16.11.2014 Views

IDH - siesonline

IDH - siesonline

IDH - siesonline

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Le
nuove
mutazioni
oltre
JAK2:<br />


<strong>IDH</strong>1/2
e
LNK<br />

Dr.ssa
Lisa
Pieri


First
report
of
<strong>IDH</strong>1
muta5ons
in
myeloid
malignancies:
detected
by
sequencing
an<br />

AML
genome
,
preferen5ally
clustering
with
intermediate
risk
AMLs<br />

Muta5ons
first
discovered
in
gliomas
and
secondary
glioblastomas<br />

AML
<br />

(16/188
mutated
cases,

8%)<br />

R132C
8/16
(50%)<br />

R132H
7/16
(44%)<br />

R132S
1/188<br />

<strong>IDH</strong>2
R172
0/188<br />

Gliomas
and
secondary
glioblastomas
<br />

(about
80%
mutated)<br />

R132C
7/161
(4%)<br />

R132H
142/161
(88%)<br />

R132S
4/161<br />

R172
0/188<br />

No
indipendent
prognos5c
value
with
respect
to
overall
survival
in
mul5variate
analysis<br />

Mardis E et al, NEJM 2009; 361:1058-66<br />

Yan H et al. NEJM 2009; 360:765-9


NADP+-dependent isocitrate dehydrogenase genes, <strong>IDH</strong>1 and <strong>IDH</strong>2<br />

<strong>IDH</strong>1 (Chr 2q33.3)<br />

<strong>IDH</strong>2<br />

(Chr 15q26.19)<br />


COINVOLTI
NEL
CICLO
DI
KREBS


<strong>IDH</strong>1 and <strong>IDH</strong>2 mutations lead to “biochemical gain of function”<br />

• <strong>IDH</strong>, Isocitrate dehydrogenase (<strong>IDH</strong>1 =cytoplasmic; <strong>IDH</strong>2 = mitocondrial): NADPdependent<br />

enzyme that catalyze the oxidative decarboxilation of isocitrate to α-<br />

ketoglutarate, with concomitant production of NADPH.<br />

Isocitrate<br />

NADP<br />

<strong>IDH</strong>1<br />

<strong>IDH</strong>2<br />

NADPH<br />

α-ketoglutarate<br />

NADPH<br />

<strong>IDH</strong>1 R132<br />

<strong>IDH</strong>2 R172<br />

2-hydroxyglutarate<br />

NADP<br />

Mutated
proteins
harbour
a
new<br />

enzyma5c
ac5vity:
produc5on
and<br />

accumula5on
of
2HG,a
rare
metabolite<br />

normally
present
at
very
low
levels
in<br />

healthy
cells<br />

Yan H et al. NEJM 2009; 360:765-9<br />

Gross S et al, JEM, 2010; 207:339



Reduc5on
of
NADPH
and
glutathione
and
increase
of
ROS<br />


Reduc5on
of
aKG,
that
normally
ac5vate
proline
hydroxylase
that
inac5vate
HIF1a,
and<br />

consequently
increasing
in
HIF1a
and
its
associated
target<br />

Homozygous
missense
muta5ons
have
not
been
iden5fied:
the
WT
protein
is
necessary<br />

to
produce
NADPH<br />

Abdel‐Wahab

and
Levine,
JEM
2010,207‐4,
677‐680


Different mutations have the same effect<br />

<strong>IDH</strong>
muta5ons<br />


R
132
(<strong>IDH</strong>1)<br />


R
140
(<strong>IDH</strong>2)<br />


R
172
(<strong>IDH</strong>2)<br />

<strong>IDH</strong>
muta5ons’<br />

frequency
in
78<br />

AML
samples<br />


7.7%<br />


9%<br />


4.4% 15.4%<br />

Ward et al, Cancer Cell 17, 225–234, March 16, 2010


Somatic mutations of <strong>IDH</strong>1 and <strong>IDH</strong>2 in the leukemic<br />

transformation of myeloproliferative neoplasms<br />

31%
of
BP‐MPN<br />

0%
of
CP‐MPN<br />

Acquired
early<br />

during
the<br />

progression
to<br />

leukemia<br />

Green A, Beer P, NEJM 2010; 362:369-70


Gene;c
analysis
of
leukemic
transforma;on
in
MPNs<br />

All four possible<br />

mutational<br />

combinations were<br />

observed<br />

<strong>IDH</strong>1
muta5ons
is
most
commonly
observed
in
pts
with
WT<br />

JAK2,
TET2,
ASXL1<br />

Abdel‐Wahab
O,
Cancer
Research
2010;,70(2)


Tefferi et al., Leukemia (2010) 24, 1302–1309


<strong>IDH</strong>
muta5ons
were
infrequent
in
chronic‐
or
fibro5c‐phase
disease
and
significantly<br />

more
prevalent
in
blast‐phase
disease<br />

<strong>IDH</strong>
co‐occurs
with
a
JAK2,
MPL
or
TET2
muta5on,
and
muta5onal
frequency
did
not
appear<br />

to
be
influenced
by
either
the
type
of
the
coexis5ng
muta5on
or
the
presence
or
absence
of<br />

each
specific
muta5on<br />

<strong>IDH</strong>‐mutated
cases
were
more
likely
to
be
nullizygous
for
JAK2
46/1
haplotype<br />

