15.11.2014 Views

Solar thermal energy to support the heating of greenhouses in the ...

Solar thermal energy to support the heating of greenhouses in the ...

Solar thermal energy to support the heating of greenhouses in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Solar</strong> <strong><strong>the</strong>rmal</strong> <strong>energy</strong> <strong>to</strong> <strong>support</strong> <strong>the</strong> <strong>heat<strong>in</strong>g</strong> <strong>of</strong> <strong>greenhouses</strong> <strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>astern Spanish<br />

José Mª Cámara-Zapata<br />

Department <strong>of</strong> Physic and Computers Architecture, Miguel Hernandez University, Ctra de<br />

Beniel, km 3,8 sn, 03312 Orihuela, Alicante, Spa<strong>in</strong><br />

E-mail: jm.camara@umh.es<br />

Abstract<br />

Spa<strong>in</strong> is one <strong>of</strong> <strong>the</strong> lead<strong>in</strong>g producers <strong>of</strong> vegetables worldwide and between production<br />

systems, greenhouse cultivation is one <strong>of</strong> <strong>the</strong> most prom<strong>in</strong>ent, both surface and production<br />

due <strong>to</strong> high yields. This paper analyzes <strong>the</strong> technical and economic feasibility <strong>of</strong><br />

implement<strong>in</strong>g solar <strong><strong>the</strong>rmal</strong> <strong>energy</strong> for <strong>heat<strong>in</strong>g</strong> <strong>greenhouses</strong>. We evaluate <strong>the</strong> <strong>energy</strong> needs<br />

<strong>of</strong> <strong>the</strong> most important crops under cover <strong>in</strong> this area and discuss alternatives <strong>to</strong> <strong>the</strong> use <strong>of</strong><br />

solar <strong>energy</strong> <strong>to</strong> <strong>support</strong> <strong>the</strong> greenhouse <strong>heat<strong>in</strong>g</strong>. The results show that <strong>the</strong> simulated<br />

systems can be economically competitive with all <strong>of</strong> <strong>the</strong> fuel normally used for <strong>the</strong>se<br />

applications.<br />

Key words: solar <strong>energy</strong> collec<strong>to</strong>rs, <strong>heat<strong>in</strong>g</strong> <strong>greenhouses</strong><br />

1. Development and present state <strong>of</strong> greenhouse production <strong>in</strong> Sou<strong>the</strong>ast Spa<strong>in</strong><br />

The geographical position <strong>of</strong> Spa<strong>in</strong>, with proximity <strong>to</strong> European markets, and favourable<br />

wea<strong>the</strong>r <strong>in</strong> <strong>the</strong> Mediterranean regions can be noted between <strong>the</strong> characteristics that have<br />

contributed <strong>to</strong> a great Spanish horticulture development. From <strong>the</strong> 70, with <strong>the</strong> growth <strong>of</strong> <strong>the</strong><br />

plastics <strong>in</strong>dustry and its applications <strong>to</strong> agriculture, <strong>the</strong>re has been a structural transformation<br />

and economic horticultural products truly spectacular, especially <strong>in</strong> Almeria, Murcia and <strong>the</strong><br />

rest <strong>of</strong> <strong>the</strong> Mediterranean prov<strong>in</strong>ces.<br />

Horticulture has a major role <strong>in</strong> Spanish agriculture, which stands for <strong>the</strong> quantity and value<br />

<strong>of</strong> exports. Although at national level are important exports for some outdoor horticultural<br />

species such as lettuce, cauliflower and cabbage, <strong>the</strong> largest share comes from greenhouse<br />

cultivation <strong>of</strong> eggplant, zucch<strong>in</strong>i, melon, cucumber, pepper, watermelon and <strong>to</strong>ma<strong>to</strong>.<br />

Consider<strong>in</strong>g <strong>the</strong> three major production areas <strong>of</strong> Spa<strong>in</strong>, which are <strong>the</strong> prov<strong>in</strong>ces <strong>of</strong> Almeria,<br />

