33.69 38.08 JabminB' R' In '<br />

FwH acetone extract 28.08 26,82 11.90 efficacy of aqueous plant extracts against<br />

Fruit aqueous emct heated to 4:<br />

the anthracnose fungi, Colletotrichum<br />

40' 27.08 26.52 2.46<br />

60' 30.24 29.64 3.70<br />

capsici (Syd.) Butler 8 Bisby infecting<br />

80' 32.38 30.54 1.23 Capsicum annum L. M. Phil. Thesis,<br />

1W 29.12 28.47 4.93 Pondiiny <strong>University</strong>, 1997.<br />

121° 31.1627.54 7'40 Narayana Bhat, M. and Sivaprakasam, K.<br />

Flower aqueous extrecf heated to C<br />

40' loo loo 34.37 Antifungal activity of some plant extracts.<br />

60' 100 100 35.93 Proc. Biological Pest Control Conf.,<br />

80'<br />

1W<br />

loo 100 loo 100 51'56 46.87 Madurai, 1993, pp. 335-339.<br />

121" 100 100 23.43 Natarajan, M.R. and Lalithakumari, D. Leaf<br />

extracts of Lawsonia inemis as antifungal<br />

h and 48 h as compared to other extracts.<br />

agent. Curr. Sci., 1987a, 56, 1021-1022.<br />

Thisindicates thefungitoxicandthermwtable Nalarajan, M.R, and Lalithakumari, D.<br />

nature of the active compounds present in it.<br />

The fact that the inhibition rate was reduced Antifungal activity of the leaf extract of<br />

after 24 h in all other extracts indicates their<br />

inennis on Drechslem Owe.<br />

fungistatic nature (Jasmine, 1997). Indian Phytopelh.. 1087b, 40, 390.395.<br />

Higher rate of inhibition of radial mycelial<br />

Nene, Y. L. Fungicrdes in Plant Disease<br />

growlh of C, capsici was brougM about by . Contd. IBH PUN. Co., New Delhi, 1971.<br />

flower hot water extract (w), fndt ethanol Sen'ilnathan~ V, and Narasimhan+ V. Effect<br />

extract and flower methanol extract as<br />

Of plan' extracts I products On<br />

compared to all the other em& (Table 1). growth and spore germination of<br />

This might be due to the e m potentiality Ahemaria tenuiSSima inciting the blight of<br />

of the solvent used and 480 on the m n . onion and the nature of the antifungal<br />

tration of the active principles present in them wmponent8. Pw~ BMogicalPest Cpntrol<br />

(Nataralan 8 Lalithakumari, 1987a). In the mf., Madural, 1993, pp. 307-313.<br />

prosent study, the rate of inhibition of spore Upadhyaya, M.L and Gupta, R.C. Effect of<br />

germination could not be correlated with the OXtracts of some medidnal planta on the<br />

radial growth, which might be due to the ability growth of Curvuleda lunsta. Indian J.<br />

of wmPouM5 of the concerned extracts to mpd, Pl, POW,, lm, m, 144.145.<br />

inhihi spore gemination but not radial growlh Vincent, J.M. DisImon of f ~wl h m e In<br />

