16.11.2014 Views

ABSTRACT OF DISSERTATION Pushpa Suresh Jayasekara ...

ABSTRACT OF DISSERTATION Pushpa Suresh Jayasekara ...

ABSTRACT OF DISSERTATION Pushpa Suresh Jayasekara ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ABSTRACT</strong> <strong>OF</strong> <strong>DISSERTATION</strong><br />

<strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage<br />

The Graduate School<br />

University of Kentucky<br />

2010


PROGRESS TOWARDS THE SYNTHESIS <strong>OF</strong> TYPE B POLYCYCLIC<br />

POLYPRENYLATED ACYLPHLOROGLUCINOL 7-epi-CLUSIANONE<br />

________________________________<br />

<strong>ABSTRACT</strong> <strong>OF</strong> <strong>DISSERTATION</strong><br />

________________________________<br />

A dissertation submitted in partial fulfillment<br />

of the requirements for the degree of<br />

Doctor of Philosophy in the College of Arts and Sciences<br />

at the University of Kentucky<br />

By<br />

<strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage<br />

Lexington, KY<br />

Director: Dr. R.B. Grossman, Professor of Chemistry<br />

Lexington, KY<br />

2010<br />

Copyright © <strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage 2010


<strong>ABSTRACT</strong> <strong>OF</strong> <strong>DISSERTATION</strong><br />

PROGRESS TOWARDS THE SYNTHESIS <strong>OF</strong> TYPE B POLYCYCLIC<br />

POLYPRENYLATED ACYLPHLOROGLUCINOL 7-epi-CLUSIANONE<br />

Plants of the family Guttiferae produce polycyclic polyprenylated acylphloroglucinols<br />

(PPAPs), which have interesting biological activities including anticancer and<br />

antibacterial properties. The main structural features of PPAPs comprise of<br />

bicyclo[3.3.1]nonane-2,4,9-triketone with one acyl group together with prenyl, geranyl,<br />

or other C 10 H 17 groups. 7-epi-Clusianone, a type B PPAP with C-7 endo stereochemistry,<br />

is being approached by establishing the cis relationship with C(4) allyl group and C(2)<br />

methyl ester in the early stage of the synthesis. Then C(2) methyl ester is converted to<br />

alkyne aldehyde and syn reduction followed by intramolecular aldol reaction to give<br />

bicyclo[3.3.1]nonane structure with C(7) endo stereo chemistry.<br />

<strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage<br />

February 5, 2010


PROGRESS TOWARDS THE SYNTHESIS <strong>OF</strong> TYPE B POLYCYCLIC<br />

POLYPRENYLATED ACYLPHLOROGLUCINOL 7-epi-CLUSIANONE<br />

By<br />

<strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage<br />

Robert B. Grossman, Ph.D<br />

Director of Dissertation<br />

Mark S. Meier, Ph.D<br />

Director of Graduate Studies<br />

February 5, 2010


RULES FOR THE USE <strong>OF</strong> <strong>DISSERTATION</strong>S<br />

Unpublished dissertations submitted for the Doctor's degree and deposited in the<br />

University of Kentucky Library are as a rule open for inspection, but are to be used only<br />

with due regard to the rights of the authors. Bibliographical references may be noted, but<br />

quotations or summaries of parts may be published only with the permission of the<br />

author, and with the usual scholarly acknowledgments.<br />

Extensive copying or publication of the dissertation in whole or in part also requires the<br />

consent of the Dean of the Graduate School of the University of Kentucky.<br />

A library that borrows this dissertation for use by its patrons is expected to secure the<br />

signature of each user.<br />

Name<br />

Date<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________<br />

________________________________________________________________________


<strong>DISSERTATION</strong><br />

<strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage<br />

The Graduate School<br />

University of Kentucky<br />

2010


PROGRESS TOWARDS THE SYNTHESIS <strong>OF</strong> TYPE B POLYCYCLIC<br />

POLYPRENYLATED ACYLPHLOROGLUCINOL 7-epi-CLUSIANONE<br />

___________________________<br />

<strong>DISSERTATION</strong><br />

___________________________<br />

A dissertation submitted in partial fulfillment<br />

of the requirements for the degree of<br />

Doctor of Philosophy in the College of Arts and Sciences<br />

at the University of Kentucky<br />

By<br />

<strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage<br />

Lexington, KY<br />

Director: Dr. R.B. Grossman, Professor of Chemistry<br />

Lexington, KY<br />

2010<br />

Copyright © <strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage 2010


To my dearest parents with all my love


ACKNOWLEDGMENTS<br />

Pursuing a Ph.D has been the most painful and enjoyable experience so far in my<br />

life. I accomplished this task with bitterness, frustration, self-confidence, facing hardships<br />

while receiving encouragement and absolute true kindness from many people.<br />

First and foremost, I must wholeheartedly thank my advisor, Professor Dr. Robert<br />

B. Grossman, for accepting me as his Ph.D student without any hesitation. He showed me<br />

the path towards my goal to become a research scientist with his vast knowledge and<br />

dedication to science. I feel most thankful for his willingness to help and for listening to<br />

my ideas on projects, regardless of their merit. Dr. Grossman has helped me<br />

tremendously not only professionally but personally as well. He always understood my<br />

situation and guided me with patience.<br />

I also give my sincerest appreciation to the other members of my committee, Dr.<br />

Mark Watson, Dr. Folami Ladipo and Dr. Joe Chappell. Many thanks for their support,<br />

criticisms, and especially for their sense of humor. My special gratitude goes to Dr. Mark<br />

Watson for his time, effort, and endless discussions that we had during my graduate<br />

career. My graduate career became all the more endurable by having Dr. Watson in my<br />

committee. I would like to thank to Dr. Chris Schardl for serving as my external<br />

examiner. I want to thank Mr. John Layton for his enormous support for taking NMR<br />

data, Dr. Sean Parkin for X-ray crystallography data and Mr. Art Sebesta for technical<br />

support. In addition, my humble thanks go to Department of Chemistry for giving me the<br />

opportunity to carry out my graduate studies at UK.<br />

I am fortunate to have the opportunity to work with group of talented chemists in<br />

Dr. Grossman‘s lab. I have enjoyed every moment that we have worked together in our<br />

lab in CP 137. My sincere thanks goes to all the former and current lab mates including<br />

Dr. Roxana Ciocina, Dr. Razi Husseni, Raghu Ram Chamala, Ronghua Lu, Sujit Pawar,<br />

Nick and Avery for their friendships and their collective encouragements to finish this<br />

dissertation.<br />

iii


I would not have come this far without my parents, especially my mother. Since<br />

childhood, she is the one who gave me the strength and motivated me every day. I love<br />

both of you so much and thank you for all your endless love, kindness, for all the<br />

sacrifices you have made and for giving me the good human qualities that both of you<br />

have.<br />

I want give gratitude from bottom of my heart to most important part of my life<br />

my wife Shashi. We have lived several years in two states visiting only once a month and<br />

during this hard time, she handled all the pressure very carefully while motivating me.<br />

Thank you so much Shashi for all your support.<br />

Finally, I want to thank my grandparents, my sister and Ushan, Shashi‘s parents<br />

and her sister Ruvini for their enormous support, love and kindness. I am so grateful to<br />

have a family, who understood and tolerated my absence for their needs during my<br />

graduate career. I want to thank my aunties (Punchi and Nenda), Uncle (kalu mama), my<br />

cousins Rohini akka, Rohitha aiya, Pali aiya, Gamini aiya and their families, Anushka<br />

nagi and Kanishka for all their moral support and encouragements given over the years. I<br />

owe them a lot. Finally yet importantly, I would like to thank my friends Indika, Malika<br />

and their families, Sri Lankan community in Lexington including Dr. Bandula and Leela<br />

<strong>Jayasekara</strong><br />

iv


TABLE <strong>OF</strong> CONTENTS<br />

ACKNOWLEDGMENTS ................................................................................................. iii<br />

LIST <strong>OF</strong> TABLES ............................................................................................................. vi<br />

LIST <strong>OF</strong> FIGURES .......................................................................................................... vii<br />

LIST <strong>OF</strong> SCHEMAS ....................................................................................................... viii<br />

Chapter 1. Introduction to PPAPs................................................................................. 1<br />

1.1 Introduction ............................................................................................................ 1<br />

1.2 Introduction to PPAPs............................................................................................ 2<br />

1.3 Phloroglucinols and monocyclic polyprenylated acylphloroglucinols (MPAPs)<br />

….4<br />

1.3.1. Biosynthesis of the hop α-acids and β-acids ...................................................... 5<br />

1.4. Survey of polycyclic polyprenylated acylphloroglucinols (PPAPs) ...................... 6<br />

1.5. History of PPAPs ................................................................................................... 7<br />

1.5.1. Reassignment of certain PPAPs‘ relative stereochemistry ............................... 10<br />

1.6. Biosynthesis of PPAPs ......................................................................................... 12<br />

1.7. Biological activity of PPAPs ............................................................................... 15<br />

1.7.1. Type A PPAPs .................................................................................................. 34<br />

1.7.1.1. Hyperforin and its close analogues ................................................................ 34<br />

1.7.1.2. Nemorosone ................................................................................................... 37<br />

1.7.1.3. Garsubellin A ................................................................................................. 38<br />

1.7.2. Type B PPAPs .................................................................................................. 58<br />

1.7.2.1. Garcinol and its derivatives ........................................................................... 58<br />

1.7.2.2. Clusianone and 7-epi-clusianone ................................................................... 58<br />

1.7.2.3. Guttiferones A-E, Xanthochymol and their analogues .................................. 60<br />

1.7.2.4. Lalibinones A-E and their analogues ............................................................. 62<br />

1.7.3. Type C PPAPs .................................................................................................. 65<br />

Chapter 2. Synthetic efforts toward PPAPs ...................................................................... 66<br />

2.1. Introduction .......................................................................................................... 66<br />

2.2. Shibasaki‘s approach to garsubellin A ................................................................. 66<br />

2.3. Danishefsky‘s iodocyclization approach to PPAPs ............................................. 78<br />

2.3.1. Iodonium induced carbocyclization approach to garsubellin A ....................... 78<br />

2.3.1 Iodonium-induced carbocyclization approach to total synthesis of nemorosone<br />

and clusianone ................................................................................................................... 83<br />

2.4. Simpkins and Marazano & Delpech Effenberger cyclization (double acylation)<br />

approach to total synthesis of clusianone.......................................................................... 88<br />

iii


2.4.1 Progress towards the synthesis of nemorosone .................................................. 91<br />

2.4.2. Formal synthesis of garsubellin A .................................................................... 95<br />

2.5. Porco‘s total synthesis of clusianone ................................................................. 101<br />

2.5.1. Retrosynthetic analysis of clusianone ............................................................. 102<br />

2.6. Other approaches towards PPAPs ...................................................................... 105<br />

2.6.1. Nicolaou‘s Se-mediated electrophilic cyclization approach ........................... 105<br />

2.6.2. Nicolaou‘s Michael addition–aldol reaction approach ................................... 107<br />

2.6.3. Kraus‘s Mn-mediated oxidative free radical cyclication approach ................ 108<br />

2.6.3. Kraus‘s addition elimination-addition approach ............................................. 110<br />

2.6.4. Mehta‘s Pd-mediated oxidative cyclization .................................................... 111<br />

2.6.5. Mehta‘s intramolecular enol lactonization, retro-aldol and re-aldol cyclization<br />

......................................................................................................................................... 112<br />

2.6.6. Young‘s intramolecular allene-nitrile oxide [3 + 2] cycloaddtion ................. 113<br />

2.6.7. Grossman‘s alkynylation–aldol approach ....................................................... 114<br />

2.6.8. Nakada‘s Lewis acid promoted regioselective ring-opening reaction of the<br />

cyclopropane approach ................................................................................................... 116<br />

2.6.9. Takagi‘s acid catalyzed cyclization approach towards adamantane core of<br />

plukenetione type PPAPs ................................................................................................ 117<br />

Chapter 3. Our synthesis towards 7-epi-clusianone ...................................................... 119<br />

3.1. Initial retrosynthetic analysis ............................................................................. 120<br />

3.2 Forward synthesis ............................................................................................... 121<br />

3.2.1 Synthesis of 2,4-diallyl-3-methyl-2-cyclohexenone ........................................ 121<br />

3.2.2 Allylation, methylation and acidification ........................................................ 122<br />

3.2.3 Alternate pathway towards 2,4-diallyl-3-methyl-2-cyclohexeone. ................. 122<br />

3.2.3.1 Allylation ...................................................................................................... 122<br />

3.2.3.2 Michael addition, cyclization and decarboxylation ...................................... 123<br />

3.2.4 Conjugate addition, trapping enolate with TMS group followed by desilylation<br />

......................................................................................................................................... 124<br />

3.2.5. Carbonylation and allylation ........................................................................... 125<br />

3.2.6. Reduction and oxidation ................................................................................. 126<br />

3.2.7 Still–Gennari reaction, reduction and oxidation .............................................. 127<br />

3.2.8 Aldol reaction .................................................................................................. 128<br />

3.2.8.1 Aldol reaction under acidic conditions ......................................................... 128<br />

3.2.8.2 Aldol reaction under basic conditions .......................................................... 130<br />

3.3 The role of 1,2-allylic strain................................................................................ 131<br />

3.4 Redesigning the synthesis ................................................................................... 133<br />

3.4.1 New retrosynthetic analysis ............................................................................. 133<br />

3.4.2 Forward synthesis ............................................................................................ 134<br />

3.4.2.1 Isobutyl protection, allylation, methylation and acidification ...................... 134<br />

3.4.2.2 Conjugate addition and carbonylation .......................................................... 135<br />

3.4.2.3 Allylation and Claisen rearrangement .......................................................... 135<br />

3.4.2.3.1 Structure and stereochemistry determination of 354a ............................... 138<br />

iv


3.4.2.3.2 Proposed model for the stereochemical products for the Claisen<br />

rearrangement ................................................................................................................. 138<br />

3.4.2.4 Methyl enol ether protection, reduction and oxidation ................................. 139<br />

3.4.2.5 Alkynylation ................................................................................................. 139<br />

3.4.2.6 O-Allylation and carbonylation .................................................................... 140<br />

3.4.2.7 Reduction, Claisen rearrangement and oxidation ......................................... 140<br />

3.4.2.8 Syn reduction of alkynal and intramolecular aldol reaction ......................... 141<br />

3.4.2.8.1 Complex with Co 2 (CO) 8 and hydrosilylation ............................................ 141<br />

3.4.2.8.2 Hydrostannylation ...................................................................................... 143<br />

3.4.2.8.3 Addition of thiophenol to keto alkynal 39 ................................................. 144<br />

3.4.2.8.4 Structure and stereochemistry determination of 365 ................................. 145<br />

3.4.2.8.5 Intramolecular aldol and oxidation reactions ............................................. 145<br />

3.4.3 Attempts to form the 2,4,9-triketone system ................................................... 146<br />

3.4.3.1. Curtius rearrangement approach .................................................................. 146<br />

3.4.3.1.1. Synthetic plan 1 ........................................................................................ 146<br />

3.4.3.1.2. 1,2-addition of Bu 3 SnCH 2 OMOM and allylic oxidation ......................... 147<br />

3.4.3.1.3. 1,2-addition of MeLi and allylic oxidation ............................................... 148<br />

3.4.3.1.4. Synthetic plan 2 ........................................................................................ 149<br />

3.4.3.1.5. Me 2 CuLi addition to bicyclo enone 364 ................................................... 149<br />

3.6. Experimental Section ......................................................................................... 151<br />

Chapter 4. Conclusion ..................................................................................................... 178<br />

Appendix ......................................................................................................................... 180<br />

References ....................................................................................................................... 202<br />

Vita .................................................................................................................................. 211<br />

v


LIST <strong>OF</strong> TABLES<br />

Table 1.1: Type A PPAPs ……………………………………………………………15<br />

Table 1.2: Type B PPAPs ……………………………………………………………38<br />

Table 1.3: Type C PPAPs ……………………………………………………………58<br />

Table 3.1: Acid and solvent used for aldol reaction …………………………………..123<br />

Table 3.2: Bases and solvent used for aldol reaction …………………………………..124<br />

Table 3.3: Reagents and conditions of Me2CuLi addition …………………………..144<br />

vi


LIST <strong>OF</strong> FIGURES<br />

Figure 1.1: Xanthone, morellin, phloroglucinol, maclurin ................................................ 2<br />

Figure 1.2: Hyperforin (1)................................................................................................... 3<br />

Figure 1.3: Xanthochymol and cycloxanthochymol ......................................................... 3<br />

Figure 1.4: Hops-derived α- and β-acids ........................................................................... 5<br />

Figure 1.5: Type A, B and C PPAPs ................................................................................... 7<br />

Figure 1.6: Rao‘s first proposed structure of xanthochymol (135) and corrected structure<br />

of xanthochymol (96) .......................................................................................................... 9<br />

Figure 1.7: Structure of clusianone ..................................................................................... 9<br />

Figure 1.8: Garcinielliptones L and M .............................................................................. 10<br />

Figure 1.9: Lavandulyl and ω- isolavandulyl groups ....................................................... 11<br />

Figure 1.10 Products of oxidation of hyperforin .............................................................. 36<br />

Figure 1.11 O-protected analogs of hyperforin................................................................. 37<br />

Figure 1.12 Nemorosone derivatives ................................................................................ 38<br />

Figure 1.13: Structure of clusianone, 7-epi-clusianone and propolone A ........................ 59<br />

Figure 2.1: Chiral tetraamine 173 ..................................................................................... 75<br />

Figure 3.1: Structure and stereochemistry determination of 322a using NOE ............... 126<br />

Figure 3.2: Steriochemistry determination of 354a using NOE ..................................... 137<br />

Figure 3.3: X-ray data structure of 364 .......................................................................... 143<br />

Figure 3.4: Structure and stereochemistry determination of 365 .................................... 145<br />

Figure 3.2: X-ray structure of 1,2-adduct 368 ................................................................ 151<br />

vii


LIST <strong>OF</strong> SCHEMAS<br />

Scheme 1.1 Proposed biosynthesis pathway of α-acids and β-acids .................................. 6<br />

Scheme 1.2: Biosynthesis of MPAPs ............................................................................... 12<br />

Scheme 1.3: Proposed biosynthesis mechanism for type A and B PPAPs ....................... 13<br />

Scheme 1.4: Proposed biosynthesis mechanism for type C PPAP .................................. 14<br />

Scheme 2.1: Shibasaki‘s retrosynthesis of 8-deprenyl-garsubellin A ............................. 67<br />

Scheme 2.2: Shibasaki‘s approach to 8-deprenyl-garsubellin A, part 1 ........................... 68<br />

Scheme 2.2a: Addition-elimination reaction on the carbonate 154 .................................. 69<br />

Scheme 2.3: Shibasaki‘s approach to 8-deprenyl-garsubellin A, part 3 ........................... 70<br />

Scheme 2.4: 1,2-allylic strain of the reactive conformation in 151b ................................ 71<br />

Scheme 2.5: Shibasaki‘s retrosynthesis of garsubellin A ................................................. 72<br />

Scheme 2.6: Shibasaki‘s forward synthesis of garsubellin A, part 1 ................................ 73<br />

Scheme 2.7: Shibasaki‘s forward synthesis of garsubellin A, part 2 ................................ 74<br />

Scheme 2.8: Ring-closing metathesis on 174 ................................................................... 75<br />

Scheme 2.9: Shibasaki‘s intramolecular aldol approach towards garsubellin A .............. 76<br />

Scheme 2.10: Shibasaki‘s intramolecular aldol approach towards garsubellin A, part 1 . 77<br />

Scheme 2.11: Danishefsky‘s retrosynthetic analysis of garsubellin A ............................. 78<br />

Scheme 2.12: Danishefsky‘s synthesis towards garsubellin A, part 1 .............................. 79<br />

Scheme 2.13: Danishefsky‘s synthesis towards garsubellin A, part 2 .............................. 80<br />

Scheme 2.13a: TMSI assisted strained cyclopropane ring opening ................................. 81<br />

Scheme 2.14: Danishefsky‘s synthesis towards garsubellin A, part 3 .............................. 82<br />

Scheme 2.15: Danishefsky‘s retrosynthetic analysis of nemorosone and clusianone ..... 83<br />

Scheme 2.16: Danishefsky‘s synthesis towards nemorosone and clusianone, part 1 ....... 84<br />

Scheme 2.17: Danishefsky‘s synthesis towards nemorosone and clusianone, part 2 ....... 85<br />

Scheme 2.18: Danishefsky‘s synthesis towards nemorosone and clusianone, part 3 ....... 86<br />

Scheme 2.19: Danishefsky‘s synthesis towards nemorosone and clusianone, part 4 ....... 87<br />

Scheme 2.20: Stoltz‘s Effenberger cyclization approach ................................................. 88<br />

Scheme 2.21: Simpkins‘ retrosynthetic analysis of clusianone ........................................ 89<br />

Scheme 2.22: Simpkins‘ synthesis towards clusianone, part 1 ......................................... 89<br />

viii


Scheme 2.23: Simpkins‘ synthesis towards clusianone, part 2 ......................................... 90<br />

Scheme 2.24: Simpkins‘ synthesis towards clusianone, part 3 ......................................... 91<br />

Scheme 2.25: Simpkins‘ synthesis towards nemorosone, part 1 ...................................... 92<br />

Scheme 2.27: Simpkins‘ synthesis towards nemorosone, part 2 ...................................... 94<br />

Scheme 2.28: Simpkins‘ formal synthesis of garsubellin A, part 1 .................................. 95<br />

Scheme 2.29: Simpkins‘ formal synthesis of garsubellin A, part 2 .................................. 96<br />

Scheme 2.30: Marazano‘s retrosynthetic analysis of clusianone ...................................... 97<br />

Scheme 2.31: Marazano‘s synthesis of clusianone, part 1 ................................................ 97<br />

Scheme 2.32. Marazano‘s synthesis of clusianone, part 2 ................................................ 98<br />

Scheme 2.33: Marazano‘s synthesis of clusianone, part 3 ................................................ 98<br />

Scheme 2.34: Marazano‘s synthesis of clusianone, part 4 ................................................ 99<br />

Scheme 2.35: Proposed mechanism for the formation of 250 ........................................ 100<br />

Scheme 2.36: Marazano‘s synthesis of clusianone, part 5 .............................................. 101<br />

Scheme 2.37: Porco‘s retrosynthetic analysis of clusianone .......................................... 102<br />

Scheme 2.38: Porco‘s synthesis of clusianone, part 1 .................................................... 103<br />

Scheme 2.39: Porco‘s synthesis of clusianone, part 2 .................................................... 104<br />

Scheme 2.40: Nicolaou‘s model compound of garsubellin A ........................................ 105<br />

Scheme 2.41: Nicolaou‘s Se-mediated electrophilic cyclization approach, part 1 ......... 106<br />

Scheme 2.42: Nicolaou‘s Se-mediated electrophilic cyclization approach, part 2 ......... 106<br />

Scheme 2.43: Hyperforin and perforatumone ................................................................ 107<br />

Scheme 2.44: Nicolaou‘s Michael addition-aldol reaction approach ............................. 108<br />

Scheme 2.45: Kraus‘s Mn-mediated oxidative free radical cyclication approach .......... 109<br />

Scheme 2.46: Proposed mechanism for the Mn mediated cyclization ........................... 109<br />

Scheme 2.47: Kraus‘s addition elimination-addition approach, part 1 ........................... 110<br />

Scheme 2.48: Kraus‘s addition elimination-addition approach, part 2 ........................... 111<br />

Scheme 2.49: Mehta‘s Pd-mediated oxidative cyclization ............................................. 112<br />

Scheme 2.50: Mehta‘s intramolecular enol lactonization ............................................... 113<br />

Scheme 2.51: Young‘s intramolecular allene-nitrile oxide [3 + 2] cycloaddtion ........... 114<br />

Scheme 2.52: Grossman‘s alkynylation–aldol approach ................................................ 115<br />

Scheme 2.53: Nakada‘s Lewis acid promoted regioselective ring-opening ................... 116<br />

Scheme 2.54: Takagi‘s acid catalyzed cyclization approach towards adamantane core 117<br />

Scheme 3.1: Our initial retrosynthetic analysis .............................................................. 120<br />

ix


Scheme 3.2: Synthesis of 2,4-diallyl-3-methyl-2-cyclohexenone .................................. 121<br />

Scheme 3.3: Allylation, methylation and acidification ................................................... 122<br />

Scheme 3.4: Alternate pathway towards 2,4-diallyl-3-methyl-2-cyclohexeone ............. 122<br />

Scheme 3.5: Michael addition, cyclization and decarboxylation ................................... 123<br />

Scheme 3.6: Methylation of cyclohexenone intermediate 336 using MeLi/CeCl 3 ......... 124<br />

Scheme 3.7: Conjugate addition, trapping enole with TMS group followed by<br />

desilylation ...................................................................................................................... 124<br />