Murcia and Alicante, it is found that with a cultivated area under irrigation ra<strong>the</strong>r small (just<br />

over 50,000 ha), a cumulative production <strong>of</strong> approximately 3,500,000 t. Over 80% <strong>of</strong> <strong>the</strong><br />

irrigated area protected cultivation is practiced, mostly <strong>in</strong> greenhouse, and <strong>the</strong> rest is planted<br />

outdoors. In <strong>the</strong> prov<strong>in</strong>ce <strong>of</strong> Almeria <strong>the</strong>re is a greenhouse area near <strong>the</strong> 30,000 ha,<br />

produc<strong>in</strong>g more than half <strong>of</strong> <strong>the</strong> fruits and vegetables <strong>of</strong> all Andalusia, with a f<strong>in</strong>al agricultural<br />

production stabilized <strong>in</strong> <strong>the</strong> range above 2,000 million euros a year and an ancillary <strong>in</strong>dustry<br />

very competitive <strong>in</strong> <strong>in</strong>ternational markets (García Martínez, 2009).<br />

In short, after nearly four decades <strong>of</strong> <strong>in</strong>tensive production expansion <strong>in</strong> <strong>the</strong> Spanish<br />

horticultural sec<strong>to</strong>r, <strong>the</strong> greenhouse is a key fac<strong>to</strong>r <strong>in</strong> competitiveness. One <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

explanations for this situation is <strong>in</strong> production at lower cost than <strong>in</strong> protected horticulture<br />

located north <strong>of</strong> <strong>the</strong> Pyrenees, due <strong>to</strong> <strong>the</strong> different <strong>energy</strong> dependence. For example, <strong>energy</strong><br />

consumption <strong>in</strong> greenhouse production represents 7% <strong>of</strong> <strong>the</strong> national <strong>to</strong>tal and 79% <strong>of</strong> <strong>to</strong>tal<br />

agricultural <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands (Aramyan et al. 2007).<br />

However, <strong>the</strong> growth and strength over <strong>the</strong> past four decades should not imply that it is a<br />

stationary position. Between 1990 and 2004 <strong>the</strong> number <strong>of</strong> exports nearly tripled, <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g years <strong>the</strong>re was some stabilization, and has f<strong>in</strong>ally shown a significant drop <strong>in</strong><br />

production as a result <strong>of</strong> <strong>the</strong> economic crisis that has caused many owners have decided not


<strong>to</strong> grow <strong>in</strong> <strong>the</strong>ir <strong>greenhouses</strong>. With reference <strong>to</strong> <strong>to</strong>ma<strong>to</strong> and pepper, both greenhouse<br />

vegetable productions most important, <strong>the</strong> analysis <strong>of</strong> average prices received by farmers<br />

shows a downward trend, higher for <strong>to</strong>ma<strong>to</strong> than <strong>in</strong> pepper. Accord<strong>in</strong>gly, it detects a loss <strong>of</strong><br />

purchas<strong>in</strong>g power <strong>to</strong> <strong>the</strong> producer so it is necessary <strong>to</strong> pay attention on new strategies<br />

(MAPA, 2012).<br />

Fernández-Zamudio y Caballero (2006) conducted an economic study on greenhouse<br />

pepper production technology with four levels represent<strong>in</strong>g <strong>the</strong> <strong>greenhouses</strong> <strong>of</strong> El Pilar de la<br />

Horadada (Alicante), from <strong>the</strong> traditional (grow<strong>in</strong>g <strong>in</strong> soil without <strong>heat<strong>in</strong>g</strong>) <strong>to</strong> <strong>the</strong> most gifted <strong>of</strong><br />

technology (soil cultivation <strong>heat<strong>in</strong>g</strong> and carbon fertilization). In turn, each technological level<br />

is assigned a height and type <strong>of</strong> structure with a whole set <strong>of</strong> complementary elements.<br />

These features determ<strong>in</strong>e <strong>the</strong> type or variety <strong>of</strong> peppers <strong>to</strong> produce and <strong>the</strong>refore <strong>the</strong> quality<br />

objectives and <strong>the</strong> markets <strong>the</strong>y are try<strong>in</strong>g <strong>to</strong> reach. The conclusion was that at <strong>the</strong> time <strong>of</strong><br />

<strong>the</strong> study all levels analyzed showed an acceptable return. The demands <strong>of</strong> <strong>heat<strong>in</strong>g</strong> and <strong>the</strong><br />

advantages provided by its use grow with <strong>the</strong> <strong>in</strong>corporation <strong>of</strong> technology <strong>in</strong><strong>to</strong> <strong>the</strong><br />

greenhouse. The use <strong>of</strong> <strong>heat<strong>in</strong>g</strong> has significant limitations because <strong>of</strong> its enormous cost<br />

implications, especially with <strong>the</strong> current trend <strong>in</strong> fuel prices. However, it is an element that<br />

significantly improves <strong>the</strong> quality and tim<strong>in</strong>g <strong>of</strong> collection, and <strong>the</strong>refore, <strong>the</strong> f<strong>in</strong>al sale price.<br />