and availability of time and nutrient for the lhe prim of own imm,<br />

mymri groM of pathogen (Jasmine, 1997). igg, 159, 850,<br />

&urn


Inhibitory effect of Datum innoxia on the enzymatic activities of<br />

the anthracnose fungus Colktotrichum capsici in vitro<br />

hymes produced by tix pathogens play a pmnuncnt<br />

role In Lsease development (3, 11) Therefore<br />

hbluon of these enzymes IS rmportaat in dlsease<br />

mtml lnhlblt~on of Ihs prcduchon of enzymes by<br />

pathogens, by plant pmducts has alnady k n reported<br />

by many workers (6 9) Earher stwies m our labora<br />

tory (unpbllshed repon) on the effect of extracts of<br />

fru~c, flower and rmt of D mnmo thowed that fruit<br />

(dhanol) and flower (hot w*) e x showed ~ s~gdcant<br />

mhbmon of s p gmrunahon and mycel~al<br />

gmvlh of C capstch Funher stuhes have been con<br />

dud now on the effect of h ~ (ethanol) t and flower<br />

OMt water ) extracts of D IIUIOXU~ on the pecmlyuc<br />

and ccllulolyuc enzyme producnon of C capslc~ under<br />

m vltm condItlon<br />

Flve g mature fresh h t (calyx and h~t) of D<br />

IM~M was macerated wlth 20 ml of ethanol In a ster-<br />

11c blender after surface stenllzatlon In 0 2% mercunc<br />

chlonde solutron Ihe ground nuxtun was squeezed<br />

through double layer chtese cloth and the res~due was<br />

&d The solvent fracuon was cenmfuged at 3000<br />

rpm for 10 nun at mm tempvnture The clear supernatant<br />

was dned m a desiccator m remove the solvent<br />

The dned extract was dssolved agun in 5 ml of stenle<br />

Lstllled water (4)<br />

Rcpvltko of Lwer bot water cdnd<br />

P~ve p fresh flower (calyx and corolla) of D<br />

IIWUIU wu\ mraccJ wlth Sml cilcnk d~st~llal wukr<br />

m a rtenk blendcr nRu surfre slenluatloo m 02%<br />

mCtnrric chlonde solution 7he $round mture was<br />

q d through dwble hyu dvcrc cloth md the<br />

nridue wu dkdd Tbe wlwt fncam WIS mPI-<br />

~I(MOOrpaforlOmtnule,ItroomtPmpnaae<br />

Tbcpcll#wdiarrdcduidtbdur~twr<br />

hwvd#WCfnamarbuh(8)<br />

Reparah of peetiadytic enzgws of C C~SICI<br />

For the purpose of m vltro tests, the pathogen<br />

C cwrn was grown m Czapek's mtdtum contatrung<br />

2% pechn Two Lscs of 9 nun from the growlng t!~ of<br />

seven days old culture of C C~SICI wm ~noculated In<br />

250 ml Erlenmeyer flasks wntauung 45 ml of Czapek's<br />

medlum All these flasks contatrung Czapek's med~a<br />

were autoclaved at 15 p s I pressure for 20 nunutes<br />

before moculahng wrth dws of C capsrcl In order to<br />

detect the effect of hit (ethanol) and flower (hot water)<br />

extracts of D mnnoxu on ttLe enzyme pmductron by the<br />

pathogen these extracts were added (treated) to the<br />

flasks separately at 10% concentmuon Med~um devo~d<br />

of exaacts served as control Ihe flasks were<br />

incubated at 24-26" for seven days On the eighth<br />

day, the culture filtrates were o b ~ by d papsrng the<br />

l~qu~d cultures through Whatman No-1 filter paper<br />

placed In Buchner ftnnel The culture filtrates were<br />

stored at 2-4" under a layer of toluene In order to<br />

avo~d contanunatlon and used wrth m a wak These<br />

culture filtrates were used for enzymauc stud~es<br />

Reparatian d duldytie mzp~s of C C~JSICI<br />

The enzyme scum was prepared In the same way<br />

iw m the case of pcct~nolyuc enzymes But ~nsteed of<br />

addmg 2% pecun to the CEspeL's medium, I% car.<br />

boxymethyl cellulose (CMC) was added as carbon<br />

SOUlCe<br />

ihihuh d enzymatic Ktlvllle cf C, capin'<br />

Tbe ncunt1et of paturolytlc cnzylm polymrhyl<br />

gal- (PMG) snd pea pans d~rmnrse (PTE)<br />

Wac daanuKd by cahmamg &e I p of ~lscoslty m<br />

thcnrtioPmmrebj.~mcuhcdrt~~tervrls<br />

of Mmta&utmefmmOto 180 muw. pfta<br />

~thc~onmoxbnePaPMOmenMoa<br />

mix~tecoMuvd4mlofl%pechnd~,Imld


acetate buffer of pH 5 2 and 2 ml of culture fdm In<br />

the ease of PIZ m a bon to vlscomemc method, rhe<br />

enzyme actlvlty was detected by calculatmg the amount<br />

of tluobarbitunc acid (TEA) m n g substnnces pro<br />

ducod by the culture filtrate The W o n mmtun for<br />

PIZ conwed 4 ml of I% pectin soluuon, I mi of<br />

bonc acid-borax buffer of pH 8 7 and 2 ml of culture<br />

filtrate (7)<br />

The cellulolybc enzyme cellulese mnry was also<br />

detmrumd by the same wscomehlc method ar In the<br />

case of pcctlnolpc enzymes 'he m o n mixture here<br />

eontuned 4 ml of 0 5% CMC soluaon. I ml of acetate<br />

buffer of pH 52 and 2 ml of culture filtrate (7) In<br />

akl~bon to the vscometnc method the amount of re<br />

ducmg sugars liberated by the culw filtrate dunng<br />

Ihr~ hours of reaCUon Ume (I e 0 lo 180 mnutes) was<br />

also calculated to dekmme the acuvtty of cellulase<br />

(5) In all the caus the loss In vlscos~ty 1s expressed as<br />

percentage loss In v~scos~ry and calculated by the formula<br />

What, V =Per cent loss m v~scos~ty. To = Flow<br />

tlme of w o n INXNR at zao ume. T = Flow bme<br />

of muon matun at a patucular mtcrvd, and T. =<br />

Flow ume of dlstllled water<br />

Eauocu of fm~t and flower of D mnnoxma were<br />

fcund to uhblt bolh endo @MG. PTE and cellulese)<br />

and exo (PR and cellulase) act~vlues of pecunolpc<br />

and cellulolybc enzymes of C cqs~cm U&I ln vlfro<br />

condibon (Tables 1, 2 and 3) Umalkar and ius assoc~am<br />

(10) rcporlcd that the ~ntub~twy effect of exuocts<br />

of Acaclcl nmlor~co on the enzyme producuon of some<br />

Tabk I Effeet of cxmts of D nnoxu on the acbvlry of<br />

pechn uan~lim~nase (PTE) of Ccops~cl<br />

Tlmc ~nlclval<br />

Lar In v~scos~ly In per LO[<br />

Control FNI~ Flower<br />

ethanol hot wsar<br />

extan exm~<br />

0 0 0 0<br />

30 5 2 05 18<br />

M) 8 6 I8 18<br />

90 12 7 3 8 34<br />

120 16 1 5 9 5 2<br />

I50 21 2 7 6 69<br />

180 269 119 8 9<br />

TBA rtacung 3 7 2 7 13<br />

substances pmdund<br />

(In un~l)<br />

Mean of 3 rcpl~cates<br />

UNI = Changes m absorbandm1 of emymelh x 101<br />

Table 3. WKI of exuacu of D imxu on the actlvlty of<br />