Scheme 3.8: Carbonylation and allylation ...................................................................... 125<br />

Scheme 3.9: Reduction and oxidation of 322a ............................................................... 126<br />

Scheme 3.10: Still–Gennari reaction, reduction and oxidation ...................................... 127<br />

Scheme 3.11: Aldol reaction ........................................................................................... 128<br />

Scheme 3.12: Aldol reaction under acidic conditions .................................................... 128<br />

Scheme 3.13: Proposed mechanism for cis-trans isomerization ..................................... 129<br />

Scheme 3.14: Aldol reaction under basic conditions ...................................................... 130<br />

Scheme 3.15: The role of 1,2-allylic strain ..................................................................... 131<br />

Scheme 3.16: 1,2-allylic strain of 321 ............................................................................ 132<br />

Scheme 3.17: Second retrosynthetic analysis ................................................................. 133<br />

Scheme 3.18: Isobutyl protection, allylation, methylation and acidification ................. 134<br />

Scheme 3.19: Conjugate addition and carbonylation ..................................................... 135<br />

Scheme 3.20: Failed Pd-catalyzed allylation reaction .................................................... 135<br />

Scheme 3.21: O-allylation .............................................................................................. 136<br />

Scheme 3.22: Claisen rearrangement .............................................................................. 136<br />

Scheme 3.23: Proposed model for the stereochemical products for the Claisen<br />

rearrangement ................................................................................................................. 138<br />

Scheme 3.24: Methyl enol ether protection, reduction and oxidation ............................ 139<br />

Scheme 3.25: Alkynylation ............................................................................................. 139<br />

Scheme 3.26: O-Allylation and carbonylation ................................................................ 140<br />

Scheme 3.27: Reduction, Claisen rearrangement and oxidation .................................... 140<br />

Scheme 3.28: Complex with Co 2 (CO) 8 and hydrosilylation .......................................... 141<br />

Scheme 3.29: Intramolecular aldol product .................................................................... 142<br />

Scheme 3.30: Hydrogenation .......................................................................................... 144<br />

Scheme 3.31: Addition of thiophenol to keto alkynal 39 ............................................... 144<br />

x


Scheme 3.32: Intramolecular aldol and oxidation reactions ........................................... 145<br />

Scheme 3.33: Attempts to form the 2,4,9-triketone system ............................................ 146<br />

Scheme 3.34: Curtius rearrangement approach, plan 1 .................................................. 147<br />

Scheme 3.35: 1,2-addition of Bu 3 SnCH 2 OMOM and allylic oxidation ........................ 147<br />

Scheme 3.37: 1,2 addition of MeLi and allylic oxidation............................................... 148<br />

Scheme 3.38: Curtius rearrangement approach, plan 2 .................................................. 149<br />

Scheme 3.39: Me 2 CuLi addition to bicyclo enone 364 .................................................. 149<br />

xi


Chapter 1.<br />

Introduction to PPAPs<br />

1.1 Introduction<br />

Natural products, especially those derived from plants, have been used for<br />

medicinal purposes since ancient times. Clay tablets of the Babylonian, Assyrian, and<br />

Sumerian eras dated 2600 - 4000 BC are thought to be the earliest recordings of plant<br />

usage as herbal remedies. 1 Egyptians also had many paintings of medicinal plants on<br />

their tomb walls dated around 2200 – 2700 BC. 1 The Ebers papyrus, which dates from<br />

around 1550 BC, is the most famous medical document of ancient Egypt. 1 It was<br />

discovered by professor George Ebers in a tomb at Thebes in 1872 and contains more<br />

than 800 medicinal recipes using medicinal plants. 1 Traditional Chinese medicine,<br />

thought to be more than 5000 years old, is based on natural laws that govern good health<br />

and longevity, namely yin and yang, and their medicinal practice is comprised mainly of<br />

the use of medicinal plants. 1 Ancient medicine practiced in India, Ayurveda, meaning ―<br />

the science of life‖, is also based on using medicinal plants. 1 Concoctions of different<br />

parts of medicinal plants were made depending on the bodily humors. 1<br />

This centuries-old usage of natural products certainly continues into the<br />

present, as half of prescription drugs in the market today contain plant-derived<br />

ingredients. The use of natural products as a source of drugs in the modern<br />

pharmaceutical era began with the use of foxglove extract. 2 William Withering used<br />

foxglove extract to treat heart patients, and he published this application in 1785. Digoxin<br />

was discovered due to this treatment; GlaxoSmithKline markets this drug as Lanoxin, and<br />

it is used to treat arrhythmia and congestive heart failure. 3 In 1806, Freidrich Serturner<br />

extracted morphine from poppies, which led to the usage of controlled morphine doses<br />

for pain and also led to a greater understanding of morphine receptors and the pathways<br />

that are associated with them. 3 Arthur Eichengrün and Felix Hoffmann at Bayer<br />

Company created aspirin in 1897. 2,3 Aspirin was the first synthetic drug synthesized from<br />

a natural product, salicylic acid, extracted from the willow bark. 3,4 Then in 1928<br />

1


Alexander Fleming discovered Penicillin from penicillium mold, and this discovery<br />

changed modern medicine and the treatment and understanding of infectious disease. 3,4<br />

1.2 Introduction to PPAPs<br />

Another plant used for medicinal purposes is St. John‘s wort (Hypericum<br />

perforatum), which is a yellow flowering plant that has been used since ancient times for<br />

treatment of depression and anxiety. 5 Hypericum perforatum belongs to the plant family<br />

Guttiferae, and the widespread interest in its antidepressant activity has increased<br />

investigation of metabolites from this family. 6 Many of these metabolites are biologically<br />

active compounds which contain an acylphloroglucinol moiety. 6 Guttiferae consists<br />

mainly of tropical plants of 40 genera and about 1200 species, most of which are woody. 7<br />

The Guttiferae family produces numerous xanthones, 8 including complex xanthones such<br />

as morellin, 9,10 3,8-linked biflavonoids such as morellflavone (fukugetin), 11 lactones,<br />

phenolic acids, benzophenones (phloroglucinols) and polyprenylated benzophenones<br />

(Figure 1.1). 7,12 The word ―xanthone‖ is derived from Greek and means yellow and<br />

designates the chemical compound dibenzo-[g]-pyrone. 8 Biogenetically, all of the<br />

―isoprenylated benzophenone" derivatives may be derived from acylphloroglucinols such<br />

as maclurin, which is regarded as a precursor for many xanthones in higher plants (Figure<br />

1.1). 13,14<br />

C H O<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

O H<br />

O<br />

O H<br />

O<br />

O H<br />

O<br />

H O<br />

O H<br />

H O<br />

O H<br />

O H<br />

x a n t h o n e<br />

m o r e l l i n<br />

p h l o r o g l u c i n o l s<br />

m a c l u r i n<br />

Figure 1.1: Xanthone, morellin, phloroglucinol, maclurin<br />

2


Common to plants belonging to the family Guttiferae is their property of wound healing,<br />

which has been connected to the established antimicrobial activities of the<br />

phloroglucinols. 6<br />

In 1971, Gurevich and coworkers isolated hyperforin (1) from Hypericum<br />

perforatum L. (St. John‘s wort), and it showed antimicrobial activity against grampositive<br />

bacteria. 15 In 1975, Bystrov and coworkers determined the structure of<br />

hyperforin, which belongs to the class of polycyclic polyprenylated acylphloroglucinols,<br />

not the xanthone structure described above (Figure 1.2). 16<br />

H O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

O<br />

i - P r<br />

i - P r<br />

1<br />

Figure 1.2: Hyperforin (1)<br />

In 1973, Rama Rao and coworkers isolated two interesting isoprenylated benzophenones,<br />

xanthochymol (96) and cycloxanthochymol (107), from C. xanthochymus (Figure1.3). 17<br />

The bioactivity of these molecules was not recorded at that time. 17<br />

O H<br />

O H<br />

H O<br />

O<br />

O<br />

O<br />

O H<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

9 6 1 0 7<br />

Figure 1.3: Xanthochymol and cycloxanthochymol<br />

3


1.3 Phloroglucinols and monocyclic polyprenylated acylphloroglucinols (MPAPs)<br />

Phloroglucinols are 1,3,5-benzenetriols, and MPAPs are derivatives of<br />

these phloroglucinols which contain an acyl group and two or three 3-methyl-2-butenyl<br />

(prenyl) side chains as substituents in the aromatic nucleus. 18 MPAPs are reported to<br />

show antimicrobial, antifungal and antifeedant activity. 19,20 For example, Humulus<br />

lupulus (Cannabinaceae), commonly known as hops, is used in folk medicine as an<br />

antibacterial agent (in the form of wound powders and salves), a tranquilizer (sleep<br />

inducer), a diuretic, and to alleviate the symptoms of menopause. 21 The cones of the hop<br />

plant, Humulus lupulus L. (Cannabaceae), are also an important raw material for the beer<br />

brewing industry. After brewing, the essential oil and the bitter acids from the cones<br />

contribute to the specific aroma and taste of the final product, beer. 21 These compounds<br />

are monocyclic prenylated derivatives of phloroglucinols (MPAPs) and consist of -<br />

acids, mainly humulone, cohumulone and adhumulone, and -acids, mainly lupulone,<br />

colupulone and adlupulone (Figure 1.4). 22 The α-acids are converted during the brewing<br />

process into iso-α-acids, compounds responsible for the flavor and the bitter taste of<br />

beer. 23 However, the β-acids do not add any taste during the brewing process. 6 Although<br />

β-acids are not important to the brewing industry, they show radical scavenging activity,<br />

inhibition of lipid peroxidation, and antimicrobial activity. 6<br />

4


O H<br />

O<br />

O H<br />

O<br />

R<br />

R<br />

H O<br />

H O<br />

O<br />

H O<br />

O<br />

α-acids<br />

β-acids<br />

R α-acids β-acids<br />

i-Pr cohumulone colupulone<br />

i-Bu humulone lupulone<br />

s-Bu adhumulone adlupulone<br />

Figure 1.4: Hops-derived α- and β-acids<br />

1.3.1. Biosynthesis of the hop α-acids and β-acids<br />

Three types of reactions take place in this biosynthesis: the formation of<br />

aromatic intermediates, the introduction of several prenyl side chains into the aromatic<br />

ring, and the oxidation of a carbon atom from the phenolic nucleus (applies to -acids)<br />

(Scheme 1.1). 21 The first reaction is similar to the initial step in the biosynthesis of<br />

flavonoids; the successive condensations of three molecules of malonyl-CoA to<br />

isobutyryl-CoA or isovaleryl-CoA lead to the formation of phloroglucinol<br />

intermediates. 21 It‘s believed that PPAPs are biosynthetically made through these<br />

acylphloroglucinol (MPAPs) intermediates. 6<br />

5


R 1<br />

O<br />

S C o A<br />

O H O<br />

O O<br />

O O<br />

3 H O S C o A<br />

R 1<br />

S C o A<br />

O<br />

O<br />

O H O<br />

R 1<br />

R 2<br />

R 1<br />

H O<br />

O H<br />

H O<br />

O<br />

R 2 R 2<br />

R 1 = P h , i - P r<br />

R 2 = p r e n y l o r g e r a n y l<br />

Scheme 1.1 Proposed biosynthesis pathway of α-acids and β-acids<br />

1.4. Survey of polycyclic polyprenylated acylphloroglucinols (PPAPs)<br />

Polycyclic polyprenylated acylphloroglucinols (PPAPs) consists of a<br />

bicyclo[3.3.1]nonane-2,4,9-trione skeleton with one acyl group and several prenyl and<br />

geranyl groups. 6 These PPAPs can further cyclize to give adamantanes,<br />

homoadamantanes, or dihydrofurano- or pyrano- fused structures. 6 Some of these<br />

products have been shown to possess antioxidative, antiviral and antibiotic properties. 6<br />

The PPAPs can be divided into three classes: type A, B and C. Type A PPAPs<br />

have a C(1) acyl group and an adjacent C(8) quaternary center; type B PPAPs have a<br />

C(3) acyl group, and type C PPAPs have a C(1) acyl group and a distant C(6) quaternary<br />

center (Figure 1.5). 24<br />

6


H O<br />

R 1<br />

R 1<br />

O R 3<br />

O H O O<br />

O O<br />

O<br />

R 3 R 1 R 1<br />

R 1 R 2<br />

R 1 R 2<br />

H O O<br />

O O<br />

R 1<br />

R 3 t y p e A t y p e B<br />

R 1<br />

R 1<br />

t y p e C<br />

o r<br />

O R 3<br />

H O O<br />

O<br />

R 1 R 4<br />

R 5<br />

R 1 = M e , C 5 H 9 o r C 1 0 H 1 7<br />

R 2 = H o r p r e n y l<br />

R 3 = i - P r , i - B u , s - B u , P h<br />

3 - ( O H ) C 6 H 4 , o r 3 , 4 - ( O H ) C 6 H 3<br />

R 4 = M e , R 5 = O H o r R 4 - R 5 = C H 2 C H R 6<br />

R 6 = H , C M e = C H 2 , o r C M e 2 O H<br />

Figure 1.5: Type A, B and C PPAPs<br />

Lists of type A, B, and C PPAPs reported and isolated to date is presented in Tables 1-3,<br />

respectively. All the presented PPAPs have been isolated from the Guttiferae plant<br />

family. The majority of these compounds are type A and B; garcinelliptones K (144), L<br />

(146) and M (145) are reported to have type C structures. 25<br />

1.5. History of PPAPs<br />

In 1937, the indian scientist Sanjive Rao isolated a yellow crystalline<br />

levorotatory phenol from Garcinia morella and named it morellin. 9 Rao determined the<br />

composition of morellin to be C 30 H 34 O 6 and found that it contained four hydroxyl groups.<br />

However, due to insufficient data, Rao et. al could not assign any structure to morellin. 9<br />

In 1962 Kartha et al found morellin to be one of the few natural products containing a<br />

bicyclo[2.2.2]octane ring system, making morellin a phloroglucinol. 10 By 1961 there<br />

7


were 18 naturally occurring xanthones found from various families including guttiferae<br />

and most of them were phloroglucinols. 8<br />

Hyperforin was the first isolated PPAP 15 , and it is now classified as type<br />

A. 26 In 1975 Bystrov and coworkers were able to detemine hyperforin‘s structure and its<br />

absolute stereochemistry. 16<br />

The first two type B PPAPs were isolated in 1973 by Rama Rao and<br />

coworkers from fruits of G.xanthochymus, and they were named xanthochymol and<br />

isoxanthochymol. The structure given at the time for xanthochymol was monocyclic. 17<br />

Due to the low resolution of NMR and many overlapping peaks, this structure was<br />

incorrectly assigned. 17 In addition, the chemical shifts were very different from the<br />

literature values today. In 1974 David L. Dreyer isolated a compound from fruits of the<br />

autograph tree (Clusia rosea) and named it as xanthochymol. 27 He used the following<br />

findings as evidence to compare with Rao‘s xanthochymol structure: (a) three aromatic<br />

protons, (b) three vinyl protons, (c) a C=CH, group, and (d) an uncertain number of vinyl<br />

C-methyls. 27<br />

In 1976 John F. Blount and Thomas H. Williams revised the structure of<br />

xanthochymol and corrected the structure using NMR and X-ray crystallography. 28 In<br />

there methodology, they used CDCl 3 as a solvent and TMS for the reference peak. Blount<br />

et al clearly assigned the proton peaks and found that xanthochymol has gem-dimethyl<br />

groups in the bicyclo[3.3.1]nonane (main skeleton) where previously they were assigned<br />

in the bicyclo[3.3.0]octane ring (Figure 1.6). Overall, they were able to detemine the<br />

correct structure with absolute configuration. 28<br />

8


O H<br />

O H<br />

O<br />

O<br />

O<br />

O H<br />

H O<br />

O<br />

O<br />

O<br />

O H<br />

O<br />

147 96<br />

Figure 1.6: Rao’s first proposed structure of xanthochymol (135) and corrected<br />

structure of xanthochymol (96)<br />

The type B PPAP clusianone (112) was first isolated from the bark extraction of<br />

Clusia congestiflora, and the structure was determined using X-ray crystallography in<br />

1976 (Figure 1.7). 29<br />

O<br />

H O<br />

O<br />

O<br />

1 1 2<br />

Figure 1.7: Structure of clusianone<br />

Nemorosone (5) and hydroxynemorosone (6) were first isolated by de Oliveira<br />

who assigned them to be type C PPAP. 30 In 2001, Cuesta-Rubio isolated nemorosone<br />

from floral resins of Clusia rosea and showed that nemorosone in fact had the type A<br />

9


structure, where the positions of the bridgehead substituents were swapped from their<br />

originally assigned positions. 26<br />

The first type C PPAP was reported by the Lin group in 2004, and they have<br />

isolated garcinielliptones M (145) and L (146) from the seeds of Garcinia subelliptica<br />

(Figure 1.8). 25<br />

H O<br />

O<br />

O<br />

O<br />

O<br />

H O<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

i - P r<br />

1 4 6 1 4 5<br />

Figure 1.8: Garcinielliptones L and M<br />

1.5.1. Reassignment of certain PPAPs’ relative stereochemistry<br />

To assign the correct structure of PPAPs, it is very important to know the<br />

correct stereochemistry. Due to their complex structure and overlapping NMR chemical<br />

shifts, this is a difficult task. In fact, the structure of garcinielliptone I (40) has been<br />

assigned the same structure as hyperibone B (33) in previous literature. Later, NMR<br />

spectral data and optical rotation data showed that garcinielliptone I (40) is the other<br />

enantiomer of hyperibone A (39). 31,32<br />

In 2000, Grossman and Jacobs explained that the orientation of the C(7)<br />

substituent in the PPAPs (endo or exo) can be easily determined from the 1 H and 13 C<br />

NMR spectral data. 33 The stereochemistry at C(7) was identified by examining the<br />

chemical shift difference of the two H(6) or H(8) atoms and the chemical shift of C(7). 33<br />

The C(7) stereochemistry is endo when the difference in the chemical shifts of the two<br />

H(6) atoms is 0.3-1.2 ppm and the chemical shift of C(7) is 41-44 ppm, and it is exo<br />

when the difference in the chemical shifts of the two H(8) atoms is 0.0-0.2 ppm and the<br />

10


chemical shift of C(7) is 45-49 ppm. 33 In 2002, Matsuhisa et al reported isolation of new<br />

type A PPAPs with exo C(7) substituents, hyperibones A (39), B (33), C (41), D (17), E<br />

(20), F (21), G (15), H (109), and I (110) form aerial parts of Hypericum scabrum. 31 But<br />

using the above data, Grossman and Ciochina proposed that hyperibones C (41), E (20),<br />

F (21), H (109), and I (110) have an endo C(7) substituent, contrary to the originally<br />

proposed exo orientation. 24 Also, they noticed, using NMR and optical rotation data, that<br />

garcinielliptone I (40) is in fact enantiomeric to hyperibone A (39) and not identical to<br />

hyperibone B (33), as originally proposed. 31,34<br />

So far only the absolute configurations of hyperforin (1), 24 xanthochymol (96), 14<br />

and isoxanthochymol (106) 14 have been determined experimentally. Some PPAPs<br />

(hyperibone G (15) and propolone D (16) 31 , 35 hyperibone A (39) and garcinielliptone I<br />

(40), 31,34-36 guttiferone E (91) and garcinol (92), 12,37-41 isoxanthochymol (106) and<br />

isogarcinol (105) 12,39,40,42-44 ) have been isolated in both enantiomeric forms. When we<br />

draw the structures of PPAPs, we choose to draw the C(9) ketone pointing toward the<br />

reader, although it may not be the absolute configuration of any particular structure. We<br />

include each PPAP‘s specific rotation in the tables because the specific rotation of a<br />

compound can reveal its absolute configuration.<br />

In the Tables, the lavandulyl and -isolavandulyl groups are defined as below.<br />

(R)- lavandulyl<br />

ω- isolavandulyl<br />

Figure 1.9: Lavandulyl and ω- isolavandulyl groups<br />

11


1.6. Biosynthesis of PPAPs<br />

It is believed that PPAPs are biosynthetically derived from MPAPs. 6,13,14 The -<br />

acid is an example of MPAP, and labeling experiments of these bitter acids has provided<br />

evidence of their biosynthesis pathway. 45 The acylphloroglucinol moiety is<br />

biosynthetically made via a polyketide pathway with association of one acyl-CoA group<br />

and three malonyl-CoA groups (Scheme 2). 46,47 Enzyme-assisted combination of an acyl-<br />

CoA group and three malonyl-CoA groups give the tetraketide product intermediate, and<br />

it is cyclized via Claisen condensation into an acylphloroglucinol. 48-50 Further<br />

electrophilic substituted reactions on acylphloroglucinol moiety and dimethylallyl<br />

diphosphate (DMAPP) or geranyl diphosphate (GPP) result in prenylated or geranylated<br />

product of acylphloroglucinol (Figure 1.21). 50<br />

R 1<br />

O<br />

S C o A<br />

O H O<br />

O O<br />

O O<br />

3 H O S C o A<br />

R 1<br />

S C o A<br />

O<br />

O<br />

O H O<br />

R 1<br />

R 2<br />

R 1<br />

H O<br />

O H<br />

H O<br />

O<br />

R 2 R 2<br />

R 1 = P h , i - P r<br />

R 2 = p r e n y l o r g e r a n y l<br />

Scheme 1.2: Biosynthesis of MPAPs<br />

Cuesta-Rubio proposed a mechanism for the cyclization of MPAPs to type A and<br />

type B PPAPs via a common intermediate (Figure 1.22). 26 One prenyl group of the<br />

geminal prenyl groups of the MPAP attacks prenyl pyrophosphate to result in a stable<br />

tertiary carbocationic intermediate. Attack of the C(1) enol moiety on the carbocation<br />

12


would give a type A PPAP, and the attack of the C(5) enol would result in a type B<br />

PPAP. The stereochemistry of the C(7) prenyl group of PPAPs is established during the<br />

initial stage when prenyl pyrophosphate attacks the MPAP. A single diastereomer of the<br />

carbocationic intermediate leads to a type A PPAP with a C(7) exo prenyl group or to a<br />

type B PPAP with a C(7) endo prenyl group. A majority of type A PPAPs have C(7) exo<br />

prenyl groups, whereas most type B PPAPs have C(7) endo prenyl groups. 24 Adam and<br />

coworkers proposed a similar mechanism for the biosynthesis of hyperforin. 46 Type C<br />

PPAPs may be made biosynthetically from MPAPs having a quaternary center attached<br />

to the acyl group instead of a prenyl group. This will lead to a tertiary carbocationic<br />

intermediate with reaction of prenyl or geranyl pyrophosphate. Then, the attack of C(1)<br />

from the carbocationic intermediate would result in a type C PPAP (Figure 1.23).<br />

O H<br />

O<br />

O H<br />

O<br />

H O<br />

R<br />

O<br />

5<br />

H O<br />

1 R<br />

O<br />

O P P<br />

C ( 1 ) a t t a c k<br />

C ( 5 ) a t t a c k<br />

O<br />

O<br />

R<br />

O H<br />

O R<br />

H O<br />

O<br />

O<br />

O<br />

t y p e A<br />

e x o 7 - p r e n y l<br />

t y p e B<br />

e n d o 7 - p r e n y l<br />

Scheme 1.3: Proposed biosynthesis mechanism for type A and B PPAPs<br />

13


O H<br />

O H<br />

O<br />

5 1<br />

H O<br />

O<br />

H O<br />

O<br />

H O<br />

O<br />

R O<br />

R O R O<br />

O P P<br />

t y p e C<br />

Scheme 1.4: Proposed biosynthesis mechanism for type C PPAP<br />

14


Table 1.1: Type A PPAPs<br />

The following table of type A PPAPs was taken from a review article written by Dr.<br />

Ciochina and Prof. Grossman. 24 Seven newly isolated natural products were added to the<br />

table: prolifenone A (11), prolifenone B (12), sundaicumone A (25), sundaicumone B<br />