Therefore, its use at higher levels requires technical and economic control strict.<br />

Spa<strong>in</strong> has a good development <strong>of</strong> commercial structures but needs <strong>to</strong> <strong>in</strong>crease its level <strong>of</strong><br />

technology <strong>to</strong> achieve higher levels <strong>of</strong> productivity and better quality. At <strong>the</strong> same time has <strong>to</strong><br />

comply with <strong>the</strong> requirements <strong>of</strong> quality and food safety, traceability marked by, and take<br />

account <strong>of</strong> environmental standards. The developments <strong>in</strong> horticulture Spa<strong>in</strong> seems <strong>to</strong><br />

<strong>in</strong>dicate difficulties aris<strong>in</strong>g from <strong>in</strong>creased competition from o<strong>the</strong>r Mediterranean countries,<br />

like at <strong>the</strong> time, Spa<strong>in</strong> became a threat <strong>to</strong> horticulture <strong>in</strong> central Europe, account<strong>in</strong>g a rate<br />

significant quantities <strong>of</strong> absorbed by <strong>the</strong> markets (García Martínez, 2009).<br />

2. Energy sav<strong>in</strong>g <strong>in</strong> <strong>greenhouses</strong> <strong>in</strong> <strong>the</strong> Spanish Mediterranean<br />

Reduction <strong>in</strong> <strong>energy</strong> consumption lowers production costs and facilitate compliance with <strong>the</strong><br />

restrictive environmental and <strong>energy</strong> regulations affect<strong>in</strong>g <strong>the</strong> sec<strong>to</strong>r, so that production is<br />

more environmentally friendly and more competitive <strong>in</strong> <strong>the</strong> European market.<br />

In a greenhouse you can save <strong>energy</strong> by improv<strong>in</strong>g <strong>the</strong> structures and <strong>heat<strong>in</strong>g</strong> systems. In<br />

general, <strong>the</strong> structural changes reduce <strong>in</strong>filtration and <strong>in</strong>crease <strong>the</strong> <strong><strong>the</strong>rmal</strong> <strong>in</strong>sulation <strong>of</strong> <strong>the</strong><br />

greenhouse, ei<strong>the</strong>r permanently or only dur<strong>in</strong>g <strong>the</strong> coldest periods. Modifications <strong>of</strong> <strong>heat<strong>in</strong>g</strong><br />

systems try <strong>to</strong> optimize <strong>the</strong> recovery <strong>of</strong> heat <strong>energy</strong> from <strong>the</strong> burner and <strong>the</strong> heat supply <strong>to</strong><br />

plant more efficient. There are o<strong>the</strong>r aspects that <strong>in</strong>fluence, most notably <strong>the</strong> decl<strong>in</strong>e <strong>in</strong> <strong>the</strong><br />

percentage <strong>of</strong> <strong>the</strong> <strong>to</strong>tal front side surfaces and <strong>the</strong> ro<strong>of</strong> cover.<br />

Thermal ro<strong>of</strong><strong>in</strong>g materials must be used, ie as impermeable as possible <strong>to</strong> <strong>the</strong> long wave<br />

<strong>in</strong>frared radiation. The <strong>energy</strong> conservation techniques such greenhouse construction <strong>of</strong><br />

double-walled <strong>in</strong>flated, use <strong>of</strong> <strong><strong>the</strong>rmal</strong> screens, <strong>in</strong> addition <strong>to</strong> reduc<strong>in</strong>g heat loss and <strong>in</strong>crease<br />

<strong>the</strong> temperature <strong>of</strong> greenhouse o<strong>the</strong>r changes <strong>in</strong> microclimate, such as decreas<strong>in</strong>g <strong>the</strong> rate<br />

<strong>of</strong> ventilation, with generally negative effects. So <strong>the</strong> <strong>in</strong>stallation should take <strong>in</strong><strong>to</strong> account<br />

<strong>the</strong>se problems and provide <strong>the</strong> way <strong>to</strong> solve <strong>the</strong>m.<br />