cellulase of C copsrc~<br />

T I interval ~<br />

--<br />

Loss in v~scos~ty m pn cent<br />

Conml Fmlt Flown<br />

ethanol hot watcr<br />

exmt CXWC(<br />

Rcducmg sugars 73 3 53 3 23 3<br />

lrtuated @gM<br />

of cmYldl)<br />

Mean of 3 rcphw<br />

Tlmc fntcrvll<br />

Imc 10 vlsamily ~n went<br />

Conmrl FNII Rower<br />

&nol hotwucr<br />

exwt c x t ~<br />

0 0 0 0<br />

30 7 9 2 3 16<br />

60 16 8 5 3 1<br />

#) 24 7 86 45<br />

120 308 102 49<br />

Is0 354 13<br />

6 1<br />

180 413 158 9<br />

Mcnd3nplii<br />

pPthogeluc fun@ mght be due to the phenolic compounds<br />

pnsent m them Byrde (1) has reponed that the<br />

vanetal res~slaace of cum vanehes of cldar apples to<br />

brown rot was due to their hgh content of polyphenols<br />

Chona and h~s assoctaW (2) repoRed the tlbb<br />

tory effect of magncslum Ions and polassturn phmphate<br />

la potsto tuber e m and m&c acld m ~ l e<br />

jua on a number of plmt *I Th hblto~y<br />

dfectoffrutandQowaextm3dD urnmybe<br />

ductothcpresvlccof~MmpouDds~.ek~~<br />

& ~ompouads, which naods fur the^ mvcsnga-<br />

Uon


Of the extracts of D. ~nnoxio teatcd, flower (hot)<br />

water exmct is more efficient in inhibiting fhe exo<br />

activities of enzymes of C. cap~ici compand with fruit<br />

(uhmol) extract. This could be attributd to the variation<br />

among the compounds present with in them and<br />

also to Lhe extracting ability of the solvents used. Since<br />

~nhibition of exo activities of enzymes of pathogens<br />

play a vital role in plant pathogenesis, funher in vivo<br />

lcsting of flower (hot) water extract of D.innoxio against<br />

anthracnow fungus will lead to the development d<br />

ecolricndly fung~cidc.<br />

REFERENCES<br />

I. B& R.J.W. (1957) J Hon. Sci. 32: 227-238.<br />

2. Cbora, BL 11932). AnnBor 46 1033-1050<br />

3. Dl Pletro, A. and Roncero, M.I.C. (1996).<br />

Phylopyholo~y 66: 1324-1330.<br />

4 Cawan, T. (1993). Gtobios M: 261-266.<br />

5. Jsyararnan, 1. (1985) Lnbororory Manual In<br />

Bioekmistry 2"d Ed. Wilcy blem Ltm~ud, Chemai.<br />

6. Mshsdcvm, A. Kuc, J, and WUUIm, E.B. (1965).<br />

Phytopothology 55. IWO-1003.<br />

7. Mahdev~ A, and Sr&Jhar, R (1986) Mcfiudi in<br />

Phys~ological Plan1 Parhofogy. 3' Ed S~vakami<br />

Publ~cations, chcnnu.<br />

8 Narayans Bhat, M. and Sivapraham, K. (1987).<br />

Pmc, of Nano~l Workshop on Biol. Conrrol of pht<br />

Diseases. Coirnbatore, 322-326.<br />

9. ~RK"PateI,ICD,ShumqA.andPlthrlqV.N.<br />

(1992). Indian I Mycol PI. Porhol. W2): 199-200.<br />

10. UmslLsr, G.V, Sdyl Begun and Arua Nebrmhh,<br />

K.M. (1976). Indian Phyopdh 29: 469-470.<br />

II. Ylkoby, N, Fmmm, S, Diwor, k, l(ren, N.T. and<br />

Pnaky, D. (2WO). Mol. Plnnr Microk lnrtmcr. 1H81:<br />

887-891.<br />

Rece~ved for pubhcatlon March 12, 1999


EFFECT OF HEAT AND ORWlC SOUEUTS ON THE ANTIFUNGAL ACTIVITY OF LEAF UTRAm<br />

MST COUElPTRlCHUY SPR<br />

P-W<br />

July 11,2044: Rmbd JMwy 90,2W1)<br />

Kly : h WW baf exWb, wlwnts, heat treatments, Cdletotridrum ~ppid,<br />

c. funoiloxic adivlty<br />

ABSTRACT<br />

COW OemJruh of C. capsidand C. gkmwiidues was totally Mlblled by bat<br />

.treal6d aqueoa exttWa of dwMlm D. m#e/ and F! jdhkm. Hhbr percent inhlbitkn of<br />

redid gmwlh of C. cawid and &fmpWm was btwght about by ethanol extnrct of 0.<br />

W, ((84.52%& 875%) lolkwedby heat treated aqueous e W of S. lorn (82% & 79.43%).<br />

INTRODUCTION<br />

Anthracnose d chilli is one of the important<br />

and destructive diseases caused by<br />

CdletotfMum cepsici (Syd.) Butler and Bisby<br />

growing fields in and around <strong>Pondicherry</strong>.<br />

Cultures were identified as Colleiotrichum<br />

gloeosporioidesand C. capsiciand tested for<br />

their pathogenicily.<br />

and Cdle@M~um *ma Penzig. In Aqueous leaf extracts of S, torvum, D.<br />

India Mder'rngenial weather ~~ the mete1 and R juII~lil were prepared by using<br />

disease MY cause even 12.25% loas in the the method of Singh & Tripathi (199.3). Hot<br />

crop (Kannan et al.8 1998)- In recent Years, mter extma were prepared by heating the<br />

phytoextracts were proved be aqueous extracts to desired temperatures<br />

funOiddaltomanyplantpathoge&fyngi(Mista (40-121%) for 10 minutes (Singh & Varma,<br />

& Ml 1g76; et *.I 1g91). Asthana et 1981). Ethanol, methanol, acetone and<br />

(1984) reported that C, capsidi and C, benzene extracts were prepared by the<br />

-ddes were tdally by method of Nataajan & Laliiakumari (1887).<br />

e-1 eugend (200 ppm) and citral Conidial suspnsicn about 400MWM0<br />

(300&400ppm).Itwasalreadyprovedthat<br />

the<br />

Sdanwn lowm Sw,, ~~,,,d conidiialml in 5% conc, leaf extracts was<br />

mefelLandmjm(Sw.)Dc.~ prepared by using the haemocytometer.<br />

C.+ Conidial germination studies were carried out<br />

dronO<br />

C, mddeS (oomathi & in cavity slldes inside moist cham'bers,<br />

lw). me study was to<br />

gemination was obsetved after 24 and 48 h.<br />

detmine the of w e leaf extmcts, To evaluate the effect8 of leaf extracts on the<br />

obtained in different solvents and heat dial m~celial gmwth* Potato Dbar<br />

treatments on conidial germination and (PDA) m n g 5%<br />

rnyodirl the ~thogens. leaf extmds were used. PDA PW without<br />

leaf extracts served as control. Triplicates<br />

MATERIALS AND METHODS were maintained for each treatment. The<br />

~a caw d~lll~~ ahowing typical percent inhlbltion of conidlal genlnation<br />

rot w, wm from M I (PICG) and percent lnNbition of radial m~ceu


126<br />

GEOBlOS<br />

gmwth (PIRMG) were calculated by the (a) wCvmk#tbn:wmd<br />

fotmula of Vincent (1927).<br />

allthe~planbeatracM~dihn!<br />

phyoice-chemlorl OOMMOM wen found to<br />

RESULTS AND DlSCUSSlON<br />

wyinO drgne, d khbtktl on<br />

Effects of dmerent leaf e~tri?CtB of S. conldlal gertnlnatlon of C. ap8IcI and C.<br />

torvum, D, metel and P. juliflora'on the gbwspom Ceini percent Wbitjon on<br />

conidial gemination and Inycelial growth of conidial pflthdh of both the pathogem<br />