(26), sampsonione N (36), sampsonione O (37) and sampsonione Q (73).<br />

No. R groups Name Source a [α] D<br />

b<br />

H O<br />

R 3<br />

R 4<br />

O<br />

O<br />

O<br />

R 1<br />

R 2<br />

1<br />

R 1 = isopropyl;<br />

R 2 , R 3 , R 4 = prenyl<br />

Hyperforin c,15,16,51 H. perforatum +41 (e, 5)<br />

2<br />

R 1 = s-Butyl;<br />

R 2 , R 3 , R 4 = prenyl<br />

Adhyperforin 52,d H. perforatum NR<br />

3<br />

R 1 = isopropyl;<br />

R 2 , R 3 = prenyl; R 4 = H<br />

Hyperevolutin A 53<br />

H. revolutum Vahl<br />

+84.4<br />

(m,0.5)<br />

4<br />

R 1 = s-Butyl;<br />

R 2 , R 3 = prenyl; R 4 = H<br />

Hyperevolutin A d,53 H. revolutum Vahl NR<br />

5<br />

R 1 = Ph; R 2 = H;<br />

R 3 , R 4 = prenyl<br />

Cuban propolis, C.<br />

rosea, C.<br />

Nemorosone 7,26,30,54 grandiflora, C.<br />

insignis, C.<br />

+113 (0.1);<br />

OMe: +150<br />

(m, 0.8)<br />

and +49<br />

nemorososa<br />

(1.4)<br />

15


Table 1.1 (continued).<br />

6<br />

R 1 = 3-hydroxyphenyl;<br />

R 2 = H;<br />

R 3 , R 4 = prenyl<br />

Hydroxynemorosone<br />

7,d<br />

C. nemorososa<br />

OMe: +143<br />

(m, 0.7)<br />

7<br />

R 1 = Ph; R 2 = H;<br />

R 3 = lavandulyl;<br />

R 4 = prenyl<br />

Chamone I e,54 C. grandiflora NR<br />

8<br />

R 1 = isopropyl; R 2 = H;<br />

R 3 = CH 2 CH 2 CMe 2 OH;<br />

R 4 = prenyl<br />

Garcinielliptone A 34 G. subelliptica –33 (0.6)<br />

9<br />

R 1 = sec-butyl;<br />

R 2 = CH 2 CH 2 CMe 2 OH<br />

Garcinielliptone D 34 G. subelliptica –22 (0.1)<br />

10<br />

R 1 = s-butyl; R 2 = H;<br />

R 3 = prenyl;<br />

R 4 = (E)-CH=CHCMe 2 OH<br />

Garcinielliptone F 34 G. subelliptica –23 (0.09)<br />

16


Table 1.1 (continued).<br />

11<br />

R 1 = 2-butyl; R 2 = geranyl;<br />

R 3 = H; R 4 = prenyl<br />

Prolifenone A 55 H. prolificum L.<br />

+0.87<br />

(0.57)<br />

12<br />

R 1 = isopropyl;<br />

R 2 = geranyl; R 3 = H;<br />

R 4 = prenyl<br />

Prolifenone B 55 H. prolificum L.<br />

+13.3<br />

(0.57)<br />

H O<br />

R 2<br />

O<br />

O<br />

O<br />

R 1<br />

X<br />

OAc:<br />

13<br />

R 1 = Ph; X= H<br />

R 2 = prenyl<br />

Plukenetione D/E f,56<br />

C. plukenetii<br />

+34.5<br />

(0.03) and<br />

–37.6 (0.1)<br />

14<br />

R 1 = Ph; X = OAc<br />

R 2 = prenyl<br />

Insignone g,56<br />

C. inignis<br />

OMe:<br />

+92.7 (1.6)<br />

17


Table 1.1 (continued).<br />

H O<br />

O<br />

R 3<br />

O<br />

O<br />

O<br />

R 1<br />

R 2<br />

15<br />

R 1 = Ph;<br />

R 2 , R 3 = prenyl<br />

Hyperibone G 31 H. scabrum –29.3 (0.9)<br />

16<br />

R 1 = Ph;<br />

R 2 , R 3 = prenyl<br />

(enantiomer)<br />

Propolone D 35 Cuban propolis +48.5 (0.7)<br />

17<br />

R 1 = Ph; R 2 = prenyl;<br />

R 3 =<br />

CH 2 CH(OH)CMe=CH 2<br />

Hyperibone D e,31 H. scabrum –61.9 (0.7)<br />

18<br />

R 1 = isopropyl;<br />

R 2 , R 3 = prenyl<br />

Garsubellin A 32,57 G. subelliptica –21 (e, 1.1)<br />

19<br />

R 1 = sec-butyl;<br />

R 2 , R 3 = prenyl<br />

Garsubellin B e,57 G. subelliptica –36 (e, 0.6)<br />

18


Table 1.1 (continued).<br />

H O<br />

O<br />

R 1<br />

O<br />

O<br />

O<br />

R 2<br />

P h<br />

R 3<br />

20<br />

R 1 =<br />

CH 2 CH(OH)CMe=CH 2 ;<br />

R 2 = H;<br />

R 3 = (E)-CH=CHCMe 2 OH<br />

Hyperibone E e,f,31 H. scabrum –56.0 (0.2)<br />

21<br />

R 1 = prenyl; R 2 = H;<br />

R 3 = (E)-CH=CHCMe 2 OH<br />

Hyperibone F f,31 H. scabrum –31.0 (0.2)<br />

22 R 1 , R 2 , R 3 = prenyl Sampsonione K e,58 H. sampsonii –5.6 (1.1)<br />

23<br />

R 1 , R 3 = prenyl;<br />

R 2 = H<br />

Sampsonione L 58 H. sampsonii +55 (0.06)<br />

O H<br />

H O O O<br />

O<br />

24 O<br />

24 G. subelliptica –40 (0.2)<br />

i - P r<br />

19


Table 1.1 (continued).<br />

H O<br />

O<br />

O<br />

C O 2 H<br />

O<br />

O<br />

25 25 C. sundaicum +52 (0.2)<br />

H O<br />

O H<br />

C O 2 H<br />

H O O<br />

O<br />

O<br />

O<br />

26 26 C. sundaicum +48 (0.1)<br />

X<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

27 X = OH Furohyperforin 60 H. perforatum<br />

28 X = OOH<br />

33-Deoxy-33-<br />

hydroperoxyfurohyperforin<br />

H. perforatum +75 (1.2)<br />

61<br />

20


Table 1.1 (continued).<br />

29 No name 62 C. obdeltifolia +30.9 (0.3)<br />

O H<br />

O O<br />

O O<br />

30 Propolone C 35 Cuban propolis +35.7 (0.2)<br />

P h<br />

H O<br />

O<br />

O<br />

R 2<br />

O<br />

O<br />

R 1<br />

31<br />

R 1 = isopropyl;<br />

R 2 = prenyl<br />

Garsubellin D 57 G. subelliptica –12 (e, 0.4)<br />

32 R 1 = s-butyl; R 2 = prenyl Garsubellin E 57 G. subelliptica –7 (e, 0.4)<br />

33 R 1 = Ph; R 2 = prenyl Hyperibone B 31,35 H. scabrum<br />

–20.8<br />

(0.5);<br />

–42.2 (0.1)<br />

34<br />

R 1 = 3,4-dihydroxyphenyl;<br />

R 2 = (R)-lavandulyl<br />

Garcinielliptone FB 63 G. subelliptica –66 (0.2)<br />

21


Table 1.1 (continued).<br />

H O<br />

O O<br />

O<br />

35 O Sampsonione M 58 H. sampsonii +55 (0.04)<br />

P h<br />

22


Table 1.1 (continued).<br />

H O<br />

O O<br />

O O<br />

36 Sampsonione N 64 H. sampsonii<br />

P h<br />

+22.0<br />

(0.09)<br />

O H<br />

O O<br />

O<br />

37 O Sampsonione O 64 H. sampsonii<br />

P h<br />

+87.9<br />

(0.073)<br />

H O<br />

O<br />

O<br />

O<br />

O<br />

R<br />

38 R = isopropyl Garsubellin C 32,57 G. subelliptica +39 (e,0.4)<br />

39 R = Ph Hyperibone A 31,35 H. scabrum<br />

+57 (0.2);<br />

+63.7 (0.4)<br />

40 R = Ph (enantiomer) Garcinielliptone I g,34 G. subelliptica -37.7(1.1)<br />

23


Table 1.1 (continued).<br />

41<br />

O<br />

O<br />

O<br />

O<br />

O<br />

P h<br />

Hyperibone C 31 H. scabrum -27.3 (0.3)<br />

O H<br />

O O<br />

O O<br />

42 Chamone II e,54 C. grandiflora NR<br />

P h<br />

O H<br />

O O<br />

O O<br />

43 Propolone B e,35 Cuban propolis +38.2 (0.6)<br />

P h<br />

H O O H<br />

O O H<br />

44<br />

O<br />

O<br />

O<br />

O<br />

P h<br />

15,16-Dihydro-16-<br />

hydroperoxyplukenetione<br />

F 65<br />

C. havetiodes var.<br />

stenocarpa<br />

+24.7 (0.3)<br />

24


Table 1.1 (continued).<br />

O O<br />

O O<br />

R 3 R 1<br />

R 2<br />

45<br />

R 1 = i-Pr; R 2 = H;<br />

R 3 = CH 3<br />

Papuaforin B 66 H. papuanum NR<br />

46<br />

R 1 = Ph; R 2 = H;<br />

R 3 = prenyl<br />

Scrobiculatone B 67 C. scrobiculata +44.7 (0.2)<br />

47<br />

R 1 = Ph; R 2 = H;<br />

R 3 = prenyl<br />

Plukenetione F h,56<br />

C. plukenetii<br />

-53.6<br />

(0.03)<br />

48 R 1 = Ph; R 2 , R 3 = prenyl<br />

Hypersampsone F f,68<br />

H. sampsonii +30 (0.2)<br />

O<br />

R 3<br />

O<br />

O<br />

O<br />

R 2<br />

R 1<br />

49<br />

R 1 = Ph; R 2 = H;<br />

R 3 = prenyl<br />

Plukenetione G h56 C. plukenetii NR<br />

25


Table 1.1 (continued).<br />

O<br />

R 2<br />

O<br />

O<br />

O<br />

R 1<br />

R 3<br />

50 R 1 = i-Pr; R 2 , R 3 = prenyl<br />

Pyrano[7,28-b]-<br />

hyperforin 69 H. perforatum +83.5 (0.3)<br />

26


Table 1.1 (continued).<br />

51<br />

R 1 = Ph; R 2 = H;<br />

R 3 = prenyl<br />

Scrobiculatone A 66,67<br />

C. scrobiculata<br />

+44.6<br />

(0.2)<br />

52<br />

R 1 = i-Pr;<br />

R 2 = H; R 3 = CH 3<br />

Papuaforin A 66 H. papuanum +13(0.1,m)<br />

53<br />

R 1 = s-Bu;<br />

R 2 = H; R 3 = CH 3<br />

Papuaforin C e66 H. papuanum +23 (.1,m)<br />

54<br />

R 1 = s-Bu;<br />

R 2 = prenyl; R 3 = CH 3<br />

Papuaforin D e66 H. papuanum +64(0.1,m)<br />

55<br />

R 1 = i-Pr;<br />

R 2 = prenyl; R 3 = CH 3<br />

Papuaforin E 66 H. papuanum +41(0.1,m)<br />

O<br />

O<br />

O<br />

O<br />

R<br />

56 R = Ph Propolone A 41 Cuban propolis +40 (0.1)<br />

57 R = i-Pr Garcinielliptone B 34 G. subelliptica -23 (0.1)<br />

27


Table 1.1 (continued).<br />

O<br />

R<br />

O<br />

O H<br />

O<br />

O<br />

i - P r<br />

58 R = prenyl<br />

8-Hydroxy-<br />

H. perforatum +34 (1.0)<br />

hemiacetal 61<br />

hyperforin-8,1-<br />

59 R = CH 3 Hyperibone J 70 H. scabrum +16.9 (0.3)<br />

60 O<br />

O<br />

Oxepahyperforin 61 H. perforatum -73.7 (0.8)<br />

i - P r<br />

H O O O<br />

R<br />

O<br />

O<br />

H<br />

O<br />

i - P r<br />

O H<br />

61 R = prenyl Garcinielliptin oxide 2 G. subelliptica +1 (0.3)<br />

62 R = CH 2 CH 2 CMe 2 OH Garcinielliptone E 34 G. subelliptica -51 (0.2)<br />

28


Table 1.1 (continued).<br />

O H<br />

H O O H<br />

O O<br />

O O<br />

63<br />

H O<br />

i - P r<br />

Garcinielliptone H 34 G. subelliptica -14.3 (0.1)<br />

O O<br />

H O<br />

64 H O O Garcinielliptone G 34 G. subelliptica -53 (0.1)<br />

O<br />

i - P r<br />

65<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

Garcinielliptone J 34 G. subelliptica -166 (0.2)<br />

P h<br />

O<br />

O<br />

O<br />

R 2<br />

R 1 O<br />

66<br />

R 1 = prenyl;<br />

R 2 = CH=CMe 2<br />

Plukenetione A 71 C. plukenetii +1 (0.8)<br />

29


Table 1.1 (continued).<br />

67<br />

R 1 = prenyl;<br />

dimethyloxiranyl<br />

R 2 = (S)-2,2-<br />

28,29-Epoxyplukenetione<br />

A 65<br />

C. havetiodes var.<br />

stenocarpa<br />

-4.4 (1.0)<br />

68<br />

R 1 = geranyl;<br />

R 2 = (S)-2,2-<br />

dimethyloxiranyl<br />

Sampsonione J 58 H. sampsonii +1.48 (0.2)<br />

H<br />

P h<br />

O<br />

O O O O H<br />

69 No name 62 C. obdeltifolia +10.0 (0.4)<br />

H O H<br />

P h<br />

O<br />

70 Sampsonione I 58 H. sampsonii<br />

O O O<br />

+16.88<br />

(0.1)<br />

H<br />

P h<br />

O<br />

O<br />

O<br />

R O H<br />

O<br />

71 R = geranyl Sampsonione A 72 H. sampsonii -49 (0.4)<br />

72 R = prenyl Sampsonione B 72 H. sampsonii NR<br />

30


Table 1.1 (continued).<br />

O<br />

P h<br />

O<br />

O O<br />

R<br />

O<br />

73 R = prenyl Sampsonione Q 64 H. sampsonii<br />

-9.64<br />

(0.401)<br />

P h<br />

O<br />

O<br />

O<br />

O<br />

H O<br />

R O O H<br />

74 R = prenyl<br />

Plukenetione C 56,65 C. plukenetii +65.9 (0.1)<br />

75<br />

CH=CHCMe 2 OOH<br />

R = (E)-<br />

33-hydroperoxyisoplukenetione<br />

C 65<br />

C. havetiodes var.<br />

stenocarpa<br />

-3.9 (0.2)<br />

H<br />

R 1<br />

O<br />

R 3<br />

O<br />

O<br />

R 2 O<br />

76<br />

R 1 = Ph; R 2 = prenyl;<br />

R 3 = CMe 2 OH<br />

Plukenetione B 56<br />

C. plukenetii<br />

+17.2<br />

(0.03)<br />

77<br />

R 1 = Ph; R 2 = geranyl;<br />

R 3 = i-Pr<br />

Hypersampsone D 68 H. sampsonii -35 (0.2)<br />

31


Table 1.1 (continued).<br />

R 1 = i-Pr; R 2 = geranyl;<br />

78<br />

R 3 = CMe=CH 2 Hypersampsone A 68 H. sampsonii +21 (0.3)<br />

79<br />

R 1 = Ph; R 2 = geranyl;<br />

R 3 = CMe 2 OH<br />

Sampsonione C 58 H. sampsonii +13 (0.2)<br />

80<br />

R 1 = Ph; R 2 = geranyl;<br />

R 3 = isopropenyl<br />

Sampsonione D 58 H. sampsonii +12 (0.2)<br />

81<br />

R 1 = Ph; R 2 = geranyl;<br />

R 3 = O (ketone)<br />

Sampsonione E 58<br />

H. sampsonii<br />

+57.6<br />

(0.03)<br />

82<br />

R 1 = Ph; R 2 = geranyl;<br />

R 3 = H<br />

Sampsonione H 58 H. sampsonii +5.2 (0.07)<br />

H<br />

P h<br />

O<br />

O<br />

O<br />

R O<br />

O H<br />

83 R = geranyl Sampsonione F 58 H. sampsonii +14.5 (1.1)<br />

84 R = prenyl Sampsonione G 58 H. sampsonii<br />

+10.0<br />

(0.01)<br />

32


Table 1.1 (continued).<br />

H<br />

R 1<br />

O<br />

O<br />

O<br />

O<br />

R<br />

85<br />

R 1 , R 2 = i-Pr<br />

Hypersampsone B 68 H. sampsonii +12 (0.3)<br />

86 R 1 = i-Pr; R 2 = H Hypersampsone C 68 H. sampsonii +14.3 (0.2)<br />

87 R 1 = Ph; R 2 = i-Pr Hypersampsone E 68 H. sampsonii +39 (0.2)<br />

a C. = Clusia, G. = Garcinia, H. = Hypericum.<br />

b OMe or OAc indicates the specific rotation was measured for that derivative. The<br />

values in parentheses are the concentration and the solvent (e = EtOH, m = MeOH, no<br />

indication = CHCl 3 ). NR = not reported. <br />

c The absolute configuration is known to be as shown.<br />

d The first scientists to isolate nemorosone (5) and hydroxynemorosone (6) had the acyl<br />

group on C(5) and the prenyl group on C(1) switched from what is shown; 7,73 later on, the<br />

structure of nemorosone was revised to 5, as shown in the table, 26 but the structure of 6<br />

was not revisited, so we are correcting its structure in this paper.<br />

e Not all the stereocenters‘ configurations have been assigned.<br />

f The stereochemistry of the C(7) substituent has been reassigned on the basis of the NMR<br />

spectra; 33 see the text.<br />

33


1.7. Biological activity of PPAPs<br />

Many of the PPAPs have shown important biological activity including<br />

anticancer, anti-HIV and antiviral properties.<br />

1.7.1. Type A PPAPs<br />

1.7.1.1. Hyperforin and its close analogues<br />

St John's wort (Hypericum perforatum extracts) was used by the ancient Greeks<br />

as a remedy for many skin injuries, burns, neuralgia and depression. 74,75 Evidence from<br />

several clinical trials confirms that St. John‘s wort is an effective antidepressant for mild<br />

to moderate depression versus placebo and standard antidepressants. 76 Experts attribute<br />

this activity to the presence of hyperforin. 6,24,46,77 The relatively low rate of side effects<br />

and good tolerability results in high acceptance by patients. 78<br />

St. John‘s wort extract also has an approximately equally broad inhibitory effect<br />

on the neuronal uptake not only of serotonin, noradrenaline, and dopamine but also of<br />

broad inhibitory profile γ-aminobutyric acid (GABA), L-glutamate, and other<br />

antidepressants that are either specific to one system or show overlapping inhibitory<br />

effects. 79 Hyperforin (1) and its structural analogue adhyperforin (2), both derived from<br />

St. John‘s wort, have been found to be inhibitors of reuptake of investigated<br />

neurotransmitters. 79 However, hyperforin (1) does not act as a competitive inhibitor at the<br />

transmitter binding sites of the transporter proteins but instead affects the sodium gradient<br />

which then leads to an inhibition of uptake. 79<br />

Hyperforin (1) is also a known antibacterial agent, 15 and it inhibits the growth of<br />

all gram-positive bacteria at low concentrations (0.1 mg/mL). 74 Experiments indicate that<br />

penicillin-resistant (PRSA) and methicillin-resistant Staphylococcus aureus (MRSA)<br />

were susceptible to hyperforin. 74 However, hyperforin has not shown activity against<br />

gram-negative bacteria or against Candida albicans. 74<br />

34


Hyperforin (1) is a promising and novel anticancer agent. 50 By induction of<br />

apoptosis in a dose-dependent manner with IC 50 values 3-20 M, hyperforin was able to<br />

inhibit the growth of a wide range of human and rat tumor cell lines. 80,81 Also, it has<br />

potential for reducing the invasion and metastasis growth of tumor cells, 82 and it inhibits<br />

angiogenesis in vivo and several key steps of this process in vitro. 83<br />

Hyperforin is a mixture of interconverting tautomers (enolized -dicarbonyl), and<br />

pure hyperforin is unstable when exposed to light and oxygen. 52,84 This instability is a<br />

serious problem for standardization and could also have dramatic effects on the<br />

pharmacological activity of the extracts. 61 On the other hand, the dicyclohexylammonium<br />

salt of this compound was found to be stable at room temperature and also in air. 85 A<br />

majority of commercial St. John‘s wort extract contains 1-5% of 1. Extraction in aqueous<br />

alcoholic medium has been used for this preparation. 86 Although the ammonium salt of 1<br />

is stable, hyperforin (1) itself is susceptible to air oxidation. The oxidized products of<br />

natural hyperforin are dependent on the nature of oxidizing agent, the solvent, and the<br />

type of 1 used (ammonium salt or free acid form). 87 The hyperforin (1) can be converted<br />

to hemiacetal 58, possibly through the C(3)-hydroxylated intermediate after treatment<br />

with peroxidic reagents. The furan (136) and pyran (49) derivatives are the main products<br />

when nonperoxidic reagents are used for oxidizing hyperforin (Figure 1.10). 24,87<br />

35


H O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

i - P r<br />

i - P r<br />

5 8 1 3 6<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

4 9<br />

Figure 1.10 Products of oxidation of hyperforin<br />

Hyperforin (1) is a potential antimalarial agent as its lithium salt showed modest<br />

activity against Plasmodium falciparum with an IC 50 = 2 M. Plasmodium falciparum is<br />

the most dangerous of the four Plasmodium species causing malaria in humans. 88 Verotta<br />

et al. have synthesized different analogues of enolized -diketone moiety by O-acylation,<br />

O-alkylation, -alkylation, or oxidative -functionalization of natural hyperforin. 88 The<br />

homolog adhyperforin (2) (assayed as its dicyclohexylammonium salt) showed activity<br />

(IC 50 = 1.4 M) against Plasmodium falciparum, which was similar to hyperforin. O-<br />

Acylation of the enol moiety of hyperforin showed activity between the electron-poor and<br />

more hydrolysis-sensitive nicotinate 137 (IC50 = 4.8 M) and the electron-rich and more<br />

hydrolytically stable trimethoxybenzoate 138 (IC50 > 27 M); the reason for the higher<br />

IC50 value for 138 might simply be related to its stability in the assay medium (Figure<br />

1.11). 88 The enol ethers 139 show decreased activity (7.8 M), while the stable analogue<br />

furohyperforin (27) showed a similar potency to the natural product (1.7 M), suggesting<br />

a specific role for the oxygen-sensitive enolized -dicarbonyl. 88<br />

36


O<br />

O<br />

N<br />

O<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

1 3 7 1 3 8<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

H O<br />

O<br />

O<br />

O<br />

O<br />

i - P r<br />

1 3 9 2 7<br />

Figure 1.11 O-protected analogs of hyperforin<br />

1.7.1.2. Nemorosone<br />

Nemorosone (5), another type A PPAP, is found in the resins and latex of<br />

plants of the Clusia (Clusiaceae) species. 54 This latex normally spreads throughout the<br />

plant tissues and acts as a defensive agent against insect and microbial invasion when<br />

tissues are damaged. 54 This latex resin is used by bees to build their hives and helps to<br />

harden the cell walls of the hive. 54 In ancient times, people knew nemorosone to be<br />

antiseptic. Propolis is now believed to be a reinforcing agent of the structure of the hive,<br />

preventing diseases and parasites from entering the hive. 89<br />

In 1996, de Oliveira and coworkers isolated 4 new PPAPs: clusianone<br />

(109), 7-epi-clusianone (99), nemorosone (5), and hydroxynemorosone (6). 26 According<br />

to their data, the structure of nemorosone suggested that it was a type C PPAP. 26 In 2001,<br />

Cuesta-Rubio and coworkers found disputing evidence from their isolation of<br />

nemorosone from Clusia rosea. With the help of NOE and saturation experiments, this<br />

group proved that nemorosone is in fact a type A PPAP (5). 26<br />

37


In vivo studies have shown that nemorosone (5) is a potential antileukemic<br />

agent. 90 Nemorosone has been shown to be cytotoxic in both parental and chemoresistant<br />

leukemia cell lines with IC50 values between 2.10 and 3.10 µg/mL. 90 This compound<br />

also has shown cytotoxic activity against epitheloid carcinoma (HeLa), epidermoid<br />

carcinoma (Hep-2), prostate cancer (PC-3) and central nervous system cancer (U251)<br />

while O-methylated nemorosone exhibited less biological activity. 38<br />

Bacterial activity studies of 5 and O-methylnemorosone (5a) have shown<br />

that only 5 has antibacterial activity. 54 This suggests that the presence of the enol<br />

functionality is essential to antibacterial activity. 38,54<br />

The prenylation pattern also plays an important role for antibacterial<br />

activity in these types of natural products. Nemorosone showed more bacterial activity<br />

against Paenibacillus honeybee pathogen with respect to chamone II (42) (Figure<br />

1.22). 38,54<br />

O<br />

O<br />

O H<br />

O<br />

O<br />

O<br />

O M e<br />

O<br />

O<br />

O<br />

O<br />

O<br />

P h<br />

P h<br />

P h<br />

5 5 a<br />

4 2<br />

Figure 1.12 Nemorosone derivatives<br />

In addition to antimicrobial activity, nemorosone has shown antioxidant activity and<br />

anticancer activity. 38 Nemorosone (5) has shown IC 50 (3.3-7.2 µM) values against four<br />

cancer cell lines comparable to those of doxorubicin. 38 Also, 1 has shown activity (EC 50<br />