Regard<strong>in</strong>g <strong>the</strong> need <strong>to</strong> address susta<strong>in</strong>ability issues <strong>in</strong> <strong>the</strong> production process, Montero et al.<br />

(2008) describe how <strong>to</strong> reduce <strong>the</strong> environmental impact <strong>of</strong> properly us<strong>in</strong>g <strong>the</strong> equipment<br />

elements and drivers <strong>of</strong> climate, <strong>the</strong> optimal application <strong>of</strong> CO 2 and what might be <strong>the</strong> best<br />

use <strong>of</strong> <strong>the</strong> <strong>heat<strong>in</strong>g</strong>.<br />

Last but not least, is necessary <strong>to</strong> evaluate <strong>the</strong> technical and economic feasibility <strong>of</strong> solar<br />

<strong>energy</strong> <strong>to</strong> <strong>support</strong> <strong>the</strong> <strong>heat<strong>in</strong>g</strong> <strong>of</strong> <strong>greenhouses</strong>. It is essential <strong>to</strong> establish whe<strong>the</strong>r <strong>the</strong>y can<br />

produce an improvement <strong>in</strong> <strong>the</strong> pr<strong>of</strong>itability <strong>of</strong> farms.


3. <strong>Solar</strong> <strong><strong>the</strong>rmal</strong> <strong>energy</strong> <strong>to</strong> <strong>support</strong> <strong>the</strong> greenhouse <strong>heat<strong>in</strong>g</strong><br />

In addition <strong>to</strong> <strong>the</strong> purely agronomic reasons, agricultural production as any productive<br />

activity, should pay special attention <strong>to</strong> <strong>the</strong> economic performance <strong>of</strong> <strong>the</strong> farm. The decision<br />

<strong>to</strong> use heat <strong>in</strong> <strong>the</strong> greenhouse dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter months depends on crop yields and <strong>the</strong><br />

evolution <strong>of</strong> crop prices and fuel. Among <strong>the</strong> most commonly used <strong>heat<strong>in</strong>g</strong> systems, <strong>the</strong> most<br />

suitable for cultivation is done by convection-radiation with water as medium or high<br />

temperature heat transfer fluid. However, <strong>the</strong> cost <strong>of</strong> such a facility is <strong>the</strong> highest with<strong>in</strong> <strong>the</strong><br />

range <strong>of</strong> available systems. Therefore, we must not forget <strong>the</strong> usefulness <strong>of</strong> air <strong>heat<strong>in</strong>g</strong><br />

systems, less efficient but cheaper than <strong>the</strong> previous (Abril Hernández et al., 2007).<br />

<strong>Solar</strong> <strong><strong>the</strong>rmal</strong> <strong>energy</strong> <strong>of</strong> low temperature for its use does not require complicated technology,<br />

but represents a high cost <strong>of</strong> implementation for <strong>the</strong> most part caused by <strong>the</strong> collec<strong>to</strong>rs. This<br />

limits <strong>the</strong> application <strong>of</strong> this technology <strong>in</strong> agriculture and farm<strong>in</strong>g. In order <strong>to</strong> evaluate <strong>the</strong><br />

technical and economic feasibility <strong>of</strong> implement<strong>in</strong>g solar <strong><strong>the</strong>rmal</strong> <strong>energy</strong> <strong>to</strong> <strong>support</strong> <strong>the</strong><br />

<strong>heat<strong>in</strong>g</strong> <strong>of</strong> <strong>greenhouses</strong>, we analyze <strong>the</strong> production <strong>of</strong> pepper <strong>in</strong> substrate <strong>in</strong> El Campo de<br />

Cartagena. It is an arid zone with warm w<strong>in</strong>ters (usually m<strong>in</strong>imum temperatures above 0ºC <strong>in</strong><br />

December and January). The highest temperatures occur <strong>in</strong> July and August with values that<br />

can exceed 40ºC. The mean values <strong>of</strong> humidity is ma<strong>in</strong>ta<strong>in</strong>ed between 70 and 85%.<br />

The pepper plant is <strong>in</strong> dire need <strong>of</strong> proper temperatures, so its control is <strong>of</strong> vital importance.<br />