C. capsici and C, gloeosporlodes are was broughl about by aqwu and heatpresented<br />

in Table 1. treated lurbacls (BOPC, 100°C & 121%) of S.<br />

~ a I. ~ EM e of some plant exbcb on tha pew WllMlion of C d k m WP.<br />

I<br />

c. cdasid C.gksosporddbg .<br />

Trea$nent C. gm. - R.QL C.gem. - R. 0.<br />

24h '4th Bthday 24h 48h Bthday<br />

S. m:<br />

100 7839 100 100 78.65<br />

41PC """2 992 79.84 100 100 77.38<br />

604: 8622 100 78.07 100 100 79.43<br />

804; 100 100 82 100 100 78.5<br />

100 100 80.57 100 100 n.52<br />

121% lorPC 100 100 79.94 100 100 74.16<br />

M8thad 100 100 76.58 88.45 885 67.45<br />

w!ald 94 88.m 69.09 96.77 88.N 678<br />

Acetone 77-79 EZ.7 74.34 827 89.m 0<br />

Benzene 88.96 90.8 46.13 100 83 0<br />

D. metel :<br />

100 80.09 100 100<br />

%? im lW im m<br />

g<br />

100 100<br />

804: 98.59 100 74.17 100 100 71.60<br />

BOC 100 99.25 72.64 100 100 66.65<br />

100 107 70.86 100 100 50.81<br />

121% lmc 100 100 47.12 100 100 58.56<br />

fWd a84 94.74 75.4 100 100<br />

Ethand WP 89.88 8452 100 100 073<br />

A&m 88.88 95.44 71.w 8s 100 0<br />

6 8 ~ 86.31 ~ 81.m 0 100 100 0<br />

Fjumkn:<br />

97.7 100 41.38 958 100 38.32<br />

2?<br />

-<br />

100 QE.57 45.81 100<br />

38.88<br />

B(K: 100 87.87 42.44 100<br />

m<br />

loo 4232<br />

100 100 42.97 100<br />

.lacK: 98.1 100<br />

100 47.39<br />

107 4628 100<br />

D.5<br />

121% 90.02 88.47 42.91 100 100 11.7<br />

wmnol 95.78 95.05 04.94 100 100 3.3<br />

Emci 90.52 %27 4688 100<br />

97.7<br />

48.7<br />

872 58.18 8962 100 loo<br />

B8lZme 91.7B 77& 0 100 HX) 0<br />

C . m g m h a t i m a n d ~ . ~ & ~


tolwm, aqueous and heat-treated extracts<br />

(40% & 121%) of 0, meteland heat-treated<br />

exbad (BOOC) d t? iulMbre both after 24h and<br />

48h. this obcervation indicates the water<br />

soluble, themroaable and fungbxic natwe<br />

of adive principles of the concerned extracts<br />

(Singh & Tripathi, 1993). Certain extracts d<br />

thew planb produced cent percent inhibition<br />

on the conMial germination of C. capsid only<br />

but not in C. gloeosporioides and vbversa.<br />

interestingly the percent inhibition of<br />

conidial gelinhalion of C. Capsici was found<br />

to hcrease at 48h than at 24h when treated<br />

with ethanol, acatone wl bemne extfacts<br />

of S. lwwm and e W extract of t? julhm.<br />

Ma~beduetothefungrddalnahrreof<br />

the concerned extracts. Disintegration of<br />

genniMted conidia (Fig. 1A) iqd production<br />

of highly vacudated (Fig. 10) and abnormally<br />

stunted gemrtubes (Fig. 1C) were observed<br />

in the treated conidial sospenslon of both the<br />

test fungi. Even ungerminated conidia<br />

showed vacuolation and shrinkage. The<br />

vacuolar appearance of the conidia and<br />

permtube was due to the toxic substances<br />

present in the plant extracts. Similar<br />

obwvatfon was made by Sariah k m (1994)<br />

in the aame CoUetobidwm spp. when treated<br />

with aquws cukum RLbate of WIk subtiis.<br />

Difference in the inhibitory activity of the<br />

same plant extract obtained under different<br />

physico-chemical conditiona was already<br />

reported (Agacwal et el., 1878). The akohok<br />

fndionofdldAsavmdFiwcrrkwwashiOhly<br />

active qaht Aqw$Uu8 IwnClurf but its<br />

wfrectiongdnothaveany~tyonthis<br />

fungus. Natarajan & Uithakumari (lQ87)<br />

hm already reported the difference In the<br />

probnt inhibition of spore gemination of<br />

~rn~inethanol,mUlandPrrd<br />

wa&uctnact,dbrninemris.lMsmlgM<br />

kdwtohsd3lferencehIhe~bation<br />

ofadiwprkdpktpmmfhthe W&and<br />

thexhdhgabil#ydtheedvents~.<br />

(b) Radial groowth : The results on the<br />

antifungal nature of different extracts of S.<br />

torvum, D. meteland I? iuliflora on the radial<br />

gmwth of C, cepsici and C. gloeospon'oides<br />

~.l,AC.~ofplsntexbPcbon~~<br />

garminailon of Coll~to~chum rpp. C.<br />

&wpdddm corkla in mcthnndthrd~<br />

of f! IuMoa (A), In aaunw# heat-hated


areprewm(ildIn~abkl.~ronll~kc~ REFERENCES<br />

~,~sxtndofD.Mmfound Arthana, A., b y , N.K, Md Dhdi, &,N.<br />

topmducemm-of~<br />

Fufglbxmd WllOlhd<br />

8onledon(lrhngl.<br />

g l d l o f b o t h p a ~ . ~ ~ ~ -<br />

MJ. iubtdol.,<br />

med (mi000C) exmb of S.<br />

1084,24,1Wl.<br />

Agaiwal, I., Mathelo, C.S. and Slnha, S.<br />

produced higher PlRMQ of both the<br />

Studiw on the antlfungal acttvity of<br />

pathogens as compared with it8 otganic terpenoldeo againrt kpergIUl. lndlan<br />