= 0.8 µM) against HIV infected C8166 human T lymphoblastoid cells. 91<br />

1.7.1.3. Garsubellin A<br />

Garsubellin A (18) was isolated from the wood of Garcinia subelliptica<br />

(Guttiferae), a tree which is grown for windbreaking in the Okinawa islands, Japan. 57<br />

Researchers found that 18 could enhance choline acetyltransferase (chAT) activity by<br />

38


154% at 10 M in comparison with the control culture containing 0.5% EtOH in a P10<br />

rat septal neurons culture. 32 Choline acetyltransferase is a key enzyme for the synthesis of<br />

the neurotransmitter acetylchlorine, and a deficiency of chAT is believed to contribute<br />

diseases like Alzheimer‘s disease. 32<br />

Table 1.2: Type B PPAPs<br />

The following table of type B PPAPs was taken from a review article written by Dr.<br />

Ciochina and Prof. Grossman. 24 Eight newly isolated natural products were added to the<br />

table: sampsonione P (108) and oblongifolines A-G (101-102, 113-115, 117-118).<br />

No. Structure Name Source a [] D b <br />

R 3<br />

H O<br />

R 1<br />

O<br />

O<br />

O<br />

O H<br />

R 2<br />

88<br />

R 1 , R 2 = prenyl, R 3 = OH Guttiferone A 12,92 S. globulifera,<br />

G. livingstonei,<br />

G. humilis<br />

+34 (1.7)<br />

39


Table 1.2 (continued).<br />

89<br />

R 1 = -lavandulyl<br />

R 2 = prenyl; R 3 = OH<br />

Guttiferone C c<br />

S. globulifera<br />

as mix<br />

with 90<br />

+92 (0.9)<br />

90<br />

R 1 = lavandulyl;<br />

R 2 = prenyl, R 3 = OH<br />

Guttiferone D c<br />

as mix<br />

with 89<br />

+92 (0.9)<br />

R 1 = (S)-lavandulyl;<br />

Guttiferone E 12,38,41<br />

Cuban propolis,<br />

+101<br />

91<br />

R 2 = H; R 3 = OH<br />

C. rosea<br />

(0.5)<br />

G. ovafolia<br />

92<br />

R 1 = (S)-lavandulyl;<br />

R 2 = H; R 3 = OH<br />

(enantiomer)<br />

Garcinol<br />

(camboginol) 39,40<br />

G. cambogia,<br />

G. indica<br />

–138<br />

(0.1)<br />

93<br />

R 1 = (R)-lavandulyl;<br />

R 2 = H; R 3 = OH<br />

Guttiferone F 93<br />

Allanblackia<br />

stuhlmannii<br />

–293<br />

(0.4)<br />

40


Table 1.2 (continued).<br />

+58<br />

(0.1);<br />

94 R 1 = prenyl;<br />

R 2 = H; R 3 = OH<br />

Aristophenone d,94,95<br />

G. xanthochymus<br />

OAc:<br />

+53<br />

(0.1),<br />

+54 (0.1)<br />

95<br />

R 1 = geranyl;<br />

R 2 = H; R 3 = OH<br />

Guttiferone I e,96 G. griffithii –68 (1.2)<br />

Cuban propolis,<br />

G. xanthochymus,<br />

96 R 1 = (S)--lavandulyl;<br />

Xantho-<br />

G. mannii,<br />

+138<br />

R 2 = H, R 3 = OH<br />

chymol f,17,27,28,38,41,44,95,97<br />

G. staudtii,<br />

(0.1)<br />

G. subelliptica,<br />

Rheedia madrunno<br />

41


Table 1.2 (continued).<br />

97 R 1 = (S)-lavandulyl;<br />

14-deoxygarcinol 98 M. coccinea 98 −42 (0.3)<br />

R 2 = H; R 3 = H<br />

O H<br />

H O<br />

R 1<br />

O<br />

O<br />

O<br />

O H<br />

R 2<br />

98 R 1 = (S)-lavandulyl;<br />

7-epi-Garcinol M. coccinea 98<br />

R 2 = H<br />

O<br />

O<br />

O<br />

R 2<br />

O H<br />

R 1<br />

99<br />

R 1 = CH 3 ; R 2 = Ph Hyperibone L 70 H. scabrum<br />

+69.5<br />

(0.2)<br />

42


Table 1.2 (continued).<br />

100<br />

R 1 = CH 3 ; R 2 = i-Pr Hyperpapuanone 66 H. papuanum<br />

+15 (0.1,<br />

m)<br />

101<br />

R 1 = prenyl; R 2 = Ph 7-epi-Clusianone 73,99-101 C. sandinensis,<br />

C. torresii<br />

+62.3<br />

(1.1)<br />

O H<br />

H O<br />

R 1<br />

O<br />

O<br />

O<br />

O H<br />

R 2<br />

43


Table 1.2 (continued).<br />

102 R 1 , R 2 = prenyl<br />

Guttiferone G 92,102<br />

G. humilis,<br />

G. macrophylla<br />

–25<br />

(0.04)<br />

103<br />

R 1 = prenyl; R 2 = H Oblongifolin A 103 G. oblongifolia<br />

+23<br />

(0.35)<br />

104 R 1 = geranyl; R 2 = H Oblongifolin D 103 G. oblongifolia +44.6<br />

(0.21)<br />

O H<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

R<br />

105 R = prenyl<br />

Isogarcinol<br />

(cambogin) g,39,40<br />

G. indica,<br />

G. cambogia<br />

G. pedunculata<br />

–224 (m,<br />

0.1)<br />

44


Table 1.2 (continued).<br />

G. pyrifera<br />

106 R = prenyl<br />

(enantiomer)<br />

Isoxanthochymol f,12,42-44<br />

G. subelliptica<br />

G. xanthochymus<br />

+181 (e,<br />

0.6)<br />

G. ovafolia<br />

as 2:3<br />

107<br />

R = CH 2 CH 2 CMe=CH 2 Cycloxanthochymol 43,44 G. pyrifera<br />

G. subelliptica<br />

mix with<br />

72: +158<br />

(m, 0.1)<br />

45


Table 1.2 (continued).<br />

O H<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

R<br />

108<br />

R = prenyl 7-epi-isogarcinol 98 Moronobea<br />

coccinea<br />

–158<br />

(1.0)<br />

O<br />

P h<br />

O<br />

O<br />

O<br />

O H<br />

R<br />

109<br />

R = (E)-CH=CHCMe 2 OH Hyperibone H d,31 H. scabrum<br />

+12.4<br />

(0.4)<br />

110<br />

R = prenyl Hyperibone I d,31 H. scabrum<br />

+13.3<br />

(0.3)<br />

46


Table 1.2 (continued).<br />

O<br />

P h<br />

111<br />

O<br />

O<br />

O<br />

O H<br />

Sampsonione P 64<br />

H. sampsonii<br />

+18.6<br />

(0.022)<br />

O<br />

R 1<br />

O<br />

R 3<br />

O<br />

O H<br />

R 2<br />

112<br />

R 1 = Ph;<br />

R 2 , R 3 = prenyl<br />

Clusianone 7,29,100<br />

C. congestiflora,<br />

C. spiritu-santesis,<br />

C. torresii<br />

+58.3<br />

(0.7)<br />

OMe:<br />

+61 (1.4)<br />

113<br />

R 1 = isobutyl;<br />

R 2 = CHPhCH 2 CO 2 H;<br />

R 3 = prenyl<br />

Laxifloranone 104<br />

Marila laxiflora<br />

+23.6<br />

(m, 0.8)<br />

47


Table 1.2 (continued).<br />

114<br />

R 1 = Ph; R 2 = prenyl;<br />

R 3 = lavandulyl<br />

Spiritone c67<br />

C. spiritus-<br />

sanctensis<br />

NR<br />

O H<br />

H O<br />

R 1<br />

O<br />

O<br />

O<br />

O H<br />

R 2<br />

115<br />

R 1 = H; R 2 = geranyl Guttiferone B 12 S. globulifera –44 (0.5)<br />

O<br />

H O<br />

O<br />

R 2<br />

O<br />

R 1<br />

O H<br />

116<br />

R 1 = OH, R 2 = prenyl Oblongifoline B 103 G. oblongifolia<br />

+17.6<br />

(0.21)<br />

48


Table 1.2 (continued).<br />

117<br />

R 1 = OH, R 2 = geranyl Oblongifoline C 103 G. oblongifolia<br />

+14.5<br />

(0.21)<br />

118<br />

R = H; R 2 = geranyl Oblongifoline E 105 G. oblongifolia<br />

+65.1<br />

(0.4)<br />

O H<br />

O<br />

H O<br />

O<br />

O H<br />

O<br />

119 Guttiferone H c,67 95 G. xanthochymus<br />

+94<br />

(0.006)<br />

O H<br />

O<br />

O O<br />

O<br />

R 2 R 3 R 4<br />

O H<br />

120 R 2 = prenyl;<br />

R 3 = geranyl; R 4 = H<br />

Oblongifoline F 105<br />

G. oblongifolia<br />

−85.6<br />

(0.41)<br />

49


Table 1.2 (continued).<br />

O H<br />

O<br />

O O<br />

O<br />

R 2 R 3 R 4<br />

O H<br />

121 R 2 = prenyl; R 3 = H; R 4 =<br />

geranyl<br />

Oblongifoline G 105<br />

G. oblongifolia<br />

+5.9<br />

(0.41)<br />

O H<br />

O<br />

O<br />

O<br />

O H<br />

O<br />

122 Coccinone A 98 M. coccinea<br />

H<br />

+ 28<br />

(1.0)<br />

50


Table 1.2 (continued).<br />

O H<br />

123<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

Coccinone B 98 M. coccinea −55 (0.3)<br />

O H<br />

124<br />

Coccinone C 98 M. coccinea −60 (0.2)<br />

51


Table 1.2 (continued).<br />

O H<br />

125<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

O H<br />

O H<br />

−76<br />

126 Coccinone D 98 M. coccinea<br />

(0.4)<br />

127<br />

Coccinone E 98<br />

M. coccinea<br />

−70<br />

(0.3)<br />

52


Table 1.2 (continued).<br />

O H<br />

128<br />

H O<br />

O<br />

O<br />

O<br />

O H<br />

Coccinone F 98 M. coccinea −32 (0.7)<br />

H O<br />

O<br />

O<br />

O<br />

O H<br />

O H<br />

129 Coccinone G 98 M. coccinea −16 (1.0)<br />

53


Table 1.2 (continued).<br />

O H<br />

130<br />

H O<br />

O<br />

O<br />

O<br />

O H<br />

Coccinone H 98 M. coccinea +2 (1.0)<br />

131<br />

O<br />

O<br />

O<br />

i - P r<br />

O H<br />

C H 3<br />

Enaimeone A 66<br />

H. papuanum<br />

+27.8<br />

(0.1, m)<br />

O H<br />

O R<br />

O<br />

O<br />

O H<br />

C H 3<br />

O H<br />

54


Table 1.2 (continued).<br />

132<br />

R = i-Pr Enaimeone B 66 H. papuanum<br />

+29.4<br />

(0.1, m)<br />

133<br />

R = s-Bu Enaimeone C c,66 H. papuanum<br />

+32.9<br />

(0.1, m)<br />

O<br />

H 3 C<br />

O<br />

O<br />

R 1<br />

H<br />

O H<br />

R 2<br />

134<br />

R 1 = i-Pr;<br />

R 2 = CMe=CH 2<br />

Ialibinone A 106 H. papuanum –22 (0.1)<br />

135<br />

R 1 = s-Bu;<br />

R 2 = CMe=CH 2<br />

Ialibinone C c,106 H. papuanum –26 (0.1)<br />

136<br />

R 1 = i-Pr;<br />

R 2 = CMe 2 OH<br />

1´-Hydroxy-<br />

ialibinone A 66<br />

H. papuanum<br />

+3.7<br />

(0.1, m)<br />

55


Table 1.2 (continued).<br />

O<br />

R 1<br />

O<br />

O<br />

O H<br />

H 3 C<br />

R 2<br />

137<br />

R 1 = i-Pr;<br />

H<br />

R 2 = CMe=CH 2<br />

Ialibinone B 106 H. papuanum –91 (0.1)<br />

138<br />

R 1 = s-Bu;<br />

R 2 = CMe=CH 2<br />

Ialibinone D c,106 H. papuanum –72 (0.1)<br />

139<br />

R 1 = i-Pr;<br />

R 2 = CMe 2 OH<br />

1´-Hydroxy-<br />

ialibinone B 66<br />

H. papuanum<br />

–35.7<br />

(0.1, m)<br />

140<br />

R 1 = s-Bu;<br />

R 2 = CMe 2 OH<br />

1´-Hydroxy-<br />

ialibinone D c,66<br />

H. papuanum<br />

–30.3<br />

(0.1, m)<br />

141<br />

O<br />

O<br />

O<br />

H 3 C<br />

i - P r<br />

O H<br />

Ialibinone E 106 H. papuanum –33 (0.1)<br />

H<br />

56


Table 1.2 (continued).<br />

O H<br />

142<br />

H O<br />

O<br />

O<br />

O H<br />

Gambogenone c,95<br />

G. xanthochymus<br />

-5<br />

(0.003),<br />

(m)<br />

O O<br />

143 Hyperibone K 70 H. scabrum<br />

O O<br />

P h<br />

+22.3<br />

(0.3)<br />

a C. = Clusia, G. = Garcinia, H. = Hypericum, S. = Symphonia.<br />

b OMe or OAc indicates the specific rotation was measured for that derivative. The<br />

values in parentheses are the concentration and the solvent (e = EtOH, m = MeOH, no<br />

indication = CHCl 3 ). <br />

c Not all the stereocenters‘ configurations have been assigned.<br />

d The stereochemistry of the C(7) substituent has been reassigned on the basis of the<br />

NMR spectra; see the text. 33 <br />

e Two different compounds reported almost simultaneously have both been named<br />

guttiferone I. 96,102<br />

f The absolute configuration is known and is opposite to what is shown.<br />

g The absolute configuration is known to be as shown.<br />

57


1.7.2. Type B PPAPs<br />

1.7.2.1. Garcinol and its derivatives<br />

Garcinol (92) and isogarcinol (105), also known as camboginol and<br />

isocamboginol, were isolated from the hexane extract of the fruit rind of Garcinia<br />

indica. 14,24,39,40 In traditional Indian cooking, the dried rind of G. indica (‗Kokum‘) is<br />

used as a garnish for curry. 107 Garcinol (92) has shown many bioactivities including<br />

antioxidative activity, chelating activity, free radical scavenging activity, antiglycation,<br />

antiinflammatory activity and antitumor activity. 108-110 Garcinol (92) has the ability to<br />

scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical three times more effectively<br />

than DL-α-tocophenol, and the hydroxy radical more effectively than DL-α-tocophenol, and<br />

methyl radical, and superoxide anion. 107,110 Very common diseases caused by hydroxy<br />

radicals include stress-induced gastric ulcers and nonsteroidal antiinflammatory druginduced<br />

gastric, 111 so garcinol may be very useful for curing these disease. 111<br />

Helicobacter pylori is another important pathogen/carcinogen which is responsible for<br />

various gastrointestinal disorders including chronic gastritis, gastric inflammatory<br />

diseases, peptic ulcer disease and gastric cancer. Garcinol (92) might be a solution for<br />

these illnesses because it has shown excellent inhibition against Helicobacter pylori. 107,110<br />

The antiinflammatory activity of garcinol is dose-dependent. Recently, a group of<br />

scientists found that garcinol showed activity against the TPA-induced ear inflammation<br />

of CD-1 mice. 108 Garcinol exhibits strong antibacterial activity against methicillinresistant<br />

S. aureus (MRSA) (MIC = 6-25 µg/mL) while standard vancomycin only has<br />

MIC = 6 µg/mL. 43<br />

1.7.2.2. Clusianone and 7-epi-clusianone<br />

Clusianone (112) was first isolated from the hexane extract of bark and<br />

broken twigs of Clusia congestiflora (Guttiferae) which was collected near Fresno,<br />

Columbia in 1974. 29 The structure was identified by X-ray diffraction. 29 From this X-ray<br />

data, it was clear that the prenyl group at C-7 was in an exo orientation. However, no<br />

NMR data was reported for this compound at that time. 29 In 1991, delle Monache and<br />

58


coworkers isolated 112 from Clusia sandiensis, and for the first time NMR data was<br />

reported. Unfortunately, due to the complexity of the data and the unavailability of an<br />

authentic sample of clusianone, no mention was made of the C(7) stereochemistry. 99 In<br />

1996, de Oliveira and coworkers isolated 112 from Clusia spiritus-santensis and reported<br />

the NMR data and X-ray crystal structure. 7 The NMR data reported was different from<br />

delle Monache‘s NMR data. In 1998, Santos and coworkers isolated 7-epi-clusianone<br />

(99) from Rheedia gardneriana and reported its NMR and X-ray crystal structure,<br />

showing C(7) endo stereochemistry. 101,112<br />

The anti-HIV activity and toxicity of clusianone and 7-epi-clusianone<br />

(101) was tested in C8166 human T lymphoblastoid cells infected with HIV-1 MN . 91 7-epi-<br />

Clusianone (101) showed potent anti-HIV activity with an in vitro EC 50 value of 2 µM. 91<br />

On the other hand, clusianone (112) showed activity at very low concentration, (EC 50 =<br />

0.02 µM) but also showed increased cytotoxity. 91 In this experiment, propolone A (56)<br />

showed the most promising activity with an EC 50 value of 0.32 µM. After comparison of<br />

the anti-HIV activities of the above prenylated benzophenones, it is clear that the ketoenolic<br />

equilibrium is not essential to the antiviral activity. Also 112 (EC 50 = 0.02 µM and<br />

TC 50 = 0.1 µM) and 101 (EC 50 = 2 µM and TC 50 = 20 µM) showed very distinct EC 50 and<br />

TC 50 values. This difference may be due to the stereochemistry (exo and endo) at C-7<br />

(Figure 1.13). 91<br />

O<br />

O<br />

H O<br />

O<br />

O<br />

H O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

7 7<br />

1 1 2 1 0 1 5 6<br />

Figure 1.13: Structure of clusianone, 7-epi-clusianone and propolone A<br />

59


Streptococcus mutans is an important microbial agent that utilizes sucrose<br />

to form both acids and glucans which cause dental cariogenicity. 113 7-epi-Clusianone<br />

(101) has been found to inhibit the development and acidity of S. mutans biofilm in vitro<br />

by inhibition of glucan synthesis, disruption of acid production, and acid tolerance. 113<br />

7-epi-Clusianone (101) is also inhibits the anaphylactic contraction of<br />

isolated guinea-pig ileum and prevents allergen-evoked histamine release with similar<br />

effects to the standard antiallergic agent azelastine. 1 The IC 50 value of 101 in this system<br />

is 2.3 µM and the IC 50 for standard azelastine is 3.33 µM. 114<br />

The flagellate protozoan Trypanosoma cruzi affects 18 million people in<br />

Latin America and is responsible for 45,000 deaths every year by inducing Chagas<br />

disease. 73 7-epi-Clusianone (101) has shown activity against T. cruzi present in murine<br />

blood (IC 50 = 260 µg/mL, 518 µM) in vitro, 29 times higher than the control drug<br />

Gentian Violet (LC 50 = 7 µg /mL, 18 µM). 73 7-epi-Clusianone has also shown strong<br />

toxicity (LC 50 = 25 ppm, 49.7 µM) in the brine shrimp lethality (Artemia salina Leach)<br />

assay, and it may be a potential anticancer agent. 73 7-epi-Clusianone has shown an<br />

endothelium-dependent vasodilator effect at low concentrations in the rat aortic rings. 115<br />

1.7.2.3. Guttiferones A-E, Xanthochymol and their analogues<br />

Xanthochymol (96), guttiferone E (91) and guttiferone H (119) were isolated from<br />

the edible tropical fruit Garcinia xanthochymus. 116 These compounds were tested for<br />

inhibition activity of three human colon cancer cell lines HCT116, HT29, and SW480<br />

and found to induce loss of the mitochondrial membrane potential and G1 arrest at their<br />

IC50 concentrations and induced caspase activation at IC 50 * 2 concentrations. 116 All<br />

three compounds and all three cell lines have shown an increase in gene expression of<br />

XBP1, ATF4 and DDIT3/CHOP genes. These genes are components of the endoplasmic<br />

reticulum stress response. The DDIT4/REDD1 genes can be up regulated by inhibition of<br />

the mTOR survival pathway. Xanthochymol (96), guttiferone E (91), and guttiferone H<br />

(119) have a high chance to inhibit human clone cancer cells growth at least in part, by<br />

60


activating the endoplasmic reticulum stress response and inhibiting the mTOR cell<br />

survival pathway. 116 It is believed that these results may contribute to the anticancer<br />

activity of these novel compounds. 116<br />

Also, xanthochymol (96) and cycloxanthochymol (107) were isolated from<br />

Garcinia indica and tested for activity against the human cancer cell line clone (COLO-<br />

320-DM), breast (MCF-7) and liver (WRL-68) in the MTT assay. 117,118 It was found that<br />

pure xanthochymol and cycloxanthochymol showed activity against the cell lines but that<br />

the activity was even higher when they were in a mixture. 117 Testing mixtures of<br />

xanthochymol (96) and cycloxanthochymol (107) for cytotoxicity in MTT assay at (1:1),<br />

(1:2) and (2:1) showed that the (1:2) mixture showed maximum cytotoxic activity<br />

against the cell lines. 117<br />

Pure xanthochymol showed strong antibacterial activity against methicillinresistant<br />

S. aureus with MIC range from 3.13-12.5 µg/mL. Similarly, its activity against<br />

MRSA is nearly equal to that of antibiotic vancomycin (6.25 µg/mL). 119 Also it was<br />

found that the C(1) hydroxyl group plays a role in this activity against the MRSA. 119<br />

Xanthochymol (96) shows inhibitory activity against the DNA topoisomerases I<br />

and II. 119 For topoisomerase I IC 50 = 30 µg/mL, standard camptothecin was 0.87 µg/mL,<br />

while for topoisomerase II IC 50 = 40 µg/mL, standard control etoposide was IC 50 = 70<br />

µg/mL. 119 It was also found that absence of hydroxyl group caused diminution of above<br />

activity. 119<br />

Inseparable mixtures of 91 and 96 were extracted from Garcinia and Clusia<br />

species. 12 The crude extract of G. pyrifera containing 40% of 96 and 91 mixture showed<br />

strong inhibitory activity against tubulin depolymerization (IC 50 = 20 µM), suggesting it<br />

may be a possible inhibitor for cell replication. For the same experiment, paclitaxel<br />

(Taxol) showed IC 50 = 0.5 µM. 44 This inhibition activity of microtubule depolymerization<br />

vanished after etherifying the enol by methylation, or cyclization and the same result was<br />

observed after protection or oxidation of the hydroxyl groups. 44 . However, the activity<br />

remained if one of the hydroxyl groups was protected. 44 Also, reduction of double bonds<br />

led to a total loss of activity. 44<br />

61


Guttiferone A (88), B (115), C (89), and D (90) were isolated from Calophyllum<br />

lanigerum (Guttiferae), although guttiferone C (89) and D (90) were obtained as an<br />

inseparable mixture 12 . All these compounds showed inhibition activity against the<br />

cytopathic effect of in vitro HIV infection in human lymphoblastoid CEM-SS cells with<br />

EC 50 values of 1-10 µg/mL. However, there was no indication of a decrease in viral<br />

replication. 12<br />

The HIV-inhibitory activity of guttiferone F (93) in extracts of Allanblackia<br />

stuhlmannii was tested. Compound 93 showed cytoprotection activity against HIV in<br />

vitro (EC 50 = 23 µg/mL) and cytotoxicity ( IC 50 = 82 µg/mL) toward the host cells. 93<br />

Guttiferone E (91), xanthochymol (96), aristophenone A (94), isoxanthochymol<br />

(106), and cycloxanthochymol (107) showed cytotoxic activity against the SW-480 colon<br />

cancer cells (IC 50 = 7.-33.33 µM) and antioxidant activity in the DPPH free radical assay<br />

(IC 50 = 35-125 µM). 95<br />

Guttiferone G (100) was extracted from Garcinia cochinchinensis, a tree growing<br />

in Vietnam, and showed inhibitory activity against the human sirtuins SIRT1 (IC 50 = 9<br />

µM), which regulates HIV transcription, and SIRT2 (IC 50 = 22 µM), which is a tubulin<br />

deacetylase. 120<br />

Guttiferone I (95) exhibits inhibition of binding activity of the -liver X receptor<br />

(LXRα) (IC 50 = 3.43 µM) but is less effective against the β-receptor (LXRβ) ( IC 50 ≥ 15<br />