Optimum temperature varies with <strong>the</strong> stage <strong>of</strong> development although <strong>in</strong> general terms it is<br />

estimated that dur<strong>in</strong>g <strong>the</strong> day between 20 and 25ºC and at night from 16 <strong>to</strong> 18ºC. The<br />

optimal value <strong>of</strong> <strong>the</strong> relative air humidity varies between 50 and 70%. It also requires high<br />

light radiation throughout <strong>the</strong> grow<strong>in</strong>g season, especially <strong>in</strong> <strong>the</strong> early stages <strong>of</strong> development<br />

and dur<strong>in</strong>g flower<strong>in</strong>g.<br />

As representative <strong>of</strong> <strong>the</strong> study area are adopt<strong>in</strong>g a multi-tunnel greenhouse structure with<br />

galvanized steel, three-layer upper enclosure through flexible polyethylene sheet and<br />

Ethylene V<strong>in</strong>yl Acetate 0.2 mm thick, and alveolar polycarbonate side closure <strong>of</strong> 6 mm thick.<br />

The height <strong>of</strong> <strong>the</strong> channel is set at 4 m <strong>to</strong> <strong>the</strong> ridge at 6 m. The greenhouse is made by <strong>the</strong><br />

union <strong>of</strong> 5 modules <strong>of</strong> 8 m width each oriented <strong>in</strong> <strong>the</strong> east-west direction. Breed<strong>in</strong>g l<strong>in</strong>es are<br />

north-south. A central corridor <strong>of</strong> 3 m <strong>of</strong> section facilitates cultivation. The length <strong>of</strong> <strong>the</strong><br />

modules is 50 m, ie, 2,000 m 2 <strong>of</strong> covered area, which may be representative <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g<br />

area. The greenhouse is equipped with a <strong><strong>the</strong>rmal</strong> shield allow<strong>in</strong>g an <strong>energy</strong> sav<strong>in</strong>g <strong>of</strong> 30%.<br />

To do a comparative study us<strong>in</strong>g three types <strong>of</strong> solar <strong>energy</strong> panels and o<strong>the</strong>r features, differ<br />

<strong>in</strong> <strong>the</strong>ir <strong>energy</strong> performance and cost <strong>of</strong> acquisition. This is a collec<strong>to</strong>r made <strong>of</strong> plastic<br />

materials and <strong>energy</strong> characterized at <strong>the</strong> University Miguel Hernández (Gomez, 2007) and<br />

commercial collec<strong>to</strong>rs flat plate and evacuated tube. The <strong>energy</strong> parameters <strong>of</strong> <strong>the</strong> collec<strong>to</strong>rs<br />

used <strong>in</strong> <strong>the</strong> calculations are shown <strong>in</strong> Table 1.<br />

Table 1. Values <strong>of</strong> optical performance and <strong>the</strong> loss coefficient <strong>of</strong> <strong>the</strong> collec<strong>to</strong>rs used for <strong>the</strong><br />

<strong>in</strong>stallation <strong>of</strong> solar <strong>energy</strong> <strong>to</strong> <strong>support</strong> <strong>the</strong> greenhouse <strong>heat<strong>in</strong>g</strong><br />

<strong>Solar</strong> collec<strong>to</strong>r Optical performance Loss coefficient (W/m 2 ºC)<br />

Plastic material 0.60 5.50<br />

Flat plate 0.81 3.78<br />

Evacuated-tube 0.84 1.75<br />

Under <strong>the</strong>se conditions, <strong>the</strong> <strong>heat<strong>in</strong>g</strong> power is around 180 W/m 2 and <strong>the</strong> annual <strong>energy</strong><br />

consumption is about 750 MJ/m 2 , distributed between Oc<strong>to</strong>ber and May, spend<strong>in</strong>g 40% <strong>in</strong><br />

December and January. To prevent <strong>energy</strong> loss, <strong>the</strong> recommended solar contribution is<br />

estimated at around 20% and it is achieved with a less than 20% <strong>of</strong> <strong>the</strong> greenhouse area.<br />

The determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> constituent elements <strong>of</strong> <strong>the</strong> <strong>in</strong>stallation <strong>of</strong> solar <strong><strong>the</strong>rmal</strong> <strong>energy</strong> as<br />

<strong>support</strong> for greenhouse <strong>heat<strong>in</strong>g</strong> fuel is made from <strong>the</strong> guidel<strong>in</strong>es and considerations made by


Peuser et al. (2005).<br />

Economic evaluation <strong>in</strong>volves consider<strong>in</strong>g <strong>the</strong> cost <strong>of</strong> <strong>the</strong> collec<strong>to</strong>r, amortized accord<strong>in</strong>g <strong>to</strong><br />

life and operat<strong>in</strong>g costs <strong>of</strong> equipment and its comparison with conventional fuel.<br />