solvent extracts. Hence, water can be w., lU9, 32,104-105.<br />

considered as the best sdvent for emng<br />

the inhibitory compounds of S.t q v Tewari ~ ~<br />

(1986) reported lhat the inhi#krry sdMty 'Jf,<br />

aqueous extract of A# mnndos was<br />

betterm the other treamwmts ltke ethanol,<br />

benzene, hexane, chlorofo?l, and acetom<br />

extracts. In the case of D. matel, organic<br />

solvent e x w wch as lhoae d ethenoi and<br />

methenol were most effedlve In M n g the<br />

radial growth of both the pethogens than the<br />

aqueoucl and heat-mted aqueous extracts<br />

(40%-121°C). Among those of P. julifbm,<br />

methanol extract was found to produce<br />

highest PIRMG of both the pathogens. Slight<br />

incmaseinthePlRMGofboththepathogens<br />

was observed in the heat-treeted aqueous<br />

extracts of S. tmm and F! juHtlonn This<br />

mightbeduetotheevepwEdkneffect,which<br />

concentrated the inhibitory compounds.<br />

Owic wtvm like ethanol and methanol<br />

were found to be suitable for extracling the<br />

inhibitory compounds from 0, metel and P.<br />

iulinon.<br />

Thermostable nature of the aqueous<br />

emL of 0. mefel, S. tom and P. juhm<br />

upto 80C, 1000C and 121"C, mopwllwb and<br />

ava#abillty of the leaves th- the year<br />

indicate W these plant extracb can be wed<br />

as fungicides by the farmen. Further<br />

rwaroh is in progress in our hbocatory to<br />

tdlh@cimcecyofthwpknt~hh<br />

fietd anduons to cmd the fnrit mt of chilli.<br />

ACKNOWLEDGEMENT<br />

Dube, S., UpeBrW, 0.P. and Trlpslthi, S.C.<br />

Fung#o#icwdinredrepllent~cyof<br />

some aptme. In& Phyhpalhd., 1991,<br />

44, 101-105.<br />

Qomathi, V, and Kannrblran, 8. Effects of<br />

equeouc leaf extract8 on conidtai<br />

gemination and myceilal ~rowth of<br />

anthraonone fungi infecting Capsicum<br />

mnum L Pm lndkn Sci. Cmg. 86th<br />

!3eadan! aennal, 1989, pp. 43-44,<br />

Kannan, , R., Ananthan, M. and<br />

Baiasubramani, P.<br />

Anthracnose-A<br />

menace in chlili cuttivation. Spice I&,<br />

1998, 11, 2-3.<br />

Misra, S.B. and Dixit, S.N. Fungicidal<br />

spectrum of the leaf extract of Allium<br />

sattvum. lndlan Phytopefhd., 1976, 29,<br />

448.449.<br />

Natarajan, M.R. and Lallthakumari, D. Leaf<br />

extra& of lawsonfa bwmls as antUungal<br />

agent Gun. Sd., 1987,513, 1021-1022<br />

Sariah, Meon. Pbtentlal of Wus qp. as a<br />

biocontrolagentforanth~fnrltrot<br />

of chilli. MhjS. Appl. Bid., 1994,23,53-<br />

80.<br />

Shrgh, Inder)it and Vm J.P. Vim inhl#tor<br />

from &tun motd, lndiw Phyiqwlhol.,<br />

1981, 34, 452.457.<br />

Singh Jacpal and Triprthl, N.N. ElRclcy of<br />

plant extract8 againrt Fusarlum<br />

oxyrrpoMn f.~. knlEs of Lm 8$a&ta.<br />

I J, lndbn W Soc., 1993,12,51~63~<br />

Tewari, S.N. A m Gdnklu, for bkarcly of<br />

notudDlpRprodudCvn.Sd.,1988,56,<br />

1187-1139.<br />

Vimnt, J.M. Okaoltkn of fungal hyphan In<br />

Authon thank UGC, New blhl for the thr d m m. Mm,<br />

financial arreistance. 1927, IN, 850.


Many specles of Detwe are Mely used for medicinal purposes as well as for the<br />

Malogical control of diseases (Bambawaie et el., l(is5; Ganesan, 1993). But there aman<br />

to be-no infonnetlon regarding the antifungal property of Datum innoxia so far. en& the<br />

wesent w~er deals with the elfed of fruil ethanol extract and flower hot water extract of D.<br />

imoxle in ihe physical and some metabolic adivities of the ~dlel~hm capici,<br />

cawing anthracnose dlsease of chllli. A pure culture of C, capsiciisolated from anthracnose<br />

infected chilli frutt was used thmughout thls study.<br />

Prepamtion of fruit ethanol extract :<br />

Five g metum fresh fruit of 0, hmda was well ground for about 15 minutes with 20 mL<br />

of ethanol in a sterile Mender afler surface sterilization in 0.2 per cent mercuric chloride<br />

solution. The ground mixlure wassqueezed through double layer cheese cloth and the resC<br />

duswasdiscarded. The solvent ftadionwas centrifuged at 3000 rpm for 10 minutes at mom<br />

temperature (28C). The dear supernatant was drled In a desiccator to remove the solvent.<br />

The dried adred thus obtained wi$s fully dissolved In 5 mL of sterile distilled water (Ganesan,<br />

lm),<br />

Pnpurtlon of ftowr hot wabr extract<br />

Five gram ltesh flower of D, /moxhwas well gmund for about 15 minutes with 5 mL of<br />

sterile distilled water in a sterile Mender afler surface sterilization in 0.2 per cent mercuric<br />

chloride solution. The gmund mMure was squeezed through double layer cheese cloth and<br />

Hle residue was discarded. The solvent fraction was centrffuged at 3000 rpm for 10 minutes<br />

amom temperstun (28%). The pellet wasdiscarded and the dear supematant was heated<br />

to 80% in a water bath (Nemyana Bhat and Slvaprakesam, 1987).<br />

Antirungal propr~ly of ha axtract8 :<br />

Forthe purpose of our experiment, the pathogen C. cdpsIclwas grown in Czepek's


FQ 1. ERECT OF FRUIT EMANOLMTRACT AND FLMR HOT WATER DmuCT OF<br />

0. modr ONTHE FRESH AND DRY WOWf OF C. cgll(hgn)<br />

iL-1<br />

n#m hot mler Mnol<br />

DNA RNA mYm4


chh 6 )(lmlMnn<br />

msdlum. Two discs of9 mm wen, cuf fmm ttm orowlng tlp of the seven days old wnure of C,<br />

cldosjcland they me<br />

inoculated in 250 mL Erlsnmeyer flasks wntalning 45 mL of Czepak's<br />

media. All those fWs amlalnlng CzapeKs msdhwere autodaved at 15 p.s.1. pressure for<br />

20 minutes Wm InOCUkrting with dkcs of C.mpsIcI. In orderto find out the effed of fruit<br />

ethanol sldrad end flower hot watucndtact of 0. hxls on the gmwth and metabolic actlvitles<br />

of C.cspsMthese wars m M ('treated) to the flasks separately at 10 per cent concen<br />

tretlon. Medium dsvokl ofexlracts sewed as wntml. Two sets oft~Iplicateswere maintained<br />

for each habnent as well as for contrd. These triplicates were incubated for seven days at<br />

mom tempemlure (28%). The mycellel matsfomred were collected separately by passing<br />

the llguld wlkwes along with mycellal mats thmugh whatman No 1 finer papen placed In<br />

Buchner funnels.<br />

Mycellal mats collected from one set of triplicates were used to determine the fresh<br />

and dry weight ofthe C. capslcl(l.e., growth of the pathogen) by using dried and pncwelghed<br />

Whatman No 1 fller papen. Mycelial mats colleded from another set of triplicates were<br />

wed for the estimation of DNA (Burton, iW), RNA (Mahadevan and Sridhar, 1986) and<br />

protein (LGWIY et al., 1951) cantentsof C. capsld.<br />

The redudlon In the fresh wdgM ( FW ) and dry weight ( DW ) of C, capsici was<br />

noticed when It was inhibited bv hit ethanol extract FW = 0.46~ DW = 0.210) end flower<br />

hot water extract (NVI0.38g; QW=O.I~~) of D, in&xia compagd to contmiiFVV=0.63g;<br />