µM). 74 LXR agonists are therapeutical agents for the control of plasma cholesterol<br />

levels, increasing reverse cholesterol transport. 74<br />

1.7.2.4. Lalibinones A-E and their analogues<br />

Five new tricyclic phloroglucinol derivatives (lalibinones A-E 134, 137, 135, 138<br />

and 141) were found from the petroleum ether extract of the aerial parts of Hypericum<br />

papuanum. 121 The Hypericum papuanum is a tree that grows in all mountainous regions<br />

of New Guinea, and its leaves are used in folk medicine for the treatment of sores and<br />

wound healing. 121 Lalibinones C (135) and D (138) showed stronger antibacterial activity<br />

against B. cereus, S. epidermidis than lalibinones A (135) and B (138) but showed almost<br />

62


identical activity against M. luteus. 106 Lalibinones E (141) did not show any antibacterial<br />

activity in this experiment. 106<br />

Also from Hypericum papuanum, scientists isolated more active compounds such<br />

as hyperpapuanone, 1´-hydroxyialibinones A (136), B (139), and D (140), and<br />

enaimeones A–C (131–133). 122 1´-Hydroxyialibinones A (136), B (139), and D (140)<br />

exhibit similar or slightly lower antibacterial activity compared with lalibinones A (134),<br />

B (137) and D (135). Also, hyperpapuanones showed moderately potent antibacterial<br />

activity against all B. cereus, S. epidermidis and M. luteus. Enaimeones A–C (131–133)<br />

showed antibacterial activity as effective as of lalibinones A-C (134, 137, 135), but<br />

showed weaker cytotoxicity against the KB cells. 122<br />

63


Table 1.3: Type C PPAPs<br />

No. Structure Name Source a [] D b <br />

HO<br />

O<br />

R<br />

O<br />

O<br />

O<br />

144 R = Ph Garcinielliptone K 25 G. subelliptica<br />

+27<br />

(0.3)<br />

145 R = isopropyl Garcinielliptone M 25 G. subelliptica<br />

+73<br />

(0.2)<br />

HO<br />

O<br />

146 O O<br />

i-Pr<br />

O<br />

Garcinielliptone L 25<br />

G. subelliptica<br />

–41<br />

(0.3)<br />

a G. = Garcinia.<br />

b The values in parentheses are the concentrations (solvent is CHCl 3 ).<br />

64


1.7.3. Type C PPAPs<br />

Garcinielliptones L (146) and M (145) were isolated from the seeds of G.<br />

subelliptica and two have shown potent inhibitory effects on the release of β-<br />

glucuronidase and histamine (garcinielliptones L, IC 50 = 22.9 and >30 µg/mL;<br />

garcinielliptones M, IC 50 = 13.6 and 19 µg/mL). The inhibitory values explain that 146<br />

and 135 have potential to be an antiinflammatory agent. 25<br />

Garcinielliptones FB was<br />

isolated from the same plant and has shown moderate activity against liver (IC 50 = 6.8<br />

µg/mL), breast (IC 50 = 6.3 µg/mL) and colon (IC 50 = 11.2 µg/mL) cancer cell lines. 123<br />

Copyright © <strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage 2010


Chapter 2. Synthetic efforts toward PPAPs<br />

2.1. Introduction<br />

Because of PPAPs‘ intriguing biological activity, they are very promising targets<br />

for organic synthesis. Because of their challenging structure and widespread human<br />

consumption, only three PPAPs, (±)-garsubellin A (18), (±)-nemorosone (5), and (±)-<br />

clusianone (112) have been made synthetically so far. Although PPAPs have been known<br />

for decades, it was not until 1999 that the first synthetic effort was made by Prof.<br />

Nicolaou. 124 A decade after the first synthetic effort there has been only three PPAPs<br />

synthesized in a total of seven publications from five research groups. 63,125-130<br />

So far, all the approaches towards the construction of the<br />

bicyclo[3.3.1]nonanetrione core structure have depended on the ´-annulation of a<br />

three-carbon bridge onto a cyclohexanone derivative. 24<br />

2.2. Shibasaki’s approach to garsubellin A<br />

Shibasaki‘s first reported synthetic effort in this area was a synthesis of 8-<br />

deprenyl-garsubellin A (18). He carried out a synthesis in which all the stereocenters<br />

matched their natural configurations (Scheme 2.1). 131<br />

66


H 3 C C H 3<br />

H O<br />

H 3 C<br />

H 3 C<br />

5<br />

18<br />

H O<br />

7<br />

O<br />

3<br />

C H 3<br />

C H 3<br />

O<br />

C H 3<br />

O<br />

C H 3<br />

H 3 C C H 3<br />

g a r s u b e l l i n A ( 1 8 )<br />

H O<br />

H O<br />

1 9<br />

1 8<br />

O<br />

O H<br />

1 8<br />

O<br />

3<br />

O<br />

3<br />

5 1<br />

1 4 0<br />

5 1<br />

O O<br />

O<br />

O<br />

i - P r<br />

i - P r<br />

S t i l l e<br />

c o u p l i n g<br />

1 , 3 s h i f t<br />

H O<br />

H O<br />

1 8<br />

O<br />

O H<br />

1 8<br />

I<br />

O<br />

3<br />

5<br />

1<br />

141<br />

O<br />

5<br />

O<br />

O O<br />

1<br />

i - P r<br />

O<br />

W a c k e r o x i d a t i v e<br />

c y c l i z a t i o n<br />

i - P r<br />

M i c h a e l a d d i t i o n a n d<br />

l a c t o n i z a t i o n<br />

1 4 2 1 4 3<br />

O<br />

1 8<br />

O<br />

5<br />

O O<br />

1 4 4<br />

1<br />

i - P r<br />

+<br />

O<br />

O<br />

C l<br />

1 4 5<br />

N O 2<br />

Scheme 2.1: Shibasaki’s retrosynthesis of 8-deprenyl-garsubellin A<br />

Shibasaki‘s retrosynthetic analysis of 140 began with replacing the C(3) prenyl<br />

group with iodine creating the alkenyl iodide 141. The C(4)-O bond was then<br />

disconnected to give the enone 142, which might have cyclized via an intramolecular<br />

Wacker-type reaction to form the tetrahydrofuran moiety in 141. The C(1)-C(2) bond of<br />

67


enone 142 was then disconnected, planning to introduce it via a 1,3-shift of unsaturated<br />

lactone 143. The C(2)-O and C(4)-C(5) bonds of 143 were then disconnected to give<br />

intermediates 144 and 145 (Scheme 2.1).<br />

E t O 2 C<br />

O<br />

O<br />

O<br />

1 . C u I , M e M g B r<br />

2 . ( C H 3 ) 2 C H C H O<br />

146 55 % 147<br />

O O T B S<br />

H<br />

i - P r<br />

O O H<br />

H<br />

i - P r<br />

O O T B S<br />

O O T B S<br />

H<br />

H 1 . C u C N / M e L i ( 1 / 3 )<br />

i - P r<br />

1 . D I B A L - H , 88 % N C<br />

i - P r<br />

H + ; 55 % 2 s t e p s<br />

2 . T M S C N , E t<br />

O T M S<br />

3 N ( c a t )<br />

2 . M e M g B r , 83 %<br />

148 149<br />

3 . ( C l 3 C O ) 2 C O , p y r<br />

C H 2 C l 2 , 98 %<br />

1 5 0<br />

1 . K O - t B u , - 78 o C<br />

2 . L i C l O 4 , - 78 o C<br />

3 . O<br />

O N O 2<br />

C l 145<br />

4 . D M A P , 12 - c r o w n - 4<br />

70 %<br />

1 . B F 3 O E t 2<br />

2 . D e s s - M a r t i n p e r i o d i n a n e O<br />

80 % - 2 s t e p s<br />

A r O<br />

O<br />

1 8<br />

O<br />

O<br />

O<br />

1 5 2<br />

O<br />

i - P r<br />

1 . T B S O T f , 2 , 6 - l u t i d i n e<br />

5 9 %<br />

2 . K H M D S<br />

3 . B r C H 2 C O O E t , H M P A<br />

8 5 %<br />

O<br />

1 5 1<br />

O<br />

O O<br />

H<br />

1 8<br />

O<br />

O<br />

O<br />

i - P r<br />

O<br />

i - P r<br />

1 5 3 a ( a : b = 2 5 : 1 )<br />

Scheme 2.2: Shibasaki’s approach to 8-deprenyl-garsubellin A, part 1<br />

Shibasaki‘s synthesis started with the conjugate addition of methylmagnesium<br />

bromide to the -unsaturated ketone 146, which was followed by the kinetic trap of the<br />

magnesium enolate with isobutyraldehyde to give 147 as a single stereoisomer (Scheme<br />

2.2). The alcohol was then protected with a silyl group; the ketone was alkylated with<br />

ethyl bromoacetate to give 148. The keto ester 148 was then reduced to the keto aldehyde<br />

with DIBAL-H; cyanosilylation of this aldehyde produced 149 as a mixture of<br />

68


diastereomers (1.3:1). Addition of a higher-order cuprate reagent to the cyano group of<br />

149 provided the methyl ketone, which was further subjected to selective methylation and<br />

protection to give acetonide 150. Deprotection of the TBS group with BF 3 .OEt 2 and<br />

oxidation of the secondary alcohol with Dess–Martin periodinane yielded the diketone<br />

151 as a diastereomeric mixture (1.3:14). After deprotonation of 151, the resulting<br />

enolate was treated with chloroacrylate 145. Instead of the expected bicyclo compound<br />

142 via addition-elimination and Dieckmann condensation, the authors isolated the<br />

addition-elimination product 152 together with lactone 153. The authors also found that<br />

152 could be converted into 153 in the presence of p-nitrophenol and base. Initially<br />

Shibasaki and coworkers received poor yields for the above conversion; however,<br />

eventually they were able to optimize the reaction conditions to allow 151 to be directly<br />

converted to 153 in good yields. Unfortunately, these optimized conditions gave the<br />

isomer 153a, which contained the unnatural relative configuration, as the major product<br />

in a 25:1 ratio.<br />

O<br />

O<br />

O<br />

O<br />

O O<br />

O O<br />

i - P r<br />

i - P r<br />

154 O O<br />

155 ( a , b = 1 : 1 . 2 )<br />

O<br />

1 8<br />

Scheme 2.2a: Addition-elimination reaction on the carbonate 154<br />

Shibasaki and coworkers soon discovered that the carbonate 154 gave a much less<br />

diastereoselective addition-elimination reaction than the acetonide compound 150 did in<br />

their initial attempt. From this pathway Shibaski‘s group finally acquired the major<br />

isomer 155b, which contained the natural relative configuration (Scheme 2.2a). 132<br />

69


3<br />

4<br />

2<br />

O<br />

O<br />

O<br />

i - P r 1 . C u C N / E t 2 N P h 2 S i L i<br />

1<br />

T E S O<br />

2 . m - C P B A , K F , D M F<br />

3 . A l 2 O 3 , t o l u e n e<br />

O O 155 b 3 . T E S O T f , 2 , 6 - l u t i d i n e O O<br />

156<br />

4 . D e s s - M a r t i n p e r i o d i n a n e<br />

( 33 % 3 s t e p s )<br />

( 54 % 4 s t e p s )<br />

O<br />

O<br />

T E S O<br />

O<br />

O O<br />

O<br />

D B U , C H 2 C l 2<br />

1 . 0 . 1 M L i O H , T H F<br />

i - P r<br />

i - P r<br />

O<br />

( 92 %)<br />

O<br />

2 . N a 2 P d C l 4 , T B H P<br />

O<br />

O<br />

A c O H - H 2 O ,<br />

O 157 O 158<br />

( 54 % 2 s t e p s )<br />

O<br />

O<br />

O<br />

i - P r<br />

1 . M e 2 A l S E t , C H 2 C l 2<br />

2 . E t 3 S i H , P d / C , C H 2 C l 2<br />

O H<br />

O<br />

O<br />

O<br />

1 . I 2 , C A N , C H 3 C N O<br />

100 %<br />

O<br />

i - P r<br />

O H<br />

2 . P d C l 2 ( d p p f )<br />

D M F<br />

159 B u 3 S n<br />

160<br />

( 50 % 2 - s t e p s )<br />

O<br />

i - P r<br />

Scheme 2.3: Shibasaki’s approach to 8-deprenyl-garsubellin A, part 3<br />

The removal of the C(3)-C(4) unsaturated double bond of compound 155b was<br />

important for the formation of the C(1)-C(2) bond. The Et 2 NPh 2 Si group was introduced<br />

via conjugate addition of an aminosilylcuprate to form a C(4)-silyl product, which was<br />

immediately followed by Tamao-Fleming oxidation with m-CPBA to afford a -hydroxy<br />

lactone. The -hydroxy lactone was then protected with a triethylsilane group to give 156<br />

in 33% yield over 3 steps (Scheme 2.3). The lactone 156 was then treated with Me 2 AlSEt<br />

to give the thioester; Fukuyama reduction of the thioester gave an aldehyde, which was<br />

successfully converted to the bicyclo[3.3.1] core structure 157 with Al 2 O 3 via an<br />

intramolecular aldol reaction. Compound 157 was then treated with Dess−Martin<br />

periodinane to give the ketone in 157, and -elimination by DBU gave the enone 158.<br />

Deprotection of the carbonate of 158 with LiOH was followed by Wacker oxidation to<br />

afford the -alkoxy enone 159. Finally, iodination followed by Stille coupling with<br />

tributylprenyltin completed the synthesis of 160. The same reaction pathway was applied<br />

70


to the acetonide 153a with unnatural (C18 epi) configuration to afford the C(18) epimer<br />

of 160.<br />

O<br />

X<br />

C H O<br />

O O<br />

X<br />

6<br />

O H<br />

O<br />

i - P r<br />

O<br />

i - P r<br />

O<br />

O O<br />

O<br />

O<br />

161 162<br />

O<br />

O<br />

O<br />

O<br />

X<br />

6<br />

C H O<br />

O<br />

O<br />

O<br />

H O<br />

X<br />

C H O<br />

1 5 1 a 1 5 1 b<br />

X<br />

O<br />

C H O<br />

H O<br />

X<br />

C H O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

1 5 1 c<br />

O<br />

151 d<br />

Scheme 2.4: 1,2-allylic strain of the reactive conformation in 151b<br />

Shibasaki was unable to induce an intramolecular aldol reaction to form the B ring in a<br />

different approach to garsubellin A; this failure could be due to the 1,2-allylic strain of<br />

the reactive conformation in 151b for the cyclization (Scheme 2.4).<br />

71


H O<br />

H O<br />

O<br />

18<br />

5<br />

O H<br />

H O<br />

O<br />

O<br />

3<br />

1<br />

( ± ) 1 8<br />

S t i l l e<br />

O O c o u p l i n g<br />

H O<br />

i - P r<br />

O<br />

O<br />

R C M<br />

1 8<br />

O<br />

5<br />

O<br />

I<br />

3<br />

O<br />

1<br />

O O<br />

1 6 3<br />

O<br />

i - P r<br />

i - P r O<br />

i - P r<br />

O<br />

O<br />

164 165<br />

M O M O<br />

W a c k e r o x i d a t i v e<br />

c y c l i z a t i o n<br />

C l a i s e n<br />

r e a r r a n g e m e n t<br />

O<br />

O<br />

O<br />

M O M O<br />

O<br />

O<br />

1 6 6<br />

a l d o l<br />

c o n d e s a t i o n<br />

i - P r<br />

M O M O<br />

O<br />

O<br />

O T I P S<br />

i - P r<br />

167 168<br />

Scheme 2.5: Shibasaki’s retrosynthesis of garsubellin A<br />

In 2005, Shibasaki and coworkers completed the racemic total synthesis of<br />

garsubellin A using a different approach from their early synthetic strategy (Scheme<br />

2.5). 126 Shibasaki‘s retrosynthetic analysis of (±)-18 began with replacement of the C(3)<br />

prenyl group with iodine to give alkenyl iodide 163. The C(4)-O bond was then<br />

disconnected to give the enone 164, which might have cyclized via an intramolecular<br />

Wacker type reaction to form the tetrahydrofuran moiety in 163. The C(2)-O and C(3)-<br />

C(4) bonds of 164 were then disconnected to give intermediate 165. The C(1)-C2) bond<br />

of 165 was disconnected to give intermediate 166, which could be prepared from 167 via<br />

aldol condensation and O-allylation. The C(1)-C(2) and C(5)-C(6) bonds of 167 were<br />

then disconnected to give the known intermediate 168.<br />

72


O 1 . M e M g B r , C u I ; O H<br />

i - P r C H O ( 61 %)<br />

O T I P S 1 . P h S i H<br />

5<br />

3 , C o ( a c a c ) 2 , O 2 , ( 73 %)<br />

2 . M O M C l ( 96 %)<br />

2 . T I P S O T f ,<br />

i - P r<br />

2 , 6 - l u t i d i n e ( 92 %)<br />

3 . K H M D S , p r e n y l b r o m i d e ( 98 %)<br />

168<br />

169<br />

1 . A D - m i x , C H<br />

O 3 S O 2 N H 2<br />

H O T I P S 1 . L D A , T M E D A ; O H O T I P S 2 . t r i p h o s g e n e , p y r .<br />

C H 3 C H O ( 94 %)<br />

( 30 % 2 s t e p s )<br />

i - P r<br />

i - P r 3 . H . F p y r i d i n e<br />

2 . M a r t i n s u l f u r a n e<br />

4 . P D C , C e l i t e<br />

M O M O<br />

( 98 %)<br />

170 M O M O 171<br />

( 70 % 2 s t e p s )<br />

O H O<br />

O 1 . N a H M D S , e t h y l e n e c a r b o n a t e ,<br />

O a l l y l i o d i d e ( 82 %)<br />

O<br />

O<br />

O<br />

i - P r<br />

5 O 1 i - P r<br />

O<br />

2 . N a O A c , 200 ° C ( 96 %)<br />

O<br />

M O M O<br />

172<br />

M O M O<br />

165<br />

Scheme 2.6: Shibasaki’s forward synthesis of garsubellin A, part 1<br />

The enone 168 was prepared from the commercially available ethyl enol ether of<br />

1,3-cyclohexanedione 169 via prenylation followed by methylation and acidic hydrolysis<br />

of the vinyl ether (Scheme 2.6). Copper-catalyzed conjugate addition of MeMgBr to the<br />

enone 168, in situ trapping of the magnesium enolate with isobutyraldehyde and<br />

protection of the resulting OH group with a TIPS group gave ketone 169. The<br />

Mukaiyama hydration of the prenyl group followed by MOM group protection and<br />

prenylation on the less hindered -position gave ketone 170. Selective deprotonation of<br />

C(5) of ketone 170 was followed by an aldol reaction with acetaldehyde; this highyielding<br />

reaction took place without competing retro-aldol reaction, even in this sterically<br />

hindered environment. Dehydration with Martin sulfurane then gave -vinyl ketone 171.<br />

The prenyl group was then converted to a diol with zero diastereoselectivity using<br />

Sharpless dihydroxylation with AD-mix- diol protection as a carbonate and removal of<br />

the TIPS group followed by oxidation gave -diketone 172. O-Allylation with allyl<br />

iodide followed by Claisen rearrangement on the face opposite to the C(7) prenyl group<br />

then gave the quaternized diketone 165 with very high diastereoselectivity.<br />

73


O<br />

O<br />

O<br />

M O M O<br />

O<br />

5 1<br />

1 6 5<br />

O 1 . H o v e y d a - G r u b b s c a t .,<br />

( 92 %)<br />

O<br />

i - P r<br />

2 . ( P h S e ) 2 , P h I O 2 , p y r O .<br />

3 . C S A , ( 70 % 2 s t e p s )<br />

O<br />

O O<br />

1 . L i O H<br />

2 . N a 2 P d C l 4 , T B H P<br />

O<br />

i - P r ( 71 % 2 s t e p s )<br />

H O<br />

3 . I 2 , C . A N<br />

166<br />

4 . p - T s O H . 2 H 2 O ,<br />

H 3 C C H 3<br />

( 80 % 2 s t e p s )<br />

H O<br />

O<br />

I<br />

O<br />

O O<br />

i - P r<br />

163<br />

.<br />

P d C l 2 d p p f<br />

t r i b u t y l p r e n y l t i n<br />

( 2 0 % )<br />

H O<br />

H 3 C<br />

H 3 C<br />

H O<br />

7<br />

O<br />

3<br />

C H 3<br />

C H 3<br />

O<br />

C H 3<br />

O<br />

C H 3<br />

( ± ) - 1 8<br />

H 3 C C H 3<br />

Scheme 2.7: Shibasaki’s forward synthesis of garsubellin A, part 2<br />

The crucial B ring was formed using ring closing-metathesis with the Hoveyda–Grubbs<br />

catalyst (92% yield). The resulting diketone was oxidized in the allylic position with<br />

(PhSe) 2 and PhIO 2 ; removal of the MOM protection group gave triketone 166 (Scheme<br />

2.7). Then the carbonate protection was removed, and the alcohol and enone moieties<br />

were condensed oxidatively in an intramolecular Wacker oxidation. Iodination at the -<br />

position of the enone and acid catalyzed dehydration gave the tertiary alcohol 163.<br />

Finally, Stille coupling of 163 with tributylprenyltin completed the total synthesis of<br />

garsubellin A ((±)-18) in a total of 21 steps from 168.<br />

The alkylation of the Li enolate of 2-cyclohexenone with prenyl bromide and a<br />

catalytic amount (5%) of chiral tetraamine 173 (Figure 2.1) (unpublished compound from<br />

Koga group) gave 6-prenyl-2-cyclohexenone with 95% enantiomeric excess in 65%<br />

yield; however, they did not carry this compound forward in their synthesis.<br />

74


N<br />

N<br />

H<br />

173<br />

M e<br />

N<br />

N M e 2<br />

Figure 2.1: Chiral tetraamine 173<br />

Shibasaki’s first total synthesis of garsubellin A was an important milestone, but<br />

it had some drawbacks such as the dihydroxylation of 171 proceeding with no<br />

diastereoselectivity. Also, the oxidation of the C(2)-C(4) enone of 166 to the -alkoxy<br />

enone of 163 in the intramolecular Wacker oxidation relied on an internal OH group that<br />

was in a position to attack the enone–Pd complex in an intramolecular fashion. Although<br />

Shibasaki’s method may be very useful for synthesizing PPAPs containing a<br />

tetrahydrofuran ring fused to the C(4)-C(5) bond, such as garsubellin A, his method is<br />

much less applicable when synthesizing PPAPs (such as hyperforin) that lack this feature.<br />

Furthermore, ring-closing metathesis cannot be used for the synthesis of hyperforin<br />

unless the multiple prenyl groups in the molecule are protected (Scheme 2.8).<br />

M e O<br />

O<br />

O<br />

H o v e y d a - G r u b b s I I<br />

M e O<br />

O<br />

O<br />

M O M O<br />

1 7 4<br />

M O M O<br />

1 7 5<br />

Scheme 2.8: Ring-closing metathesis on 174<br />

Contemplating these drawbacks and future developments towards PPAPs synthesis,<br />

Shibasaki and coworkers, in 2007, published another synthetic strategy for constructing<br />

the bicyclo[3.3.1]nonane 176 with double bridgehead quaternary centers. The authors<br />

hoped to extend this new synthetic route towards the synthesis of garsubellin A and<br />

hyperforin (Scheme 2.9).<br />

75


9<br />

O<br />

4<br />

O<br />

1<br />

O<br />

i n t r a m o l e c u l a r<br />

a l d o l r e a c t i o n<br />

H O C<br />

O<br />

O<br />

5<br />

M O M O<br />

1 7 6<br />

M O M O<br />

1 7 7<br />

O<br />

O<br />

p r e n y l a t i o n<br />

O<br />

O T I P S<br />

c o n j u g a t e<br />

a d d i t i o n<br />

O<br />

M O M O<br />

178 M O M O 179 168<br />

Scheme 2.9: Shibasaki’s intramolecular aldol approach towards garsubellin A<br />

Shibasaki and coworkers initially constructed the bicyclic system via an<br />

intramolecular aldol type reaction in synthesis of 8-desprenylgarsubellin A (140).<br />

However, Shibaski‘s group could not use an aldol reaction to construct the bicyclic ring<br />

towards garsubellin A (18) due to the high congestion at the C(6) nucleophilic center<br />

(Scheme 2.4). The group‘s redesigned synthetic strategy began with the disconnection of<br />

C(4)-C(5) bond to get diketo aldehyde intermediate 177 (Scheme 2.9). They planed to<br />

construct the bicyclo[3.3.1]nonane ring system via intramolecular aldol reaction from<br />

intermediate 177. The diketo aldehyde 177 was going to be made from diketone 178.<br />