The average cost <strong>of</strong> a flat plate solar collec<strong>to</strong>r is trad<strong>in</strong>g around 400 €/m 2 and vacuum tube<br />

collec<strong>to</strong>rs on <strong>the</strong> 600 €/m 2 (IDAE, 2011). In <strong>the</strong>se approximate values <strong>in</strong>clude <strong>the</strong> share <strong>of</strong><br />

<strong>support</strong> structure, anchor pads, manpower and <strong>in</strong>stallation materials, but does not consider<br />

<strong>the</strong> costs <strong>in</strong>curred <strong>in</strong> prepar<strong>in</strong>g <strong>the</strong> ground location. The estimated half-life for both collec<strong>to</strong>rs<br />

is 20 years. The plastic collec<strong>to</strong>r has an estimated cost <strong>of</strong> 130 €/m2 if deemed necessary<br />

ma<strong>in</strong>tenance <strong>to</strong> ensure a lifetime <strong>of</strong> 20 years <strong>of</strong> all <strong>the</strong> components needed for <strong>in</strong>stallation,<br />

<strong>in</strong>clud<strong>in</strong>g s<strong>to</strong>rage tank, which results economic study <strong>of</strong> <strong>the</strong> three collec<strong>to</strong>rs are comparable.<br />

It is necessary <strong>to</strong> calculate <strong>the</strong> annual cost is <strong>the</strong> amortization <strong>of</strong> <strong>the</strong> <strong>in</strong>stallation <strong>of</strong> solar<br />

collec<strong>to</strong>rs and compare <strong>the</strong> <strong>energy</strong> sav<strong>in</strong>gs result<strong>in</strong>g from <strong>the</strong>ir use. However, <strong>the</strong> cont<strong>in</strong>ued<br />

upward trend <strong>of</strong> fuel prices makes economic estimates <strong>of</strong> <strong>the</strong> cost <strong>of</strong> <strong>heat<strong>in</strong>g</strong> <strong>greenhouses</strong> or<br />

low <strong>energy</strong> consumption <strong>in</strong> this application <strong>of</strong> solar <strong><strong>the</strong>rmal</strong> <strong>energy</strong> have limited real validity.<br />

Therefore, <strong>to</strong> perform <strong>the</strong> economic analysis <strong>of</strong> solar <strong><strong>the</strong>rmal</strong> power facility <strong>to</strong> <strong>support</strong> <strong>the</strong><br />

greenhouse <strong>heat<strong>in</strong>g</strong> adopt<strong>in</strong>g an approach which equals <strong>the</strong> unit cost <strong>of</strong> <strong>in</strong>stall<strong>in</strong>g solar<br />

<strong>energy</strong> with <strong>the</strong> cost sav<strong>in</strong>gs derived from its use. This approach allows for <strong>the</strong> unit price <strong>of</strong><br />

fuel <strong>of</strong> choice from which solar <strong><strong>the</strong>rmal</strong> <strong>energy</strong> <strong>to</strong> <strong>support</strong> <strong>the</strong> greenhouse <strong>heat<strong>in</strong>g</strong> starts <strong>to</strong> be<br />

pr<strong>of</strong>itable for <strong>the</strong> farmer. The calculation <strong>of</strong> this price is made for different <strong>energy</strong> demands<br />

and its value is <strong>in</strong>dependent <strong>of</strong> fixed set po<strong>in</strong>t temperatures, so it is valid with any strategy <strong>of</strong><br />

<strong>the</strong> farmer. In all cases studied adopt<strong>in</strong>g a solar contribution <strong>of</strong> around 20%. Conventional<br />

fuels considered are those used <strong>in</strong> El Campo de Cartagena, natural gas, gas oil, fuel oil and<br />

propane. The expression used <strong>to</strong> calculate <strong>the</strong> price <strong>of</strong> fuel from occurr<strong>in</strong>g sav<strong>in</strong>gs are<br />

P = C A · A S · P FC / S · E H · A G (€/L)<br />

where<br />

P = Fuel prices. Its units depend on it (€/L, €/kg, €/kWh)<br />

C A = Annual cost unitary or annual amortization <strong>of</strong> <strong>the</strong> <strong>in</strong>stallation <strong>of</strong> solar <strong><strong>the</strong>rmal</strong> (€/m 2 año)<br />