DW80.27g) (Flg.1). This might be due to reduction in the rate of cell division, membrane<br />

eneqy metabolism and Mosynthesls of essential enzymes of C, capsici, as reporled earlier<br />

by Kalaichelvan and Sumathi (1904).<br />

The redudlon in the DNA content of the fungus (Fig.2) when it was inhibited by the<br />

extracts of D. hoxle QNII ethanol extrad=0.27 mg; Flower hot water exlrad=0.24 mg)<br />

cMnpared to control (0.34mg) could be attributed to the redudon in the rate of cell division<br />

and resplratlon (Hammerschlag and Sislar, 1973). Butthe RNA (Fruit ethanol mdrl.23<br />

mg; Flower hot w a t o r ~ .I3 l ma) and protein (FNI ethanol extracI=l.O2mg; Flower<br />

hot water sxtmct=lmg) contents of C. cepsldwere found to lnaease compared to contml<br />

(RNA.0.72mg; p(oleinn0.41mg) (Fig2). The Imm in pmteln synthesis can be atlributed<br />

to the tmlfng of lress Induced pmteln synthesis Mlch was also supported by the in<br />

crerss In RNA symh6sk. Similar resub have bean obtained In the CBSO of USMN mafls,<br />

when lws Inhibited by BCM (a derivative of bnomyl) (Clemons and Sislar, 1971).<br />

FurVlsr inveatbation of these exhds botq In the h v/fm and b, vhro wndttion WM lead<br />

to th9 developmsnt of mvlmnmentelly safer Mofungldde from Dstcrie lmxle a~alnsl<br />

combwtlnnCdps#ps#


~rtfdololbmhnodr<br />

REFERENCES<br />

flrmklc, ON. Punit Mohrn and Mukta CtYEurbyr l995.Effhqof @me medidnrl phna<br />

winrtcottonptho~M.PtD~SddO~M-ZZ).<br />

~~tton, K 1968 Detuminrllonof DNA-mtion dth dipb- tu Gmsmur,L ad<br />

hio~ddvt,K (Ed) Mclhobinq-b~NudaicdputB,bL,rS*pyNn<br />

York, P: 163-166.<br />

Ckmonr,C.F! mdSi~H9.1~Loalhrdmofth si~of~ofahngitmicbcao~duintirc.Pa~lochcm.phlri1:32<br />

Qneun,T. 1993.hryitprict~of*@nthf~~.~ML<br />

~cNn~RSdSi~Iar,HD.~~llod nwd+2-baalmldrcdaarbo~ (MBC):<br />

Biorhcmicrl,ryopbdold~rgcrrdtPrid~roUbflpagdbd~<br />

dPbtHodum~3r(ll<br />

Kahicbch.n,ET.dStrmnM,Ll9H.A~adc~lmoc~~aQllllrMhn~th<br />

471424423.<br />

Lowq ( XH,Rprc~ N.J,Pln, HLand~~RJ.<br />

l?5l.RotdadetarniDltionurtylblia.<br />

aocalmu reagent J. BioLCbem. W3SSn.<br />

Mnhdmn, h and Slidha; R 19% bhhod~ ln pbpbb&al plot prtbololp PEd Shrkr mj<br />

Publhtiom,Cbad,P:l67<br />

N~BbrbM.1dSinpnhEL981~APtiTuoglwdri?.d~pb~P1#,Biob~ml<br />

Olntrol of Plant D i i Naliou~l ~dahop, mud^ ICU, Coimherr,R 335-339.