Disconnecting the C(5)-C(9) bond of 178 gave intermediate 179, which was going to be<br />

made from known cyclohexenone 168.<br />

76


O<br />

M O M O<br />

O<br />

M O M O<br />

H O C<br />

O<br />

O T I P S<br />

1 7 9<br />

O<br />

1 8 1<br />

O<br />

1 . K H M D S<br />

P r e n y l b r o m i d e<br />

T B A I ( 9 8 % )<br />

2 . K H M D S<br />

( 5 2 % )<br />

1 . t o l u e n e<br />

N , N - d i e t h y l a n i l i n e<br />

1 8 0 o C ( 8 5 % )<br />

1 . N a O E t , E t O H<br />

M O M O<br />

O<br />

O M O M<br />

O<br />

O<br />

O<br />

O T I P S<br />

1 8 0<br />

O<br />

1 8 2<br />

O<br />

1 . H F - p y r i d i n e<br />

p y r i d i n e<br />

2 . P D C<br />

3 . N a H M D S<br />

( 6 5 % 3 s t e p s )<br />

1 . ( s i a ) 2 B H<br />

H 2 O 2<br />

a q . N a O H<br />

2 . D e s s - M a r t i n<br />

p e r i o d i n a n e<br />

( 5 4 % 2 s t e p s )<br />

M O M O<br />

1 7 7<br />

2 . D e s s - M a r t i n<br />

p e r i o d i n a n e<br />

( 87 % 2 s t e p s )<br />

M O M O<br />

1 7 6<br />

Scheme 2.10: Shibasaki’s intramolecular aldol approach towards garsubellin A,<br />

part 1<br />

The alcohol-protected ketone 179 was converted to its potassium enolate with<br />

KHMDS and prenylated from the -side (axial) at C(4); next, under basic conditions, this<br />

product epimerized to the -prenylated compound 180 (Scheme 2.10). Removal of the<br />

TIPS group followed by oxidation with PDC and O-allylation gave the allyl enol ether<br />

181. After Claisen rearrangement took place in an axial direction, the -allylic -diketone<br />

182 was formed in a good diastereomeric ratio (>33:1). Terminal olefin-selective<br />

hydroboration, followed by oxidative workup, and further oxidation with Dess–Martin<br />

periodinane gave keto aldehyde 177. The key intramolecular aldol reaction formed the<br />

bicyclic alcohol, with NaOEt and ethanol, and the oxidation of the resulting compound<br />

gave synthetic intermediate 176. With this new synthetic strategy, Shibasaki solved some<br />

of the problems of his previous synthesis, specifically, by using intramolecular aldol and<br />

77


Claisen rearrangement instead of the ring-closing metathesis. However, Shibasaki did not<br />

carry reactions further from 176.<br />

2.3. Danishefsky’s iodocyclization approach to PPAPs<br />

In 2005 Danishefsky and coworkers published a total synthesis of garsubellin A<br />

(18), and later, in 2007, published the total syntheses of nemorosone and clusianone. His<br />

novel approach for these syntheses was iodolactonization to build the core structure of<br />

these target compounds. 129<br />

2.3.1. Iodonium induced carbocyclization approach to garsubellin A<br />

1 6<br />

H O<br />

22<br />

5<br />

H O<br />

2 3<br />

9<br />

O<br />

1<br />

27<br />

O<br />

O<br />

1 0<br />

n u c l e o p h i l i c<br />

a c y l a t i o n H O<br />

H O<br />

O<br />

I<br />

O<br />

K e c k r a d i c a l<br />

a l l y l a t i o n<br />

1 8<br />

1 8 3<br />

H O<br />

H O<br />

H O<br />

H<br />

O<br />

3<br />

I<br />

O<br />

I<br />

i o d o<br />

O c a r b o c y c l i z a t i o n<br />

H<br />

H O<br />

H<br />

O<br />

H O O<br />

185<br />

184<br />

O<br />

O<br />

c o n j u g a t e<br />

O T I P S<br />

a d d i t i o n<br />

d e a r o m a t i z a t i o n<br />

e l i m i n a t i o n<br />

H 3 C O O C H<br />

21<br />

3<br />

6<br />

H O<br />

H 3 C O O C H 3<br />

O H O<br />

186 187<br />

188<br />

2 7<br />

Scheme 2.11: Danishefsky’s retrosynthetic analysis of garsubellin A<br />

78


Danishefsky‘s retrosynthetic analysis (Scheme 2.11) began with the disconnection of the<br />

C(1)-C(10) bond to give 183. Intermediate 2 was going to synthesized from intermediate<br />

184 via Keck radical allylation followed by iodination at C(1). The C(3)-C(27) bond was<br />

then disconnected to give 185, and disconnection of the C(1)-C(9) bond of 185 gave<br />

diketone 186. Disconnecting the C(22)-O bond gave nonocyclic intermediate 187, which<br />

can be synthesized from protected phloroglucinol 188 via dearomatization.<br />

O T I P S<br />

1 . n - B u L i , E t 2 O , 0 C<br />

O T I P S<br />

H 3 C O O C H 3<br />

1 8 8<br />

2 . p r e n y l b r o m i d e<br />

H 3 C O O C H 3<br />

1 8 9<br />

K 2 O s O 4 . H 2 O<br />

K 2 C O 3 , K 3 F e ( C N ) 6<br />

C H 3 S O 2 N H 2 , t - B u O H<br />

H 2 O , r . t<br />

O T I P S<br />

H 3 C O O C H 3<br />

H O<br />

H O<br />

190<br />

1 . p - T s O H 2 H 2 O<br />

2 , 2 - d i m e t h o x y p r o p a n e ,<br />

a c e t o n e , r t<br />

2 . T B A F , T H F<br />

( 7 0 % f r o m 1 8 8 )<br />

O H<br />

O<br />

P d ( O A c ) 2 , P P h 3<br />

H 3 C O O C H 3<br />

H 3 C O O C H 3<br />

O<br />

T i ( i - P r O ) 4 , a l l y l m e t h y l a c r b o n a t e O<br />

C 6 H 6 , 80 C ( 62 %)<br />

O<br />

O<br />

191<br />

192<br />

Scheme 2.12: Danishefsky’s synthesis towards garsubellin A, part 1<br />

Danishefsky‘s synthesis started with prenylation 133 at the ortho position of the<br />

protected phloroglucinol 7. Os-catalyzed dihydroxylation on the newly installed prenyl<br />

group 134 followed by acetonide formation and TBAF desilylation produce 191 in 70%<br />

79


overall yield (Scheme 2.12). The resulting product 191 was used to make 192 with<br />

Pd(OAc) 2 , PPh 3 , Ti(i-PrO) 4 and allyl methyl carbonate either by C-allylation or by O-<br />

allylation followed by rapid Claisen and Cope-like rearrangement. 135-137<br />

O<br />

H 3 C O O C H 3<br />

O<br />

H 2 O , d i o x a n e<br />

O<br />

( 71 %)<br />

1 9 2<br />

H C l O 4<br />

H O<br />

H<br />

O<br />

1 9 3<br />

O<br />

O<br />

G r u b b s I I<br />

C H 2 C l 2 , 4 0 C<br />

( 6 8 % )<br />

H O<br />

H O<br />

H O<br />

H O<br />

O<br />

1 8 6<br />

I<br />

O<br />

I<br />

1 9 4<br />

O<br />

I 2 , K I , K H C O 3<br />

T H F - H 2 O<br />

( 8 5 % )<br />

I<br />

O<br />

H O<br />

H O<br />

1 . i - P r M g C l , L i 2 C u C l 4<br />

a l l y l b r o m i d e , T H F<br />

78 C - 0 C ( 67 %)<br />

H O<br />

2 . T M S I , 1 N H C l , 0 C<br />

C H 2 C l 2 ( 9 8 % )<br />

I<br />

O<br />

1 8 5<br />

H O<br />

I<br />

O<br />

I<br />

O<br />

I 2 , C A N<br />

C H 3 C N , 5 0 C<br />

( 7 7 % )<br />

H<br />

O<br />

1 8 4<br />

Scheme 2.13: Danishefsky’s synthesis towards garsubellin A, part 2<br />

80


H O<br />

H O<br />

I<br />

O<br />

I<br />

1 9 4<br />

I<br />

O<br />

i - P r M g C l , L i 2 C u C l 4<br />

a l l y l b r o m i d e , T H F<br />

7 8 C - 0 C , ( 6 7 % )<br />

H O<br />

H O<br />

O<br />

I<br />

O<br />

T M S I<br />

( 9 8 % )<br />

H O<br />

H O<br />

I<br />

O<br />

H<br />

O<br />

184<br />

Scheme 2.13a: TMSI assisted strained cyclopropane ring opening<br />

Treatment of acetonide 192 with perchloric acid in a water-dioxane mixture initially<br />

deprotected it; following a Michael-type cyclization, intermediate 193 is formed in 71%<br />

yield (Scheme 2.13). Conversion of intermediate 193 to 186 was carried out in 68% yield<br />

using Grubbs olefin cross-metathesis. 138,139 The bicyclo[3.3.1] moiety of intermediate 185<br />

was constructed using an iodocarbocyclization reaction, which proceeded in 85% yield;<br />

under these reaction conditions, a second iodination took place at the bridgehead<br />

carbon. 139,140 A third iodination at C(3) then produced 194 in 77% yield. Halogen-metal<br />

exchange followed by allylation gave not only allylation at C(3), but also transannular<br />

Wurtz cyclopropanation, giving a highly strained intermediate in 67% yield. However,<br />

upon addition of TMSI, the strained cyclopropane ring was opened to give tricyclic 184<br />

in 98% yield (Scheme 2.13a). 141,142<br />

81


H O<br />

H O<br />

I<br />

O<br />

1 8 4<br />

H<br />

O<br />

1 . A I B N , a l l y l t r i b u t y l t i n<br />

C 6 H 6 , 80 C ( 82 %)<br />

H O<br />

2 . G r u b b s I I<br />

( 82 %)<br />

H O<br />

O<br />

H<br />

O<br />

195<br />

i - P r M g C l ,<br />

L D A , T M S C l ,<br />

I 2 , 7 8 - 0 C<br />

( 2 5 - 3 6 % )<br />

T M S O<br />

H<br />

O<br />

O<br />

I<br />

O<br />

O<br />

T H F , 7 8 C - 0 C<br />

( 7 2 % )<br />

1 8 3<br />

T M S O<br />

O<br />

O H<br />

1 . D M P<br />

H O<br />

O<br />

O<br />

H O<br />

O<br />

2 . E t 3 N ( H F ) 3<br />

T H F , 8 8 %<br />

H O<br />

O<br />

1 9 6<br />

1 8<br />

Scheme 2.14: Danishefsky’s synthesis towards garsubellin A, part 3<br />

Keck radical allylation 143 of the secondary iodide of 184 followed by Grubbs<br />

cross-metathesis of the resulting diallylated intermediate gave desisobutyrylgarsubellin<br />

A, 195, in 73% yield (Scheme 2.14). Treatment of 195 with LDA and TMSCl followed<br />

by addition of iodine resulted in the iodide 183 in variable yield. Halogen–metal<br />

exchange of i-PrMgCl and intermediate 183 followed by addition of isobutyraldehyde<br />

82


provided the aldol adduct 196 as a mixture of isomers. Dess–Martin oxidation followed<br />

by removal of TMS with Et 3 N(HF) 3 resulted in garsubellin A in 88% yield.<br />

2.3.1 Iodonium-induced carbocyclization approach to total synthesis of nemorosone<br />

and clusianone<br />

H 3 C C H 3<br />

H 3 C C H 3<br />

H 3 C C H 3<br />

H O<br />

H 3 C<br />

H 3 C H O<br />

O<br />

C H 3<br />

C H 3<br />

O<br />

C H 3<br />

O<br />

C H 3<br />

H O<br />

O<br />

C H 3<br />

C H 3<br />

O<br />

O<br />

P h<br />

H O<br />

O<br />

C H 3<br />

C H 3<br />

O<br />

O<br />

P h<br />

H 3 C C H 3<br />

g a r s u b e l l i n A ( 1 8 )<br />

H 3 C C H 3<br />

n e m o r o s o n e ( 5 )<br />

H 3 C C H 3<br />

c l u s i a n o n e ( 1 1 2 )<br />

5 , 1 1 2<br />

O<br />

M e O<br />

1 9 7<br />

O<br />

Scheme 2.15: Danishefsky’s retrosynthetic analysis of nemorosone and clusianone<br />

Nemorosone (5) and clusianone (112) are structurally similar to garsubellin A;<br />

taking advantage of this, Danishefsky and coworkers 129 were able to synthesize the<br />

common intermediate 197, which leads to 5 and 112 with the help of the iodonium<br />

induced carbocyclization method used in their previous total synthesis of garsubellin A<br />

(18) (Scheme 2.15).<br />

83


M e O<br />

M e O<br />

O M e<br />

O H<br />

M e O<br />

O H P d ( O A c ) 2 ,<br />

P P h 3 , T i ( O i P r ) 4 ,<br />

198 M S ( 4 0 A ),<br />

50 C<br />

199<br />

( 50 %)<br />

O<br />

L i I , 2 , 4 , 6 - c o l l i d i n e<br />

2 0 0<br />

O M e<br />

1 4 0 C ( 8 2 % )<br />

O<br />

M e O<br />

O M e<br />

O<br />

2 0 1<br />

G r u b b s I I<br />

C H 2 C l 2 , 4 0 C<br />

( 7 9 % )<br />

O<br />

I 2 , K I , K H C O 3<br />

T H F - H 2 O , R T<br />

f o r 2 0 2 3 2 %<br />

f o r 2 0 3 2 9 %<br />

f o r 2 0 4 2 4 %<br />

M e O<br />

I<br />

I<br />

C H 3 I<br />

O C H 3<br />

O<br />

O<br />

I +<br />

I<br />

+<br />

O M e O<br />

M e O<br />

O<br />

202<br />

203 204<br />

Z n , T H F<br />

H 2 O , 65 ( 87 %)<br />

C 201<br />

201<br />

( 78 %)<br />

I<br />

O<br />

Scheme 2.16: Danishefsky’s synthesis towards nemorosone and clusianone, part 1<br />

Danishefsky and coworkers began their synthesis of intermediate 197 with -<br />

allylpalladium chemistry, which introduces the two allyl groups to commercial 3,5-<br />

dimethoxyphenol 198, obtaining the diallylic intermediate 199 in 50% yield (Scheme<br />

2.16). The allyl groups of intermediate 199 were then converted to prenyl groups through<br />

a twofold using Grubbs catalyst to give 200 in 79% yield. 138 Deprotection of one of the<br />

methoxy groups with LiI and 2,4,6-collidine gave diketone 201 in 82% yield. Iodoniumassisted<br />

carbocyclization gave a mixture of products containing only a 32% yield of<br />

84


intermediate 202; 139,144 however, the other two by-products could be converted back to<br />

intermediate 201 in high yields by the action of Zn in aqueous THF.<br />

I<br />

O<br />

C H 3<br />

C H 3<br />

I<br />

1 . i - P r M g C l , E t 2 O - T H F<br />

7 8 o C ( 9 3 % )<br />

I<br />

O<br />

C H 3<br />

C H 3<br />

M e O<br />

2 0 2<br />

O<br />

2 . T M S I , C H 2 C l 2<br />

0 o C ( 9 8 % )<br />

M e O<br />

2 0 5<br />

O<br />

2 0 5<br />

a l l y l B u 3 S n<br />

A I B N , B e n z e n e<br />

8 0 o C ( 8 4 % )<br />

M e O<br />

O<br />

C H 3<br />

C H 3<br />

O<br />

197<br />

Scheme 2.17: Danishefsky’s synthesis towards nemorosone and clusianone, part 2<br />

As in the garsubellin synthesis, diiodide 202 was reduced to iodide 205, and Keck<br />

radical allylation gave the intermediate 197, 143 which could be used for the synthesis of<br />

either nemorosone or clusianone. (Scheme 2.17)<br />

85


M e O<br />

O<br />

1 9 7<br />

O<br />

L D A , T M S C l<br />

I 2 ( 5 1 % )<br />

M e O<br />

2 0 6<br />

O<br />

I<br />

O<br />

T M S<br />

1 . i - P r M g C l , P h C H O<br />

2 . D M P , C H 2 C l 2<br />

3 . T B A F , T H F<br />

R T<br />

( 6 1 % 3 s t e p s )<br />

M e O<br />

O<br />

O<br />

O<br />

P h<br />

L D A ,<br />

B r<br />

2 -<br />

t h i e n y l c y a n -<br />

o c u p r a t e<br />

( 88 %)<br />

M e O<br />

2 0 7 2 0 8<br />

O<br />

O<br />

O P h<br />

G r u b b s I I<br />

( 9 1 % )<br />

M e O<br />

O<br />

C H 3<br />

C H 3<br />

O<br />

O<br />

P h<br />

L i I<br />

2 , 4 , 6 - c o l l i d i n e<br />

1 4 0 o C ( 3 1 % )<br />

H O<br />

O<br />

O<br />

O<br />

P h<br />

2 0 9<br />

5<br />

Scheme 2.18: Danishefsky’s synthesis towards nemorosone and clusianone, part 3<br />

Intermediate 197 was treated with excess LDA in the presence of excess TMSCl,<br />

and quenching with iodine gave iodide 206 in 51 % yield (Scheme 2.18). Halogen–metal<br />

exchange of 206 followed by addition of benzaldehyde resulted in an aldol product.<br />

Without further purification, the intermediate was subjected to Dess–Martin oxidation<br />

followed by desilylation with TBAF produce 207 in 61% overall yield for the three steps.<br />

Addition of LDA to 207 resulted in the formation of a metal–vinyl complex; this complex<br />

was transformed into the corresponding higher order thienylcyanocuprate. 140 Allylation<br />

occurred after addition of allyl bromide and resulted in bis-allyl intermediate 208 in 88%<br />

86


yield. A twofold cross-metathesis 111 reaction converted 208 to diprenyl intermediate 209<br />

in 91% yield; this reaction followed by demethylation gave nemorosone (5) in 31% yield.<br />

M e O<br />

O<br />

O<br />

1 9 7<br />

1 . L D A , T H F<br />

P h C H O<br />

2 . D M P , C H 2 C l 2<br />

( 5 7 % )<br />

M e O<br />

O<br />

O<br />

2 1 0<br />

P h<br />

H<br />

O<br />

L D A , T M S C l<br />

I 2 ( 4 8 % )<br />

O<br />

I<br />

A l l y l S n B u 3<br />

O<br />

G r u b b s I I<br />

M e O<br />

O<br />

211<br />

P h<br />

O<br />

E t 3 B , C 6 H 6<br />

( 7 1 % )<br />

M e O<br />

O<br />

O P h<br />

212<br />

( 9 4 % )<br />

O<br />

M e O<br />

O<br />

213<br />

P h<br />

O<br />

1 0 % N a O H<br />

1 , 4 - d i o x a n e<br />

( 6 4 % )<br />

H O<br />

O<br />

O<br />

O P h<br />

109<br />

Scheme 2.19: Danishefsky’s synthesis towards nemorosone and clusianone, part 4<br />

The synthesis of clusianone was concluded from intermediate 3 (Scheme 2.19).<br />

Compound 197 was metallated at C(3) with LDA and treated with benzaldehyde,<br />

and Dess–Martin oxidation gave triketone 210 in 57% yield. Compound 210 was then<br />

converted into its C(1) iodo intermediate 211 via the silyl enol ether. The iodo group in<br />

intermediate 211 was then replaced with an allyl group by allyltributylstannane and<br />

triethylboron in the presence of air. 145 Diallyl intermediate 212 was then converted to<br />

87


diprenyl intermediate 213 in 94% yield using a double cross-metathesis reaction. 138 The<br />

conversion of the methoxy group to the enol, which was accomplished using aqueous<br />

sodium hydroxide in 1,4-dioxane (64% yield) gave the target molecule clusianone.<br />

2.4. Simpkins and Marazano & Delpech Effenberger cyclization (double acylation)<br />

approach to total synthesis of clusianone<br />

Both Simpkins on the one hand, and Marazano & Delpech on the other,<br />

completed the total synthesis of clusianone by applying an Effenberger cyclization<br />

approach to construct the bicyclo[3.3.1]nonanetrione core structure. This approach to<br />

PPAPs was pioneered by Stoltz. 146<br />

H 3 C C H 3<br />

O T B S<br />

C l<br />

O<br />

O<br />

C l<br />

K O H , B n E t 3 N C l<br />

H 2 O , 1 0 - 2 3 o C<br />

( 3 6 % )<br />

H<br />

H O<br />

O<br />

C H 3<br />

C H 3<br />

H<br />

O<br />

Scheme 2.20: Stoltz’s Effenberger cyclization approach<br />

In 1984, Effenberger and coworkers published the reaction between<br />

cyclohexanone methyl enol ether and malonyl dichloride to give the bicyclo[3.3.1]nonane<br />

trione core structure. 147 In 2002, Stoltz and coworkers published a modified procedure<br />

for the synthesis of the bicyclo[3.3.1]nonane core structure of garsubellin A by changing<br />

the ratio of enol ether to malonyl dichloride and by changing methyl enol ether to a TBS<br />

silyl enol ether to obtain cleaner products in modest yields (Scheme 2.20). 146<br />

88


H O<br />

1<br />

O<br />

5<br />

L i t h i a t i o n a n d<br />

p r e n y l a t i o n a t<br />

b r i d g e h e a d<br />

c a r b o n<br />

Scheme 2.21: Simpkins’ retrosynthetic analysis of clusianone<br />

O<br />

E f f e n b e r g e r<br />

c y c l i z a t i o n<br />

H<br />

O M e 215<br />

O<br />

H O<br />

3<br />

O<br />

C l<br />

O P h<br />

H<br />

C l<br />

O O<br />

109 214 216<br />

In 2006 Simpkins and coworkers published a racemic total syntheis of clusianone.<br />

Simpkins‘ retrosynthetic analysis began with the disconnection of the C(1) prenyl<br />

substituent and C(3) benzoyl substituent of 109 to give diprenyl bicyclo[3.3.1]nonane<br />

trione intermediate 214 (Scheme 2.21). The disconnection of the C(1)-C(2) and C(4)-<br />

C(5) bonds gave methyl enol ether intermediate 215. Simpkins planned to install the<br />

C(1)-C(2) and C(4)-C(5) bonds using the Effenberger cyclization.<br />

O<br />

L D A<br />

P r e n y l b r o m i d e<br />

O<br />

1 . M e L i<br />

O<br />

M e M g B r<br />

M e 3 S i C l , H M P A<br />

O M e<br />

217 218<br />

O M e<br />

2 . H C l<br />

( 8 8 % 2 s t e p s )<br />

2 1 9<br />

C u B r S M e 2<br />

8 8 %<br />

O<br />

O<br />

t - B u O K , D M S O<br />

O M e<br />

O M e<br />

M e 2 S O 4<br />

( 8 7 % )<br />

( 85 : 15 )<br />

( 75 : 25 )<br />

220 ( a : b ) 221 ( a : b )<br />

Scheme 2.22: Simpkins’ synthesis towards clusianone, part 1<br />

89


Simpkins and coworkers began their forward synthesis with prenylation of known<br />

vinylogous ester 217, which gave diprenylated intermediate 218; 148 this step was<br />

followed by methylation with MeLi and acidic hydrolysis to give 2,3,4-substituted<br />

cyclohexenone 219 in 88% yield over two steps (Scheme 2.22). Copper-catalyzed<br />

conjugate addition of MeMgBr to enone 219 resulted in an 85:15 ratio of ketone<br />

diastereomers 220a and 220b in 88% yield. This mixture was then converted to<br />

regioisomeric mixtures of the corresponding methyl enol ethers with the aid of tBuOK in<br />

DMSO, giving 221a and 221b with 75:25 ratio in 87% yield. 149<br />

O<br />

O<br />

O M e<br />

+<br />

O M e<br />

C l C l<br />

1 . E t 2 O ,- 20 o C<br />

2 . K O H , B n E t 3 N C l<br />

R T<br />

2 2 1 a 2 2 1 b<br />

H O<br />

O<br />

2 2 2<br />

O<br />

C H ( O M e ) 3 O<br />

p - T s O H<br />

M e O H , 50 o C M e O<br />

( 24 % f r o m<br />

O<br />

9 a / 9 b ) 223<br />

Scheme 2.23: Simpkins’ synthesis towards clusianone, part 2<br />

The bicyclo[3.3.1]nonanetrione core structure 222 was achieved via Effenberger<br />

cyclization with malonyl dichloride and 221. The compound 222 was obtained in 30%<br />

yield after basic extraction, and 220a and 220b were also obtained in 55 % yield (Scheme<br />