A S = Area <strong>of</strong> solar <strong><strong>the</strong>rmal</strong> <strong>in</strong>stallation (m 2 )<br />

P FC = Lower power fuel combustion (MJ/L; MJ/kg)<br />

S = <strong>Solar</strong> contribution (dimensionless)<br />

E H = Annual <strong>energy</strong> <strong>heat<strong>in</strong>g</strong> unit (MJ/m 2 año)<br />

A G = Greenhouse area (m 2 )<br />

The term does not <strong>in</strong>clude <strong>the</strong> boiler efficiency because its value varies greatly, as it can be<br />

very low, especially <strong>in</strong> <strong>the</strong> case <strong>of</strong> conventional boilers with several years <strong>of</strong> service, or<br />

exceed 100% from power lower combustion <strong>of</strong> fuel, if any condensation boilers with proper<br />

function<strong>in</strong>g. Is necessary <strong>to</strong> consider those measures <strong>to</strong> improve <strong>energy</strong> efficiency <strong>in</strong><br />

generation <strong>of</strong> heat, such as <strong>in</strong>creased combustion efficiency, use <strong>of</strong> fractional operation<br />

burners, and heat recovery from exhaust fumes, <strong>the</strong> <strong>in</strong>sulation <strong>of</strong> <strong>the</strong> <strong>heat<strong>in</strong>g</strong> system and<br />

proper ma<strong>in</strong>tenance <strong>of</strong> <strong>heat<strong>in</strong>g</strong> systems. Therefore, <strong>the</strong> value obta<strong>in</strong>ed from <strong>the</strong> price <strong>of</strong> fuel<br />

from which is produced by solar <strong>energy</strong> cost sav<strong>in</strong>gs for <strong>support</strong> (Tables 2 <strong>to</strong> 4) are not exact<br />

and precise amount for a given <strong>in</strong>stallation should be calculated from data obta<strong>in</strong>ed from a<br />

reliable <strong>energy</strong> audit <strong>of</strong> <strong>the</strong> <strong>in</strong>stallation.


Tabla 2. Prices <strong>of</strong> fossil fuels from which it is pr<strong>of</strong>itable us<strong>in</strong>g plastic collec<strong>to</strong>rs with different<br />

<strong>energy</strong> consumption<br />

T<br />

(ºC)<br />

Consumption<br />

(MJ/m 2 )<br />

Collec<strong>to</strong>rs area<br />

(m 2 )<br />

<strong>Solar</strong><br />

contribution (%)<br />

Natural gas<br />

price (€/kWh)<br />

Propane price<br />

(€/kg)<br />

Fuel price<br />

(€/L)<br />

Gas oil<br />

price (€/L)<br />

13 425 250 20.8<br />

14 496 250 17.8<br />

15 577 300 18.4<br />

0.033 0.426 0.355 0.327<br />

16 667 350 18.6<br />

17 756 400 18.7<br />

The <strong>in</strong>stallation <strong>of</strong> plastic collec<strong>to</strong>rs shown pr<strong>of</strong>itable <strong>in</strong> economic terms aga<strong>in</strong>st <strong>the</strong> use <strong>of</strong><br />

natural gas when <strong>the</strong> unit price it exceeds 0.033 €/kWh. This value is <strong>in</strong>dependent <strong>of</strong> <strong>the</strong><br />

<strong>energy</strong> consumption <strong>of</strong> gases between 425 and 756 MJ/m 2 , ie does not depend on <strong>the</strong><br />

temperature setpo<strong>in</strong>t taken between 13 and 17°C (Table 2). Such collec<strong>to</strong>rs are very<br />

competitive as prices estimated for different fossil fuels are not <strong>to</strong>o high.<br />

When us<strong>in</strong>g flat plate collec<strong>to</strong>rs, <strong>the</strong>re is solar <strong>energy</strong> sav<strong>in</strong>gs when natural gas price<br />

exceeds 0.047 €/kWh (Table 3). This is an <strong>in</strong>crease greater than 40% over <strong>the</strong> use <strong>of</strong> plastic<br />

collec<strong>to</strong>rs and occurs with <strong>the</strong> price <strong>of</strong> all fuels studied. Consequently, <strong>the</strong>se sensors are not<br />

very competitive for this application as <strong>the</strong> required fuel prices are high.<br />