Ecd. Env. 6. Crms. 7 (1) : 2001; pp. (53-56)<br />

Effects of Aqueous Leaf Extracts on the Spore<br />

Germination of Colletotrichum capsic1 (S yd.)<br />

Butler and Bisby<br />

H. Chlbr ad 0. Kannabhrn<br />

School of.Lfi SEimm, Pond*<br />

Unmity, Pondlckeny-LO5 014. lndm.<br />

Introduction<br />

Recurrent and a n d t e use of mudes that<br />

hawpoaeda~dveattohumanhealthaswme<br />

obth haw already proved to beeither mutageruc,<br />

carcinogenic or teratogenic (Imes ct al., 1960;<br />

Ccorgopouh and Zaracovitis, 1%7; Ramel, 1972;<br />

Ligtor and Zimmering, 1975). Apart from this,<br />

~psltedandhdMminatewof~esfOrthe<br />

management of plant diseases led to the<br />

development of resistance in pathogens to<br />

fungicides, residual toxicity in produce and<br />

atmo~pheric pollution (Muthulakshmi and<br />

seahMvrL 1989).<br />

?hepnanaofm~mpoundsinmme<br />

higher planb has long been recognized as an<br />

Lnpatant hdor d k resistance (Mahadevah<br />

1982). Such compd~ being biodegradrble and<br />

&dive h W krxWy, ue addered valuibk for<br />

controlling come pht diseases (Fawcett and<br />

Spnar, lPM; Tmul d al., 1988). &eed on these<br />

bthcplantdhuh*to-<br />

57kdym1LMc~~Rkmretotheefkds<br />

of thtlr rqwour leaf extracts on the spore<br />

gcrmlnatIon of Collrtotrickum capsici causing<br />

rlnkumdd$il(~amurn).<br />

m o h W k P l ~<br />

hlaterinh and methods<br />

The test fungus C. capski was obtained from pure<br />

culture stod in hboratow of School of Life %ences,<br />

Pondicheny <strong>University</strong>.<br />

Fresh leave, of diffemt plants were COW locally<br />

andsurIaceskrilizedwith~chlorideforlt0<br />

2 minutes. Again C leaves were washd repeatedly<br />

with distilled water for 4 to 5 times, to remove the<br />

traces of mercuric chloride. The leaves were<br />

pulverized well h a mixu with stedized dietilled<br />

water in the ratio of 1 ml/g of tissue and filtered<br />

through double layer sterilized cheese doth and<br />

finally the filtrate was cmbhged at 5000 rpm for 5<br />

minutes. This formed the standard plant extract<br />

(100%). The exhacl wo diluted by adding &rile<br />

distilled water to make 20% concentration<br />

(Mu* and Whmman, 1987; Jayti Singh<br />

and Triphi, 1993).<br />

~~tianstudieswencariJedaaincBvity<br />

slides incubated in moist chiunber at PC. Spore<br />

suspension of 4000-6000 sporer/ml in 10%


concentration of leaf extract was prepared. For<br />

mtml rpme swperrPioa was prepared in sterile<br />

distilled water. Slid- wen observed for spore<br />

prththafter24hand48h<br />

PaantrBpd~d~~tim~~<br />

control we+# calculated by using the formula of<br />

V i (1927).<br />

by many worh (Jmmine, 1997; Gomathi and<br />

KaFIMbiran, 1999; Chiin d d., 1999).<br />

~oftheaqwousleafexhcbartheapon<br />

~timofColpskibothafterUhand43han<br />

prrasntedintheTabkl.AUthctestedpLnt~<br />

were not found to equally inhibit aport<br />

~tloh~~plantscanbedgnedto4<br />

groups (Table 1) (Ganew, 1993; Gancsan and<br />

Krishnuaju, 1995). Group 1 plants inhibited the<br />

spore$mi~tbndCoPprkicompleklybo(hlfta<br />

24th and 48h, indicating their fung~ddrl mhur cn<br />

TABU 1<br />

EffcctofRmtBximc4mlhcSpatGsminrtbnnfCqsid<br />

S. pturt~mp punily ~ ~ f ~ n h i i<br />

No. Z(h


(XRA AND KANNABIRAN 55<br />

TABLE L Contd .<br />

S. PLntNme Pamily YO af Inhibition<br />

No. 24h 48h<br />

16 ClnodrndnrminmnLj- Vedxnsceae 0 0<br />

27 DatuminnoxLMiUn Solanaceae 0 0<br />

Ze Dalmuun-Lf. Sapiiaceae<br />

29 DdklolrlabL hbawe 0 0<br />

30 EnfoPlobhmrampn(IpalJRdn hkmaceae 0 0<br />

31 Em!& diwkau (L) Buddl Apqnaceae 0 0<br />

32 Erythrina indim h. Fabaceae 0 0<br />

33 FinrsglaMlfpRmb. Moraeeae 0 0<br />

34 Ficus nligiosa L Moraceae 0 0<br />

35 Hcmdmw indinu (L) RBr. Asclepiadaceae 0 0<br />

36 Hip@ k n w a) Kun Malphighiaceae 0 0<br />

37 lm CDECinm L. Rubiaceae 0 0<br />

38 jminum~k Vahl Oleaceae 0 0<br />

39 Mirnbilb jalap? L Nyctaginaceae 0 0<br />

40 Mill~ngfonio hortmpis Lf, Bignoniaceae 0 0<br />

41 Nycfmths arbkktia L Oleanae 0 0<br />

42 Pdilnnfhus tithy&& (L) Pd. Euphorbiaceae 0 0<br />

43 Phylhfhus ncidus (Lh5hl.s Euphorbiaceae<br />

44 Pagmnia flak Vent Fabaceae 0 0<br />

45 PsidiumpjumL. Myrtaceae 0 0<br />

46 Pnguhia damnin (FW) ChiDIl, Asclepiadaceae 0 0<br />

47 Quisqualia indim L. Combretaceae 0 0<br />

48 SNtiP mydim ~BunnJ) Kun Rhamnaceae 0 0<br />

49 ~plthodarampsnu~ P. h u . Bignoniaceae 0 0<br />

50 Thbuia msar (&rtol.)DC. Bignoniaceae 0 0<br />

51 Tawm jamirum Sost Asteraceae 0 0<br />

52 T'mn sfnna (LJ Kunth Bignoniaceae 0 0<br />

53 Tchcma mina lAndmI Cr& Asdepiadaceae 0 0<br />

!4 'IhcspaiP populnm (Lj Sd. a Cmr, Sm. Malvaceae 0 0<br />

55 ?7mtio prmui,u~~ (Pns.j Mm. Apocyanaceae 0 0<br />

56 Tridarpmcunbms L Asteaceae 0 0<br />

9 WalthniPindiceL Sterculiaceae 0 0<br />

58 Ziziphus jujuh (L.) Cwtnn, Mn Milk Rhamnaceae 0 0<br />

the spore germination of C.fapsin' (Jasmine, 1997).<br />

Group 2 plant9 inhibited the germ tube fannation of<br />

tested spores and they produced only small<br />

protrusions even after 48h. 7% a)so indicates the<br />

fungicidal nature of concerned plant extracts.<br />

Croup 3 planb ehongly induce the mahmation of<br />

gamtubesdgcrmlnatadaponsandtheywerenot<br />

found to produce any appresoria as in the case of<br />

nome systemic fungicides. Koch (1971) has<br />

suggested thitt distorted germ tubes may indicate<br />

systemic activity, because somesystemic fungicides<br />

have little effect on spore germination but are lughly<br />

active in preventing hyphal growth and cell<br />

division. Group 4 plants were not found to have any<br />

inhibitory effect and germinated as those of control<br />

(CaneMn 1993).<br />

Further studies on the biodremical activities of C.<br />

cnpsici in the presence of leaf extracts of plants<br />

belonging to first 3 groups will confirm antifungal<br />

effects of the concerned plants.


One of us (H.C.) thanks Dr. Ganesan, Lecturer,<br />

Department of Botany, K.M.P.G. Centre.<br />

<strong>Pondicherry</strong>, for his fruitful suggestiont.<br />

References<br />

Chm- R 1989. Pobon In your fwd. In : lndh Todry,<br />

Junr IS.<br />

Chh,H.CwnM,V.indKuvubinn.a 1599.Hlcmdamccldl)caumhmdoMiReronthr~pmhtdm<br />

Mdmy<br />

kr&8lrb/,C&a16(4): 177-178.<br />

FmcgCHmdSpnar,DH.19M.Rmdnmobvqwlh<br />

r p p v ~ p r o d u c a ~ ~ o : ~ : : ~ ~ ~ a<br />

bmmT. I993,Fw@tdd7ectdwildp!~cIdapu~.<br />

W 20 : 261.266.<br />

GmmT.MdKTldnUlpllJ. lWS.Anrdunplpmprc*rd<br />

w#dpbndlAd#mSd 8 (I): 194.196.<br />

~ 5 . G d l%7.T~&m~ed~<br />

~ C<br />

m ~ ~ k u w . R n ! 109-130. ~ S :<br />

Gmm$~I,V.ndKum&m,B. 1999.~drqugu,Y<br />

avuDcnspwegennvutbnmdmlcrYJjr~d<br />

nhMMs~hlac*~~~vnLfmc(Mm<br />

Inh Sd Chanu, pp 43.44.<br />

kmayirn. ~ hd aM. v m M.G. ~emvdl L ~ lkh<br />

LHurERRUom.Al,t)lm.RRWH.Ltur


SCREENIN6 Of AWEOUS EX- OF SOME PUNTS ON COlSlOlAL GERMINATION AND<br />

MVCEUAL BROrm OF COmNCHUM CAPJTM (SYO.1 BUTLER & BlSBY<br />

Key w& : Aqu@ou planl e&imct8 wnidial germination, mpelial gmwth. CoWelolridrum capsro<br />