2.23). The methyl enol ether was found to be more effective in this system than the silyl<br />

enol ether (OTBS). Diketone 222 was converted to its methyl enol ether under acidic<br />

conditions with trimethyl orthoformate in 24 % yield over 2 steps.<br />

90


M e O<br />

O<br />

2 2 3<br />

O<br />

L D A ( 2 e q ) , T H F<br />

P r e n y l b r o m i d e ( 5 e q )<br />

( 9 1 % )<br />

M e O<br />

O<br />

2 2 4<br />

O<br />

L T M P ( 2 e q ) , T H F<br />

P h C O C l ( 3 e q )<br />

( 9 1 % )<br />

M e O<br />

L i O H , H 2 O<br />

O<br />

O<br />

D i o x a n e<br />

( 90 %)<br />

M e O O<br />

O<br />

P h O<br />

225 109<br />

Scheme 2.24: Simpkins’ synthesis towards clusianone, part 3<br />

To complete the synthesis, ketone 223 was prenylated at the bridgehead carbon to<br />

give 224 in 91% yield (Scheme 2.24). Acylation at C(3) using LTMP and benzoyl<br />

chloride then gave O-methylclusianone 225 in 91% yield, 150 and deprotection with LiOH<br />

in dioxane offered the target compound in 90% yield for the last step.<br />

In 2007, Simpkins and coworkers expanded the Effenberger cyclization to the<br />

total synthesis of clusianone and a formal synthesis of garsubellin A by synthesizing a<br />

late intermediate in Danishefsky‘s synthesis; 63,129 furthermore, they also advanced to a<br />

later intermediate in the synthesis of nemorosone from the common<br />

bicyclo[3.3.1]nonanetrione intermediate.<br />

2.4.1 Progress towards the synthesis of nemorosone<br />

Simpkins and coworkers followed the same strategy towards nemorosone that<br />

they applied for the synthesis of clusianone (Scheme 2.25). 128<br />

91


O<br />

1 6 8<br />

L D A , - 7 8 o C<br />

p r e n y l b r o m i d e<br />

( 7 7 % )<br />

O<br />

2 2 6<br />

M e M g B r ( 1 . 5 e q )<br />

C u I ( 1 0 % )<br />

T H F , M e 2 S , 0 o C<br />

( 8 8 % )<br />

O<br />

T B S C l , E t 3 N , N a I<br />

C H 3 C N , r e f l u x<br />

( 87 %)<br />

227 228<br />

O T B S 1 . m a l o n y l d i c h l o r i d e<br />

E t 2 O , 2 0 o C , 2 4 h<br />

2 . B n E t 3 N C l , K O H<br />

H 2 O , r t , 6 h<br />

O<br />

O<br />

O H<br />

229<br />

M e 2 S O 4 , K 2 C O 3<br />

A c e t o n e , r e f l u x , 1 h<br />

( 2 9 % )<br />

M e O<br />

O<br />

2 3 0<br />

O<br />

+<br />

O<br />

O<br />

2 3 1<br />

O M e<br />

Scheme 2.25: Simpkins’ synthesis towards nemorosone, part 1<br />

The synthesis of nemorosone began with known enone 168 151 (Scheme 2.25), which was<br />

converted to intermediate 226 after prenylation in 77% yield. Conjugate addition of<br />

MeMgBr followed by protection of the ketone with a TBS group gave silyl enol ether<br />

intermediate 228 in 88% and 87% yields respectively. The Effenberger cyclization was<br />

observed under Stoltz‘s conditions to give the bicyclo[3.3.1]nonane trione intermediate<br />

229, and, without purification, the enol was converted to two isomers of methyl enol<br />

ether (230 and 231) using Me 2 SO 4 in the presence of a base in 29% yield.<br />

92


O<br />

1 . L T M P , - 7 8 o C<br />

2 . L i ( 2 - T h ) C u C N , , 4 0 o C<br />

O<br />

M e O<br />

2 3 0<br />

O<br />

3 . p r e n y l b r o m i d e<br />

- 7 8 o C - - 4 0 o C<br />

( 7 4 % )<br />

M e O<br />

O<br />

2 3 2<br />

2 3 2<br />

1 . L D A , T M S C<br />

7 8 o C - 0 o C<br />

O<br />

2 . I 2<br />

( 6 0 % )<br />

M e O<br />

O<br />

2 3 3<br />

Scheme 2.26: Simpkins’ synthesis towards nemorosone, part 2<br />

The next step was to install the iodine group at the bridgehead C(1) center.<br />

Following Danishefsky‘s strategy, 129 halogen–metal exchange would be used incorporate<br />

the acyl group (Scheme 2.26). The intermediate 232 was isolated in 74% yield after it<br />

was prenylated at C(3) via a higher order cyanocuprate. When attempting the iodination<br />

at the bridgehead carbon using LDA, TMSCl and iodine, the unexpected triene product<br />

233 was isolated in 60% yield.<br />

93


O<br />

1 . L T M P , 7 8 o C<br />

O<br />

M e O<br />

2 3 0<br />

O<br />

2 . T M S C l<br />

( 7 8 % )<br />

M e O<br />

O<br />

T M S<br />

234<br />

2 3 4<br />

1 . L D A , T M S C l<br />

- 7 8 o C - 0 o C<br />

2 . I 2<br />

( 40 %)<br />

O<br />

I<br />

M e O O<br />

T M S<br />

235<br />

Scheme 2.27: Simpkins’ synthesis towards nemorosone, part 2<br />

As a result, the alkylation and acylation steps were reversed. Compound 230 was<br />

protected at C(3) with LiTMP and TMSCl to give 243 in 78% yield. Then, bridgehead<br />

iodide 235 was obtained after using Danishefsky‘s reaction conditions in 40% yield<br />

(Scheme 2.27). The iodo intermediate 235 was an important intermediate towards the<br />

synthesis of nemorosone; however, authors did not carry out further reactions with this<br />

intermediate due to a lack of materials.<br />

94


2.4.2. Formal synthesis of garsubellin A<br />

O<br />

L D A<br />

P r e n y l b r o m i d e<br />

( 7 1 % )<br />

O<br />

1 6 8 2 3 6<br />

M e M g B r , C u I ( c a t )<br />

T H F / D M S<br />

( 7 0 % )<br />

O<br />

2 3 7<br />

T B S C l , N a I<br />

E t 3 N , M e C N<br />

r e f l u x<br />

( 9 5 % )<br />

O T B S 1 . m a l o n y l d i c h o r i d e<br />

E t 2 O<br />

2 3 8<br />

2 . B n N E t 3 C l , K O H<br />

H 2 O<br />

H O<br />

m C P B A<br />

O<br />

O<br />

H<br />

H O<br />

C H 2 C l 2<br />

O ( 22 % f o r 2 s t e p s ) H O<br />

230 239<br />

H<br />

O<br />

Scheme 2.28: Simpkins’ formal synthesis of garsubellin A, part 1<br />

Simpkins‘ formal synthesis of garsubellin A began with prenylation of the known enone<br />

168 151 to given an -prenylated enone intermediate 236 in 71% yield (Scheme 2.28). The<br />

Cu-catalyzed conjugate addition of MeMgBr to enone 236 followed by TBS protection<br />

gave silyl enol ether intermediate 238 in 70% and 90% yields, respectively. The<br />

Effenberger cyclization was carried out with malonyl dichloride and silyl enol ether 238,<br />

which yielded bicyclo[3.3.1]nonanetrione 230. Next, tricyclic intermediate 239 was<br />

obtained via an epoxidation–cyclization sequence with mCPBA in 22% yield over two<br />

steps. The diastereomeric ratio for the epoxidation-cyclization was 2:1, and the major<br />

product was found to have the desired stereochemistry. The synthesis was continued with<br />

the desired isomer.<br />

95


2 3 9<br />

T M S C l , I m<br />

D M A P , D M F<br />

( 9 0 % )<br />

T M S O<br />

H O<br />

O<br />

H<br />

O<br />

2 4 0<br />

2 4 0<br />

1 . L T M P , T H F<br />

L i ( 2 - T h ) C u C N<br />

a l l y l b r o m i d e<br />

( 5 0 % )<br />

2 . E t 3 N - H F , T H F<br />

( 9 3 % )<br />

H O<br />

H O<br />

O<br />

H<br />

O<br />

2 4 1<br />

D a n i s h e f s k y ' s i n t e r m e d i a t e<br />

t o w a r d s g a r s u b e l l i n A<br />

Scheme 2.29: Simpkins’ formal synthesis of garsubellin A, part 2<br />

The alcohol of tricyclic 239 was protected with a TMS group, and then allylation<br />

of C(3) with LTMP, Li(2-Th)CuCN and allyl bromide; desilylation and conversion of the<br />

allyl group to a prenyl group via Grubbs cross-metathesis gave Danishefsky‘s<br />

intermediate 241 in his garsubellin A synthesis (Scheme 2.29). 63 The above synthetic<br />

strategy broadened the applicability of the Effenberger cyclization and also has a widened<br />

applicability to bridgehead metalation in the synthesis of PPAPs.<br />

In 2007, Marazano and coworkers published a similar approach towards the<br />

synthesis of clusianone. 125 The key step to the bicyclo[3.31]trione core structure involved<br />

the Effenberger cyclization approach, 147 the main difference between Simpkins‘ and<br />

Marazano‘s approach being that Simpkins used a methyl enol ether, whereas Marazano<br />

used a silyl enol ether (Scheme 2.30).<br />

96


O<br />

E f f e n b e r g e r<br />

c y c l i z a t i o n<br />

H O<br />

O<br />

O<br />

P h<br />

112<br />

C l<br />

O S i M e 3<br />

242<br />

O O<br />

C l<br />

216<br />

Scheme 2.30: Marazano’s retrosynthetic analysis of clusianone<br />

O<br />

i - P r I ( 3 e q )<br />

O<br />

L D A , T H F<br />

O H<br />

K 2 C O 3 ( 4 e q )<br />

M e 2 C O , r e f l u x<br />

243 ( 90 %)<br />

244<br />

2 4 5<br />

O<br />

O<br />

O<br />

M e L i , T H F<br />

H C l<br />

( 9 2 % 2 s t e p )<br />

L D A , H M P T<br />

p r e n y l b r o m i d e<br />

O<br />

p r e n y l b r o m i d e<br />

O<br />

M e C u<br />

B f 3 . E t 2 O<br />

( 85 %)<br />

246<br />

O<br />

O<br />

247 248<br />

( 248 / 249 : 7 / 3 , 82 %)<br />

2 4 9<br />

Scheme 2.31: Marazano’s synthesis of clusianone, part 1<br />

Marazano‘s synthesis started with the protection of the known prenylated -<br />

diketone 243 with i-PrI in the presence of a base, which gave the enol ether intermediate<br />

244 in 90% yield (Scheme 2.31). The second prenylated product 245 was obtained when<br />

treated with LDA and prenyl bromide, and, without purification, it was transformed to<br />

97


intermediate 246 after methylation and acidification in 92% yield for the over two steps.<br />

The diastereomers 248 and 249 were isolated in 82% yield after conjugate addition of<br />

MeCu to 246 followed by a third prenylation. 125<br />

O<br />

O<br />

T M S O T f<br />

O S i M e 3<br />

2 4 8<br />

2 4 9<br />

C H 2 C l 2<br />

( q u a n t i t a t i v e )<br />

2 4 2<br />

Scheme 2.32. Marazano’s synthesis of clusianone, part 2<br />

The mixture of cyclohexanone intermediates 248 and 249 were converted to the silyl enol<br />

ether intermediate 242 in quantitative yield (Scheme 2.32).<br />

O S i M e 3<br />

O<br />

O<br />

C l<br />

C l<br />

H O<br />

O<br />

2 4 2<br />

1 . T M S O T f ( 0 . 2 e q )<br />

C H 2 C l 2 , 10 o C , 1 h<br />

t h e n 15 o C , 5 h<br />

2 . D M A P<br />

( 38 %)<br />

O<br />

2 5 0<br />

Scheme 2.33: Marazano’s synthesis of clusianone, part 3<br />

Treatment of 242 with malonyl dichloride (1 eq) in the presence of 0.2 eq TMSOTf at<br />

−10 C gave the desired bicyclo[3.3.1]trione intermediate, in 35% yield. An unexpected<br />

lavandulyl-substituted phloroglucinol derivative 250 was also obtained in 38% yield<br />

(Scheme 2.33). However, after changing the Lewis acid TMSOTf to BF 3 ∙Et 2 O, the<br />

98


desired bicyclic product 251 was obtained in 35% yield. A by-product, cyclic ether 252<br />

was also isolated in 25% yield. The compound 252 is significant because it has a C(7)<br />

endo prenyl group (Scheme 2.34).<br />

O S i M e 3<br />

2 4 2<br />

C l<br />

O<br />

O<br />

C l<br />

1 . B F 3 . E t 2 O ( 0 . 2 e q )<br />

C H 2 C l 2 , - 1 0 o C , 2 h<br />

t h e n 2 0 o C , 5 h<br />

2 . D M A P<br />

H O<br />

O<br />

O<br />

O O<br />

O<br />

251 ( 35 %)<br />

252 ( 25 %)<br />

Scheme 2.34: Marazano’s synthesis of clusianone, part 4<br />

99


C l<br />

T M S<br />

O<br />

H<br />

O T M S<br />

C l<br />

H O<br />

2 5 3<br />

O<br />

H O<br />

2 5 4<br />

O<br />

- H C l<br />

T M S O<br />

O<br />

O<br />

H C l<br />

T M S O<br />

O<br />

O<br />

255 256<br />

- T M S C l - T M S C l<br />

2 5 2 2 5 0<br />

Scheme 2.35: Proposed mechanism for the formation of 250<br />

The proposed mechanism for the formation of 250 proceeds through the cationic<br />

intermediate 254, itself formed by a fragmentation process (Scheme 2.35). This cationic<br />

intermediate 254 can be recyclized to give the bicyclo[3.3.1]trione intermediate 255 or<br />

the lavandulyl derivative 256. Desilylation then gives 252 and 250, respectively.<br />

100


H O<br />

O<br />

2 5 1<br />

O<br />

P h C O C N<br />

E t 3 N , T H F<br />

( 6 5 % )<br />

O<br />

H O<br />

P h O<br />

O<br />

1 0 9<br />

Scheme 2.36: Marazano’s synthesis of clusianone, part 5<br />

Marazano and Delpech completed the total synthesis of clusianone after acylation<br />

with PhCOCN and Et 3 N in 65% yield (Scheme 2.36). 136<br />

2.5. Porco’s total synthesis of clusianone<br />

In 2007, Porco and coworkers published a short synthesis of clusianone via a<br />

tandem alkylative dearomatization-annulation process to construct the<br />

bicyclo[3.3.1]nonanetrione core. 130 Porco and coworkers carried out several model<br />

studies using different Michael donors and Michael acceptors.<br />

101


2.5.1. Retrosynthetic analysis of clusianone<br />

1 0<br />

1<br />

O<br />

9<br />

5<br />

1 , 2 a d d i t i o n<br />

1<br />

9<br />

C H O<br />

O<br />

7<br />

5<br />

M i c h a e l a d d t i o n<br />

e l i m i n a t i o n<br />

H O<br />

O<br />

3<br />

P h<br />

O<br />

H O<br />

O<br />

3<br />

P h<br />

257<br />

O<br />

H O<br />

2 5 8<br />

O H<br />

O<br />

P h<br />

O H<br />

C O 2 M e<br />

O A c<br />

2 5 9<br />

p r e n y l a t i o n<br />

O H O<br />

P h<br />

H O O H<br />

a c y l p h l o r o g l u c i n o l<br />

260<br />

Scheme 2.37: Porco’s retrosynthetic analysis of clusianone<br />

The retrosynthetic analysis of clusianone began with the disconnection of the C(9)-C(10)<br />

bond to give the aldehyde 257 (Scheme 2.37). Next, the C(1)-C(9) and C(5)-C(7) bonds<br />

of 257 were going to be installed via Michael addition–elimination reactions of<br />

clusiaphenone B 258 with -acetoxy enal 259. The clusiaphenone B 258 intermediate<br />

would be synthesized from commercially available acylphloroglucinol 260.<br />

102


H O<br />

O H O<br />

O H O<br />

P h B r<br />

P h<br />

O H a q . K O H , 0 o C H O O H<br />

( 40 %)<br />

260 258<br />

C O 2 M e<br />

O A c<br />

2 6 1<br />

L i H M D S , T H F<br />

( 7 0 % )<br />

c o n v e x<br />

O<br />

O<br />

O H<br />

a d d i t i o n<br />

e l i m i n a t i o n<br />

M e O 2 C<br />

C O 2 M e<br />

O<br />

M e O<br />

2 6 2<br />

O<br />

O<br />

P h<br />

H O O<br />

P h O<br />

263<br />

s i n g l e d i a s t e r e o m e r<br />

Scheme 2.38: Porco’s synthesis of clusianone, part 1<br />

The polyisoprenylated benzophenone clusiaphenone B 258 was synthesized in<br />

40% yield by C-prenylation of acylphloroglucinol 260 (Scheme 2.38). 137 The reaction of<br />

clusiaphenone B intermediate 260 with -acetoxymethyl acrylate 261 in the presence of<br />

LiHMDS at 0 C allowed for a diastereoselective dearomatization–annulation process in<br />

which an additional Michael–elimination reaction occurred to afford the<br />

bicyclo[3.3.1]nonanetrione intermediate 263 in 70% yield. NMR data and X-ray crystal<br />

structure of the p-bromobenzoate of the enol ether derivative confirmed the backbone<br />

structure of the bicyclo intermediate 263. The second acrylate molecule approached the<br />

262 from the convex face; this resulted in an addition–elimination process, yielding a<br />

single diastereomeric bicyclo intermediate 262. After screening several analogs of<br />

clusiaphenone derivatives and acrylate derivatives, the authors discovered the sterically<br />

hindered -acetoxymethyl acrylate derivatives do not undergo the second addition–<br />

elimination process, and the reaction stopped after the reaction of the first acrylate<br />

derivative with the clusiaphenone derivative.<br />

103


C H O<br />

O A c<br />

H O<br />

2 5 8<br />

O H<br />

O<br />

P h<br />

O H<br />

2 5 9<br />

1 . K H M D S , T H F , 6 5 o C<br />

2 . T M S C H N 2 , i P r 2 N E t<br />

C H 3 C N , M e O H<br />

( 5 4 % )<br />

1<br />

M e O<br />

C H O<br />

O<br />

3<br />

5<br />

O P h<br />

264<br />

O<br />

M g B r<br />

1 . T H F , 7 8 o C<br />

2 . A c 2 O , i P r 2 N E t , D M A P<br />

C H 2 C l 2 , 0 o C t o r t<br />

( 7 4 % )<br />

M e O<br />

1<br />

O<br />

O<br />

O A c<br />

3<br />

5<br />

P h<br />

O<br />

1 . P d ( P P h 3 ) 4 , H C O 2 N H 4<br />

t o l u e n e , 1 0 5 o C<br />

( 9 0 % )<br />

2 . G r u b b s C a t<br />

2 - m e t h y l - 2 - b u t e n e<br />

( 8 9 % )<br />

M e O<br />

2 6 5 2 6 6<br />

1<br />

O<br />

O<br />

3<br />

5<br />

P h<br />

O<br />

L i O H , d i o x a n e<br />

, ( 7 7 % )<br />

o r<br />

L i C l , D M S O<br />

, ( 8 9 % )<br />

1<br />

Scheme 2.39: Porco’s synthesis of clusianone, part 2<br />

Treatment of clusiaphenone B 258 with KHMDS and -acetoxy enal 259 in THF<br />

afforded the desired annulated product (Scheme 2.39). Without purification, the crude<br />

compound was transformed to its methyl enol ether 264 in 54% yield. 137 The addition of<br />

vinylmagnesium bromide to the aldehyde 264 followed by acetylation of the resultant<br />

alcohol yielded the allylic ester 265 in 74% yield. The Pd-catalyzed formate reduction 142<br />

of 265 afforded the C-7 allyl intermediate in 90% yield. Next, the C-7 allyl group was<br />

converted to a prenyl group with the Grubbs cross-metathesis 138 reaction to give O-<br />

methylclusianone 266 in 89% yield. The total synthesis of clusianone was completed<br />

after demethylation of 266 with the help of LiOH in dioxane or LiCl in DMSO (77% and<br />

89% yield, respectively).<br />

104


2.6. Other approaches towards PPAPs<br />

In addition to the above synthetic routes towards PPAPs, several groups have<br />

contributed and are still contributing to the goal of finding more paths towards the<br />

synthesis of not only garsubellin A, clusianone, or nemorosone but also more complex<br />

PPAPs such as hyperforin and xanthochymol.<br />

2.6.1. Nicolaou’s Se-mediated electrophilic cyclization approach<br />

In 1999, Nicolaou and coworkers published the first synthetic effort toward<br />

PPAPs in which they prepared a model compound of garsubellin A. 124,139 The group<br />

initially developed the selenium-mediated cyclization to build the bicyclo[3.3.1]nonane<br />

core structure and applied this method towards their synthesis of the model compound<br />

267 (Scheme 2.40).<br />

H 3 C C H 3<br />

S O 2 P h<br />

H O<br />

H 3 C<br />

H 3 C<br />

H O<br />

7<br />

O<br />

3<br />

H 3 C C H 3<br />

C H 3<br />

C H 3<br />

O<br />

C H 3<br />

O<br />

C H 3<br />

g a r s u b e l l i n A ( 1 8 )<br />

7<br />

H O<br />

O<br />

M e O 3<br />

2 6 7<br />

C H 3<br />

C H 3<br />

O<br />

O<br />

H<br />

O<br />

O<br />

Scheme 2.40: Nicolaou’s model compound of garsubellin A<br />

105


S e P h<br />

O<br />

O<br />

H 3 C<br />

268<br />

O<br />

O A c O M e<br />

C H 3<br />

N - P S P<br />

S n C l 4 , C H 2 C l 2<br />

9 5 %<br />

O<br />

O<br />

S e P h<br />

O<br />

O A c<br />

C O 2 M e<br />

O<br />

O<br />

C H 3<br />

C H 3<br />

C O 2 M e<br />

2 7 0<br />

2 6 9<br />

Scheme 2.41: Nicolaou’s Se-mediated electrophilic cyclization approach, part 1<br />

In the synthesis, allylic enol acetate intermediate 268 was treated with<br />

N-(phenylseleno)phthalimide (N-PSP) and SnCl 4 at –78 C;<br />

this enol intermediate<br />

underwent selenium-induced cyclization via the proposed intermediate 269 to grant the<br />

desired bicyclo product 270 (Scheme 2.41).<br />

O<br />

O<br />

S e P h<br />

C H 3<br />

O C H 3<br />

C O 2 M e<br />

2 7 0<br />

1 . L i A l H ( O t B u ) 3<br />

T H F ( 9 5 % )<br />

2 . L i H M D S<br />

S O 2 P h<br />

P h O 2 S<br />

T H F ( 8 2 % )<br />

3 . n B u 3 S n H<br />

A I B N ( 9 3 % )<br />

Scheme 2.42: Nicolaou’s Se-mediated electrophilic cyclization approach, part 2<br />

O<br />

O<br />

S O 2 P h<br />

7 C H 3<br />

H O C H 3<br />

C O 2 M e<br />

2 7 1<br />

2 6 7<br />

Later, Nicolaou‘s group successfully applied Se-mediated electrocyclization to achieve<br />

their target 267. The reduction of 270 with LiAl(O t Bu) 3 in THF, then treatment of the<br />

resulted alcohol with LiHMDS and trans-bis(phenylsulfonyl)ethylene followed by<br />

106


addition of nBu 3 SnH and AIBN gave intermediate 271 (Scheme 2.42). After a few<br />

reactions from 271, Nicolaou‘s group was able to complete the model synthesis of 267.<br />

2.6.2. Nicolaou’s Michael addition–aldol reaction approach<br />

In 2005, Nicolaou and coworkers tried an alternative approach to construct the<br />

bicyclo[3.3.1]nonane core of the model systems hyperforin and perforatumone (Scheme<br />

2.43). 152 They used acrolein derivatives and cyclic -keto ester derivatives (272) in a<br />

Michael addition–aldol reaction pathway to form the desired bicyclic core structure of<br />

PPAPs (Scheme 2.44).<br />

.<br />

H 3 C C H 3<br />

7<br />

O<br />

C H 3<br />

O<br />

O<br />

O O<br />

H O<br />

3<br />

C H 3<br />

O<br />

C H 3<br />

O<br />

O<br />

H 3 C C H 3<br />

h y p e r f o r i n ( 1 )<br />

p e r f o r a t u m o n e<br />

Scheme 2.43: Hyperforin and perforatumone<br />

107


M e<br />

O<br />

M e<br />

C H O<br />

O<br />

M e<br />

M i c h a e l a d d i t i o n<br />

a l d o l<br />

M e<br />

M e<br />

O H<br />

273<br />

M e<br />

272<br />

O<br />

O O<br />

o x i d a t i o n<br />

M e<br />

M e<br />

M e<br />

275<br />

M e<br />

M e<br />

O<br />

O<br />

f r a g m e n t a t i o n O O<br />

O<br />

O<br />

M e<br />

M e<br />

M e<br />

M e<br />

M e<br />

H O<br />

.<br />

O M e<br />

274<br />

276<br />

Scheme 2.44: Nicolaou’s Michael addition-aldol reaction approach<br />

The bicyclic enone intermediate 274 was observed after the Michael addition–<br />

aldol reaction of methacrolein and -keto ester 272 followed by oxidation. This reaction<br />

strategy could be an effective and short method to synthesize the bicyclic core of<br />

hyperforin and other PPAPs. Next, dihydroxylation and fragmentation of intermediate<br />