Tabla 3. Prices <strong>of</strong> fossil fuels from which it is pr<strong>of</strong>itable us<strong>in</strong>g flat plate collec<strong>to</strong>rs with different<br />

<strong>energy</strong> consumption<br />

T<br />

(ºC)<br />

Consumption<br />

(MJ/m 2 )<br />

Collec<strong>to</strong>rs area<br />

(m 2 )<br />

<strong>Solar</strong><br />

contribution (%)<br />

Natural gas<br />

price (€/kWh)<br />

Propane price<br />

(€/kg)<br />

Fuel price<br />

(€/L)<br />

Gas oil<br />

price (€/L)<br />

13 425 100 18.1<br />

14 496 120 18.6<br />

15 577 150 20.0<br />

0.047 0.603 0.502 0.463<br />

16 667 160 18.4<br />

17 756 180 18.3<br />

The evacuated-tube collec<strong>to</strong>rs are competitive with natural gas when its price rises <strong>to</strong> 0.051<br />

€/kWh (Table 4). This is an <strong>in</strong>crease greater than 50% <strong>of</strong> <strong>the</strong> value <strong>of</strong> <strong>the</strong> price at which <strong>the</strong><br />

plastic collec<strong>to</strong>rs are competitive.<br />

Tabla 4. Prices <strong>of</strong> fossil fuels from which it is pr<strong>of</strong>itable us<strong>in</strong>g evacuated-tube collec<strong>to</strong>rs with<br />

different <strong>energy</strong> consumption<br />

T<br />

(ºC)<br />

Consumption<br />

(MJ/m 2 )<br />

Collec<strong>to</strong>rs area<br />

(m 2 )<br />

<strong>Solar</strong><br />

contribution (%)<br />

Natural gas<br />

price (€/kWh)<br />

Propane price<br />

(€/kg)<br />

Fuel price<br />

(€/L)<br />

Gas oil<br />

price (€/L)<br />

13 425 75 18.8<br />

14 496 90 19.3<br />

15 577 100 18.5<br />

0.051 0.652 0.543 0.502<br />

16 667 120 19.2<br />

17 756 150 21.1<br />

References<br />

Abril Hernández, J.Mª., Cámara Zapata, J.Mª., Pascual, A., Madueño Luna, A. y Ruiz<br />

Hernández, V. (2007). Evaluación de captadores de energía solar de bajo coste para<br />

<strong>in</strong>vernaderos. I Congresso Brasileiro de Energia <strong>Solar</strong>. ICBENS Libro de Resúmenes, pp. 45<br />

Aramyan, L.H., Oude-Lans<strong>in</strong>k, A.G.J.M. and Verstegen, J.A.A.M. 2007. Fac<strong>to</strong>rs underly<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>vestment decision <strong>in</strong> <strong>energy</strong>-sav<strong>in</strong>g systems <strong>in</strong> Dutch horticulture. Agricultural Systems,<br />

vol. 94, pp. 520-527


Fernández-Zamudio, M.A., Pérez, A. y Caballero, P. 2006. Análisis económico de la<br />

tecnología de los <strong>in</strong>vernaderos mediterráneos: aplicación en la producción del pimien<strong>to</strong>.<br />

ITEA, vol. 102, nº 3, pp. 260-277<br />

García Martínez, M. C. 2009. La adopción de tecnología en los <strong>in</strong>vernaderos hortícolas<br />

mediterráneos. Tesis doc<strong>to</strong>ral (340 pp). Universidad Politécnica de Valencia<br />

Gómez Caballero, P. (2007). Alternativas constructivas en captadores de energía solar<br />

térmica fabricados con materiales plásticos. Trabajo f<strong>in</strong> de carrera. Universidad Miguel<br />

Hernández<br />

IDAE (2011). Plan de Energías Renovables, 2011-2020<br />

MAPA (2012). Anuario de estadística agroalimentaria<br />

Montero, J.I., Stanghell<strong>in</strong>i, C. y Castilla, N. 2008. Invernadero para la producción sostenible<br />

en áreas de clima de <strong>in</strong>vierno suaves. Horticultura Internacional, nº 65, pp. 12-26<br />

Peuser F. A., Remmers K. y Schnauss M. (2005). Sistemas solares térmicos. Diseño e<br />

<strong>in</strong>stalación. PROGENSA. <strong>Solar</strong>praxis AG. ISBN: 84-95693-20-8. 392 pp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!