The use of synthetic pesticides has<br />

become indispensable for modem strategy<br />

of crop pmduclion in India, partiilarly under<br />

afl intensive agricultural program (Radder &<br />

Sarawad, 1996). The veritable explosion in<br />

the wide use of these chemicals has led to<br />

many problems in the environment.<br />

Biodegradable pesticides are gaming<br />

increased attentb currentlv because of their<br />

environmental friendliness: A large number<br />

ol plants have been screened and reported<br />

to be effective against several plant<br />

palhogens (Bhowmick & Choudary, 1982;<br />

Chary et al., 1984). Out of 57 plant species<br />

screened in our laboratory, 10 were found to<br />

have the potential to inhibit the conidial<br />

germinatio? of C. capsici (Chitra &<br />

Kannabiran, 2001). The pfesent work was<br />

undertaken to evaluate the effects of aqueous<br />

extracts of 60 specles on the conidial<br />

germhation and that of 22 species on mycelial<br />

growth of f%tcfm capski.<br />

The test tungua C, caplid was obtained<br />

from pure culture atored in laboratory of<br />

Department ol Biological Sciences,<br />

<strong>Pondicherry</strong> Unker8Ity. Aqueous plant<br />

extracts wen proparad by udng the mahods<br />

of MuthuMshmi 6 SeeWmn (1987) and<br />

Singh & Tripathi (1883). Conidial gemination<br />

and myeelial growlh cludirc wm, carried out<br />

by using msthod8 of None (18711 and<br />

Chitra et al. (1999). The perceit inhibitioq of<br />

midial germination and mycelial growth was<br />

calculated by using the method ol Vincent<br />

(1927).<br />

Effects of aqueous plant extracts on the<br />

conidial germination both after 24 h and 48 h<br />

and percenlage of inhibition on mycelial<br />

growlh are presented in Table 1. Based on<br />

the antifungal effects of the aqueous extracts<br />

the tested plants were assigned to four<br />

groups (Ganesan, 1993; Ganesan &<br />

Kr~shnaralu, 1995). Group I plants Inhibited<br />

conidial gemination totaly both alter 24 hand<br />

48 h, indicating their fungicidal nature<br />

(Jasmine. 1997). Group 2 plants inhibited the<br />

germtube fornation of tested conidia even<br />

after 48h. This also indicates the fungicidal<br />

nature of mcerned plant extracts. On the<br />

contrary, the antifungal effect of group 3 plants<br />

was found to be reduced afler 24 h which<br />

showed their fungistatic nature. Group 4<br />

plants were not found to have any inhibitory<br />

effect on conidial gemination.<br />

Based on the results obained from the<br />

present and previous studies (Chitra &<br />

Kannabiran, 2001) on conidial germination 22<br />

plants'belonging to groups 1 and 2 were<br />

further screened to find out Wir effect on<br />

radial (mpliat) grn* of C. caphi. hng<br />

them, bulb extract of A, sativum and leaf<br />

extract of lawsonia hmds poduced 100%<br />

inhibition. on the myceljal growth. Those of


Cm(rm 0 0<br />

Group 1 Germ~nat~w lnlwbnws<br />

UYnYdrwnL a& IW 1W<br />

lqvngvr R C ~ WllW ~ Laaver I 1W 1W<br />

&&9mmphwmL Leaves 1W 1W<br />

L~IVOS 1W tW<br />

-mpL C~WML Leaves IW IW<br />

-rrh'wL<br />

Leaves<br />

pnnnarAuMcl Leaves<br />

Eucr)plUr mblMxr Smtlh Loaves<br />

HMltlaun-L<br />

Leavas<br />

Grwp 2 Genntube IOmnbon WOn<br />

-<br />

MM&& ~ees Leaves 97 91<br />

* :::::: ;: :<br />

nurpym Rcxb Leaves % %<br />

CWkqbllbtUIBmml Laaws w w<br />

W m b s k ~ L Leaver % %<br />

&L Leaves 98 88<br />

m u r L Lelws 98 9-9<br />

-&L Loaves 94 95<br />

Grw 3 PI.nts vim 1unpraI.tr sllsns<br />

Mob. imsd hrm I Lasrer 41 35<br />

aJc<br />

EUophyllum inophyllum,<br />

M i a crenuMa,*~/yptus terethmis and<br />

Cassia marginata produced 26 and 16<br />

percent of inhibition, respectively (Table 1).<br />

The remaining 15 plants were not found to<br />

produce any inhibitory effect.<br />

Further studies on the biochemical<br />

activities of C. capsici in response to the<br />

applimlion of aqueous extracts of A. sativum<br />

and L. inermls are in progress in our<br />

laboratory to conf~n their antifungal effects<br />

against C capstcl.<br />

REFERENCES<br />

Bhowmick. B.N. and Choudary. B.K. lndian<br />

601. Reptr., 1982, 1, 164-165.<br />

Chary, M.?. Reddy, E.J.S. and Reddy. S.M.<br />

Pest~cides, 1984. 18,17- 18.<br />

Chitra. H.. Gomathi, V. and Kannabiran. B.<br />

Geob~os, 1999. 26. 177-178.<br />

Ch~lra, H and Kannabiran, B. Ecol.Env. &<br />

Cons., 2001. 7, 5556.<br />

Ganesan, T. Gaolnos. 1993. 20. 264-266.<br />

Ganesan, T, and Krishnaraju. J. Ad. Plant Scr..<br />

1995.8. 194.196.<br />

Jasmine, R. M.Phll. Daseflation, Pondlcherry<br />

Unlverslty, 1997.<br />

Muthulakshmi, P. and Seetharaman. K. Prcc.<br />

Nahonal Workshop on 6101. Control of<br />

Plant D~seases. Co~rnbatore. 1987, 295-<br />

302.<br />

Nene, Y.L. Fung~c~des m Plant D~sease<br />

Control. IBH Publ. Col.. New Delhl. 1971.<br />

Radder. B.M. and Sarawad. I.M. Kian World,<br />

1996. 23. 54.<br />

Singh. J. and Tripathi, N.N. J. Indian bot. Scc..<br />

1993. 72. 51-53.<br />

V~ncent. J.M. Nature, 1927, 159. 850.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!