Tefferi et al., Leukemia (2010) 24, 1302–1309


Clinical
correlates
and
prognos0c
relevance
in
PMF<br />

<strong>IDH</strong>‐mutated
chronic‐phase
PMF
cases
ohen
belonged
to
a
low‐
or
intermediate‐risk
category<br />

(p=0.32)<br />

<strong>IDH</strong>‐mutated
blast‐phase
PMF
was
less
likely
to
display
complex
karyotype
(p
0.001)<br />

CP‐PMF<br />

BP‐PMF<br />

BP‐MPN


Novel
muta+ons
in
the
inhibitory
adaptor
protein
LNK
(SH2B3)
drive
JAK‐<br />

STAT
signaling
in
pa+ents
with
myeloprolifera+ve
neoplasms<br />

LNK
exon
2
muta0ons
(Pleckstrin‐homology
domain):<br />

603_607delGCGCT
and
613C→G:
dele5on
of
five
base
pairs
and
a
missense
<br />




























muta5on
leading
to
a
premature
stop
codon<br />

Found
in
1
pt<br />

JAK2WT
PMF<br />

622G→C:
missense
muta5on
yielding
a
subs5tu5on
of
glutamine
for
glutamic<br />





acid
(E208Q)<br />

Found
in
1
pt<br />

JAK2WT
ET<br />

Oh
ST
et
al,
Blood.
2010
Aug
12;116(6):988‐92<br />

6%
of
33<br />

JAK2
WT<br />

MPN


Oh
ST
et
al,
Blood.
2010
Aug
12;116(6):988‐92


Oh
ST
et
al,
Blood.
2010
Aug
12;116(6):988‐92


ID DG JAK2V617F <strong>IDH</strong> LNK<br />

1<br />

2<br />

PMF<br />

AML<br />

PMF<br />

AML<br />

VF
29%<br />

VF
30%<br />

WT<br />

WT<br />

WT<br />

WT<br />

WT<br />

WT<br />

658>A;
G220R<br />

WT<br />

WT<br />

644C>T;A215V<br />

139
pts:<br />

•
61
postMPN‐AML<br />

•78
CP‐MPN<br />

3<br />

4<br />

PMF<br />

AML<br />

PMF<br />

AML<br />

NA<br />

NA<br />

VF
22%<br />

VF<br />

NA<br />

NA<br />

<strong>IDH</strong>2
R140Q<br />

<strong>IDH</strong>2
R140Q<br />

WT<br />

644C>T;A215V<br />

685‐691_delGGCCCCG,
955_delA<br />

685‐691_delGGCCCCG
,955_delA<br />

8
mutated
cases
(13%)<br />

9.8%
mutated
in
BP‐MPN<br />

5<br />

PMF<br />

AML<br />

WT<br />

WT<br />

WT<br />

WT<br />

WT<br />

688C>T;A223V
700G>A;
D234N<br />

88%
had
PMF
in
CP<br />

6<br />

PMF<br />

AML<br />

WT<br />

WT<br />

WT<br />

WT<br />

659G>T;
G220V<br />

WT<br />

7 postPMF‐AML VF
25% WT 685G>A;
G229S<br />

8 postPV‐AML VF
80% WT 624G>A;
E208E<br />

6
missense
muta5ons<br />

1
synonymous
muta5on<br />

2
dele5ons
(same
case)<br />

Muta5onal
“hot
spot”<br />

No
clear
genotype‐phenotype
correla5on<br />

All
in
PH
domain
or
just
distal
to
PH
domain<br />

Pardanani
et
al.
Leukemia.
2010
Oct;24(10):1713‐8.



LNK Mutations in JAK2 Mutation–Negative Erythrocytosis<br />

8
pts
with:<br />

Erythrocytosis<br />

low
erythropoie5n
levels<br />

absence
of
JAK2,
MPL,
EPOR
muta5ons<br />

2
mutated
pts:<br />


622G→T:
nonsense
muta5on
resul5ng<br />

in
the
subs5tu5on
of

a
stop
codon
for<br />

glutamic
acid
(E208X),
with
trunca5on
of<br />

PH
and
SH2
domain.<br />

644C→T:
missense
muta5on
resul5ng
in<br />

the
subs5tu5on
of
valine
for
alanine<br />

A215V),
absent
in
lymphocytes.<br />

Conserva5ve
aminoacid
change.<br />

Also
found
in
JAK2V617F
nega5ve
BP‐PMF.<br />

LNK
muta;ons
are
part
of
the
“missing
link”<br />

in
the
pathogenesis
of
JAK2
muta;on–nega;ve<br />

“idiopathic”
erythrocytosis
or
polycythemia<br />

vera.<br />

Lasho
TL
et
al,
N
Engl
J
Med.
2010
Sep
16;363(12):1189‐90


Dr.ssa
ElisabGa
Antonioli<br />

Dr.
Niccolò
Bartalucci<br />

Dr.ssa
Flavia
Biamonte<br />

Dr.ssa
Costanza
Bogani<br />

Dr.ssa
Paola
Guglielmelli<br />

Dr.ssa
Tiziana
Fanelli<br />

Dr.ssa
Elisa
Malevol0<br />

Dr.ssa
Serena
Mar0nelli<br />

Dr.
Alessandro
Pancrazzi<br />

Dr.ssa
Chiara
Paoli<br />

Dr.ssa
Ambra
Spolverini<br />

Dr.
Lorenzo
Tozzi<br />

Thanks
to:<br />

Prof.
Alessandro
Vannucchi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!