274 afforded intermediate 276 and, after this, transformation took place via intermediate<br />

275.<br />

2.6.3. Kraus’s Mn-mediated oxidative free radical cyclication approach<br />

Kraus and coworkers utilized a Mn(III) acetate and Cu(II) acetate-based,<br />

oxidative free-radical Snider protocol 153 to construct the bicyclic ring core 279 of PPAPs<br />

(Scheme 2.45). 154,155<br />

M e<br />

O<br />

M e<br />

O<br />

O H<br />

M e<br />

108


O 1 . M n ( O A c ) 3<br />

O B r 1 . N a O H H O O<br />

C O 2 M e C u ( O A c ) 3 H C O 2 M e<br />

H C O 2 M e<br />

2 . 3 . 5 e q N B S O<br />

2 . 140 o C<br />

O<br />

( 55 % 2 s t e p s )<br />

277 278 279<br />

Scheme 2.45: Kraus’s Mn-mediated oxidative free radical cyclication approach<br />

The reaction of keto ester 277 with Mn(OAc) 3 (2 eq) and Cu(OAc) 3 (1 eq)<br />

predominantly gave bicyclo intermediate 280. Then, bromination of 280 with 3.5<br />

equivalents of NBS resulted 278 in 55% yield. Substitution of the bromide 278 with O-<br />

allyl followed by Claisen rearrangement gave expected 279. The yields for the last two<br />

steps were not reported.<br />

O C O 2 M e<br />

2 7 9<br />

M n ( O A c ) 3<br />

C u ( O A c ) 3<br />

H<br />

2 8 0<br />

O<br />

C O 2 M e<br />

( 3 ) M n O<br />

-( M n ( I I ) O<br />

C O 2 M e<br />

C O 2 M e<br />

2 8 1 2 8 2<br />

Scheme 2.46: Proposed mechanism for the Mn mediated cyclization<br />

A possible mechanism for the Mn mediated cyclization of 279 can be proposed as<br />

follows (Scheme 2.46). The Mn(III) reacts with the carbonyl oxygen to form Mn(III)-<br />

based enol ether intermediate 281, which undergoes an electron transfer with loss of<br />

109


Mn(II) to afford a stable keto radical. Then, the radical reacts with the electrons of the<br />

double bond to give a 6-endo cyclic radical product; Cu(III) is then added to oxidize this<br />

resultant radical product. 153<br />

2.6.3. Kraus’s addition elimination-addition approach<br />

Kraus and coworkers have come up with an alternative pathway to create the<br />

bicyclic core structure of PPAPs via a Michael addition–elimination reactions of cyclic -<br />

ketoester 283 and -sulfonate acrolein (284) derivative 285 (Scheme 2.47). 156<br />

M e<br />

M e<br />

O C O 2 M e<br />

2 8 3<br />

S O 2 P h<br />

O A c<br />

284<br />

O A c<br />

N a H<br />

( 71 %)<br />

O O C O C O 2 M e<br />

t B u t B u O K<br />

2 8 6<br />

S O 2 P h<br />

( 5 6 % )<br />

M e<br />

O O A c t<br />

C O 2 M e B u O K<br />

t<br />

S O 2 P h B u C O C l<br />

( 80 %)<br />

285<br />

S O 2 P h<br />

H O<br />

M e C O 2 M e<br />

O<br />

287<br />

Scheme 2.47: Kraus’s addition elimination-addition approach, part 1<br />

Michael addition-elimination of cyclic -keto ester 283 and gave 285 in 71%<br />

yield and then, acetate 285 was converted to pivalate 286 in 80% yield. Reaction of 286<br />

with t BuOK afforded 287 in 56% yield.<br />

110


M e<br />

O C O 2 M e<br />

2 8 8<br />

O<br />

O M e<br />

1 . t B u O K<br />

H O<br />

M e<br />

2 . 1 5 e q u i v . t B u O H<br />

6 e q u i v . N a , N H 3<br />

( 8 5 % )<br />

O H<br />

T I P S O<br />

1 . P C C , c e l i t e<br />

C O 2 M e C H M e<br />

2 C l 2 , 87 %<br />

2 . T I P S O T f , K H<br />

289<br />

O<br />

C O 2 M e<br />

2 9 0<br />

Scheme 2.48: Kraus’s addition elimination-addition approach, part 2<br />

Recently, Kraus and coworkers applied Michael addition–elimination to construct<br />

a bicyclic intermediate 290 (Scheme 2.48). 157 Reaction of keto ester 288 and methyl<br />

acrylate followed by Birch reduction and cyclization gave diol 289 in 85% yield. Then,<br />

the compound 289 was oxidized with PCC and the resulting diketone was silylated to<br />

give 290.<br />

2.6.4. Mehta’s Pd-mediated oxidative cyclization<br />

In 2004, Mehta and coworkers published the first enantiospecific approach<br />

towards PPAPs; they performed this feat by synthesizing the bicyclic framework 31 using<br />

Kende cyclization. 158,159 The stereochemistry at C(7) was established by starting the<br />

synthesis with -pinene.<br />

111


O<br />

L D A , T M S C l<br />

- p i n e n e 2 9 1<br />

O T M S<br />

P d ( O A c ) 2<br />

2 9 2<br />

C H 3 C N - D C M<br />

( 3 0 % t w o s t e p s )<br />

O<br />

2 9 3<br />

Scheme 2.49: Mehta’s Pd-mediated oxidative cyclization<br />

(−)--Pinene was converted to ketone 291 after several steps. Then the compound 291<br />

was transformed to the TMS enol ether 292. Pd(OAc) 2 -mediated Kende cyclization gave<br />

bicyclic intermediate 293 in 30% yield over 2 steps (Scheme 2.49). 158<br />

2.6.5. Mehta’s intramolecular enol lactonization, retro-aldol and re-aldol cyclization<br />

In recent years, Mehta and coworkers published another pathway to construct the<br />

bicyclic 36 by using intramolecular enol-lactonization followed by a retro-aldol–aldol<br />

strategy (Scheme 2.50). 160<br />

112


O<br />

2 9 4<br />

1 . L D A<br />

p r e n y l b r o m i d e<br />

( 6 9 % )<br />

2 . m e t h y l a c r y l a t e<br />

t B u O K<br />

( 7 4 % )<br />

C O 2 M e<br />

O<br />

K O H , M e O H<br />

6 0 o C ( 8 3 % )<br />

2 9 5 2 9 6<br />

O<br />

O<br />

D I B A L - H<br />

C H 2 C l 2<br />

( 6 2 % )<br />

O<br />

O H<br />

1 . P C C , C H 2 C l 2<br />

( 9 1 % )<br />

2 . L D A<br />

p r e n y l b r o m i d e<br />

( 7 0 % )<br />

O<br />

2 9 8<br />

O<br />

2 9 7<br />

Scheme 2.50: Mehta’s intramolecular enol lactonization<br />

LDA mediated regioselective prenylation of 294 gave prenylated ketone in 69%<br />

yield and the reaction of the resulting ketone with methyl acrylate gave keto ester 295 in<br />

74% yield. Hydrolysis of ester 295 under basic conditions followed by lactonization gave<br />

296 in 83% yield. Then, DIBAL-H assisted retro-aldol and aldol reactions of 296 gave<br />

expected bicyclo alcohol 35 in 62% yield. Oxidation of 297 with PCC and LDApromoted<br />

prenylation gave 298 (Scheme 2.50).<br />

2.6.6. Young’s intramolecular allene-nitrile oxide [3 + 2] cycloaddtion<br />

Young and coworkers published a unique synthetic route to construct the bicyclic<br />

core structure of 303 using intramolecular allene-nitrile oxide [3 + 2] cycloaddition<br />

(Scheme 2.51). 161<br />

113


M e<br />

M e<br />

O T M S<br />

2 9 9<br />

M e O N O 2<br />

M e O<br />

300<br />

M e<br />

T i C l 4<br />

( 44 %)<br />

M e<br />

M e<br />

M e<br />

O<br />

3 0 1<br />

N O 2<br />

O M e<br />

P h N C O<br />

E t 3 N<br />

( 4 0 % )<br />

N<br />

O<br />

H<br />

R a n e y N i , H 2 N O M e<br />

2<br />

M e<br />

M e O M e O H , 100 % M e<br />

M e<br />

O O<br />

M e<br />

M e<br />

M e<br />

M e<br />

302 303<br />

Scheme 2.51: Young’s intramolecular allene-nitrile oxide [3 + 2] cycloaddtion<br />

Lewis acid-catalyzed Mukaiyama aldol condensation of silyl enol ether 299 and<br />

300 gave methoxy diastereomers 301 in 44% yield. Then, 301 was allowed to react with<br />

phenyl isocyanate in refluxing benzene to give 302. Finally, reductive cleavage of 302<br />

gave 303 in quantitative yield.<br />

2.6.7. Grossman’s alkynylation–aldol approach<br />

Grossman and Ciochina, in 2003, published another approach towards the<br />

construction of the bicyclo[3.3.1]nonane ring core of PPAPs. 162 The main idea was to<br />

prepare the bicyclo ring by an intramolecular aldol reaction of a cis enal. Grossman<br />

explained that the cis enal creates better reaction moiety with an enol or enolate and<br />

better undergoes intramolecular aldol reactions than a regular aldehyde. Grossman and<br />

Ciochina attempted this new idea towards a synthesis of compound 39 (Scheme 2.52). 162<br />

114


M e O 2 C<br />

O<br />

3 0 4<br />

E t O<br />

E t O<br />

S n B u 3<br />

1 . P d ( O A c ) 4<br />

( 4 8 % )<br />

2 . H C O 2 H<br />

( 7 1 % )<br />

M e O 2 C<br />

C H O<br />

O<br />

3 0 5<br />

1 . C o 2 ( C O ) 8<br />

( 8 7 % )<br />

2 . E t 3 S i H<br />

T M S T M S<br />

( 94 %)<br />

E t 3 S i<br />

O<br />

M e O 2 C<br />

O<br />

1 . c a t . 6 N a q H C l<br />

( 7 2 % )<br />

2 . N M O / T P A P<br />

( 8 7 % )<br />

S i E t 3<br />

O<br />

O<br />

C O 2 M e<br />

3 0 6<br />

3 0 7<br />

Scheme 2.52: Grossman’s alkynylation–aldol approach<br />

Reaction of the diketone 304 with Pb(OAc) 4 followed by addition of alkynyltributyltin<br />

gave -alkynylated product in 48% yield. Then, acid-mediated deprotection of resulting<br />

product gave alynal 305 in 71% yield. The alynal 305 was then reacted with Co 2 (CO) 8 to<br />

give the Co 2 (CO) 6 complex in 87% yield, and syn hydrosilylation of the resulting<br />

complex gave (E)--silyl eneal 306 in 94% yield with complete regio- and<br />

stereoselectivity. Acid catalyzed cyclization of 306 gave two diastereomeric alcohols (1:1<br />

dr) in 72% yield, and oxidation of these alcohols with NMO and TPAP gave -silyl<br />

enone 307 in 87% yield.<br />

115


2.6.8. Nakada’s Lewis acid promoted regioselective ring-opening reaction of the<br />

cyclopropane approach<br />

In 2006, Nadaka and coworkers published another approach towards the<br />

construction of the bicyclic core structure of PPAPs. 163 The key reaction in this approach<br />

was the Lewis acid mediated, region selective ring-opening of tricyclic[4.4.0.0]dec-2-ene<br />

derivative 311 to grant the bicyclo[3.3.1]nonane core structure 312 (Scheme 2.53). 163,164<br />

M e O<br />

M e O<br />

3 0 8<br />

M e O<br />

M e O<br />

1 . N a C l O 2 , N a H 2 P O 4<br />

O T B D P S 2 . C D I<br />

( E t O 2 C C H 2 C O 2 ) 2 M g<br />

C H O<br />

O T B D P S<br />

3 1 1<br />

O<br />

C O 2 E t<br />

3 . T s N 3 , T E A<br />

( 6 4 % 3 s t e p s )<br />

Z n C l 2<br />

( 7 0 % t w o s t e p s )<br />

E t O 2 C<br />

M e O O T B D P S<br />

[ C u O T f ] 2 . C 6 H 6 ( 5 m o l %)<br />

O<br />

N 2<br />

M e O L i g a n d 310 ( 15 m o l %)<br />

C O 2 E t<br />

309<br />

O H<br />

O<br />

3 1 2<br />

O M e<br />

O T B D P S<br />

O<br />

N N<br />

310<br />

O<br />

Scheme 2.53: Nakada’s Lewis acid promoted regioselective ring-opening<br />

The aldehyde 308 was successfully synthesized from a commercially available<br />

source. Then, aldehyde 308 was oxidized to its carboxylic acid, which was converted to a<br />

-keto ester and thence to -diazo -keto ester 309 in 64% yield over three steps.<br />

Compound 309 was allowed to react with CuOTf (5 mol%) and ligand 310 to give the<br />

tricyclo[4.4.0.0]dec-2-ene 311. Without isolating the resulted tricyclic compound, a<br />

Lewis acid-promoted ring-opening reaction was carried out to give bicyclic intermediate<br />

312.<br />

116


2.6.9. Takagi’s acid catalyzed cyclization approach towards adamantane core of<br />

plukenetione type PPAPs<br />

For the first time, Takagi and coworkers published an acid-catalyzed cyclization<br />

approach towards the synthesis of the adamantane core 319 of the plukenetione type<br />

PPAPs (Scheme 2.54). 165<br />

C O 2 E t<br />

O A c<br />

H O<br />

O<br />

314<br />

O 1 . L i B H 4<br />

O E t<br />

1 . L D A<br />

O E t ( 100 %)<br />

92 %<br />

2 . M e L i ( 78 %)<br />

E t O 2 C<br />

H O<br />

2 . K 2 C O 3 ( 3 e q u i v )<br />

O E t<br />

3 . P d ( O H ) 2 / C<br />

T B A B ( 1 e q u i v )<br />

t O<br />

315 B u O O H<br />

( 55 %)<br />

316<br />

313<br />

C s 2 C O 3 , O 2<br />

( 58 %)<br />

O 1 . T M S C l<br />

O<br />

O E t i m i d a z o l e<br />

O E t<br />

C r O 3 , 3 , 5 - D M P<br />

( 85 % t w o s t e p s )<br />

H O<br />

T M S O<br />

2 . L T M P<br />

O<br />

O b e n z o y l c h l o r i d e<br />

O<br />

317 ( 88 %)<br />

318<br />

T f O H , C H 2 C l 2<br />

O<br />

O<br />

( 5 9 % )<br />

O<br />

3 1 9<br />

O<br />

Scheme 2.54: Takagi’s acid catalyzed cyclization approach towards adamantane<br />

core<br />

LDA-mediated successive Michael reaction of enone 313 with acrylate 314 gave the -<br />

alkylated product in 92% yield. Treatment of the resulted ketone with K 2 CO 3 and TBAB<br />

gave annulation product 315 in 55% yield. The carbonyl group of 315 was reduced with<br />

LiBH 4, and then, gem dimethyl groups were introduced with MeLi, and Pd-catalyzed<br />

117


allylic oxidation gave keto enol intermediate 316. The secondary alcohol group was<br />

oxidized, and the tertiary alcohol then protected with TMS group to prevent a hetero-<br />

Michael reaction. A benzoyl group was attached to the -position of the enone using<br />

LTMP and benzoyl chloride. Finally, acid-catalyzed cyclization gave 319 in 59% yield.<br />

Copyright © <strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage 2010<br />

118


Chapter 3. Our synthesis towards 7-epi-clusianone<br />

Many of the PPAPs have shown potentially useful bioactivity, such as anticancer,<br />

antibiotic and anti-HIV activity. For example hyperforin, a type A PPAP widely known<br />

for its anti-depression activity, is considered to be the main bioactive agent in Hypericum<br />

perforatum L (St. John‘s wort). 16,61,72 The type B PPAPs xanthochymol 17 and garcinol 14<br />

have shown antibiotic activity against methicillin-resistant S. aureus. 43 PPAPs are often<br />

found in bitter-tasting fruits that have been popular in folk medicine, and most PPAPs<br />

that have been tested for toxicity have shown low toxicity. 166 Apart from PPAPs‘<br />

interesting bioactivities, their structures are enriched with acyl group, prenyl groups,<br />

geranyl groups and many adjacent quaternary centers, and a bicyclo[3.3.1] chemical<br />

moiety with specific stereochemistry, making them challenging to synthesis. 24<br />

Though PPAPs are very promising targets for organic synthesis considering their<br />

intriguing biological activity, challenging structure and wide spread human consumption,<br />

only three PPAPs — (±)-garsubellin A, (±)-nemorosone and (±)-clusianone — have so<br />

far been made synthetically. 63,125-130 PPAPs have been known for decades, but the first<br />

synthetic effort was reported only in 1999 by Prof. Nicolaou. After a decade from the<br />

first synthetic effort, only three PPAPs have been synthesized by a total of seven<br />

publications from five research groups. All synthetic strategies have been focused on<br />

PPAPs that have a prenyl group at C(7) with exo stereochemistry. However, a large<br />

majority of type B and large minority of type A PPAPs have the C(7) prenyl group in the<br />

more sterically congested endo orientation. Our goal is to develop a stereocontrolled<br />

synthesis towards the C(7) endo type B PPAP, 7-epi-clusianone. To date, there are no<br />

synthetic efforts found in the literature towards 7-epi-clusianone. Like many PPAPs, 7-<br />

epi-clusianone has shown very interesting bioactivities such as anticancer and antibiotic<br />

properties. 73,91,113-115<br />

119


3.1. Initial retrosynthetic analysis<br />

O<br />

5<br />

O<br />

O<br />

a c y l a t i o n ,<br />

1 G r u b b s I I<br />

7<br />

O H<br />

P h<br />

O<br />

O<br />

i n t r a m o l e c u l a r<br />

a l d o l O<br />

O H<br />

O<br />

320 321 a<br />

C H O<br />

O<br />

3 2 1 b<br />

S t i l l - G e n n a r i<br />

M e O<br />

O<br />

O<br />

1 7 a l l y l a t i o n<br />

M e O c a r b o x y l a t i o n<br />

5<br />

O<br />

O<br />

O<br />

322 323 324<br />

O<br />

3 2 5<br />

O<br />

Scheme 3.1: Our initial retrosynthetic analysis<br />

Our initial retrosynthetic analysis of 7-epi-clusianone (101) (Scheme 3.1) began with the<br />

disconnection of the benzoyl group and replacement of the sensitive prenyl groups with<br />

more robust allyl group to give bicyclo[3.3.1]nonanetrione intermediate 320. The C(2)-O<br />

bond and C(4)-C(5) bonds were disconnected to give the cis enal intermediate 321. This<br />

compound might cyclize by an intramolecular aldol reaction (IA) from 321a, but would<br />

be expected to assume its thermodynamically more favorable conformer and<br />

diastereomer 321b. We believed that the 321a-321b equilibrium could be shifted towards<br />

321a during the IA reaction. We thought the cis enal of 321 could be made from the -<br />

allyl--ketoester intermediate 322. The -ketoester intermediate 323 could be obtained<br />

after disconnection of axial allylic group of intermediate 322. From a stereochemical<br />

point of view, it would be crucial to establish the cis relationship between the C(1) ester<br />

and C(7) allyl group of 322 to install the C(7) endo stereochemistry of our target.<br />

Intermediate 323 could be synthesized from tetrasubstituted cyclohexanone 324, which<br />

could be synthesized easily from commercially available 1,3-cyclohexanedione (325).<br />

120


3.2 Forward synthesis<br />

Our forward synthesis began from the commercially available, cheap 1,3-<br />

cyclohexanedione.<br />

3.2.1 Synthesis of 2,4-diallyl-3-methyl-2-cyclohexenone<br />

O<br />

K O H / C u<br />

O<br />

O H<br />

O<br />

O a l l y l b r o m i d e O 5 % p T s O H . 2 H 2 O O<br />

( 47 %)<br />

B e n z e n e , r e f l u x<br />

325 326 ( 75 %)<br />

327<br />

Scheme 3.2: Synthesis of 2,4-diallyl-3-methyl-2-cyclohexenone<br />

Allylation of 1,3-cyclohexanedione with KOH and allyl bromide gave -allyl-diketone<br />

326 in 47% yield. 167 The original paper claimed 79% yield for this reaction after<br />

crystallization. The role of Cu in the reaction is unclear, but yields are better in its<br />

presence. Diketone 326 was converted to its vinylogous ester 327 with isobutyl alcohol,<br />

and a catalytic amount of p-TsOH∙2H 2 O in benzene in 75% yield (Scheme 3.2). 151,168<br />

121


3.2.2 Allylation, methylation and acidification<br />

O<br />

O<br />

L D A<br />

B r<br />

O<br />

O<br />

M e L i<br />

1 N H C l<br />

( 8 9 % )<br />

3 2 7 3 2 8 3 2 9<br />

O<br />

Scheme 3.3: Allylation, methylation and acidification<br />

The allylation at the -position of intermediate 327 gave ´-diallylic<br />

vinylogous ester 328. 169 Without purification, the crude oily compound was subjected to<br />

methylation followed by acidification to give intermediate 2,4-diallyl-3-methyl-2-<br />

cyclohexenone 329 in 89% yield (Scheme 3.3). 151<br />

3.2.3 Alternate pathway towards 2,4-diallyl-3-methyl-2-cyclohexeone.<br />

We also devised another route to 11 that began with methyl acetoacetate.<br />

3.2.3.1 Allylation<br />

O<br />

O<br />

3 3 0<br />

O<br />

O O<br />

N a H / T H F<br />

N a H / B u L i<br />

O<br />

B r<br />

55 ° C<br />

B r 0 ° C<br />

( 73 - 81 %)<br />

331<br />

( 67 %)<br />

O<br />

3 3 2<br />

O<br />

O<br />

Scheme 3.4: Alternate pathway towards 2,4-diallyl-3-methyl-2-cyclohexeone<br />

Methyl -allylacetoacetate 331 was obtained from commercially available<br />

methylacetoacetate, NaH and allyl bromide in 73–81% yield. 170 The intermediate 331<br />

122


was transformed to -allylic intermediate 332 with the agency of NaH, BuLi and allyl<br />

bromide in 67% yield (Scheme 3.4). 171<br />

3.2.3.2 Michael addition, cyclization and decarboxylation<br />

O<br />

O<br />

O<br />

O<br />

P P h 3 , C H 3 C N<br />

O<br />

( 74 %)<br />

332 O<br />

333<br />

O<br />

O<br />

N a O M e<br />

M e O H<br />

O<br />

H O +<br />

O<br />

334<br />

O<br />

O<br />

O<br />

3 5<br />

L i I 2 H 2 O<br />

D M S O<br />

( f o r 2 s t e p s 8 7 % )<br />

O<br />

3 3 6<br />

Scheme 3.5: Michael addition, cyclization and decarboxylation<br />

The Michael addition of diallylic β-ketoester intermediate 332 to acrolein catalyzed<br />

by triphenylphosphine in acetonitrile gave β-ketoester aldehyde intermediate 333 in 74%<br />

yield. To close the ring, an aldol reaction was performed on intermediate 333 with<br />

sodium methoxide in methanol to give the β-ketoester 334 and carboxylic acid 335<br />

intermediates. The mixture of 334 and 335 was decarboxylated under Krapcho conditions<br />

to afford α,β-unsaturated ketone 336 in 87% yield over 2 steps (Scheme 3.5). 172<br />

123


O O H O<br />

M e L i / C e C l 3<br />

P C C<br />

T H F , 0 o C , 2 h<br />

S i l i c a g e l<br />

( 85 %)<br />

( 68 %)<br />

336 337 329<br />

Scheme 3.6: Methylation of cyclohexenone intermediate 336 using MeLi/CeCl 3<br />

Methylation of cyclohexenone intermediate 336 using MeLi/CeCl 3 afforded<br />

alcohol 337 in 85% yield, and PCC oxidation 173 gave cyclohexenone 329 in 68% yield<br />

(Scheme 3.6). 174<br />

3.2.4 Conjugate addition, trapping enolate with TMS group followed by desilylation<br />

O<br />

M e 2 C u L i<br />

O T M S<br />

T B A F<br />

O<br />

329 T M S C l<br />

E t 3 N<br />

D M P U<br />

( 84 %)<br />

338<br />

T H F<br />

( 80 %)<br />

( d r = 3 : 1 )<br />

3 2 4<br />

Scheme 3.7: Conjugate addition, trapping enole with TMS group followed by<br />

desilylation<br />

Conjugate addition of Me 2 CuLi to 2,4-diallyl-3-methyl-2-cyclohexenone 329<br />

followed by simultaneous trapping of the resulting enolate with TMSCl gave TMS enol<br />

ether 338 in 84% yield. 175 Direct conjugate addition without trapping the enolate resulted<br />

in low yields. The TMS group was then removed to get 2,4-diallyl-3,3-<br />

dimethylcyclohexanone 324 in 3:1 diastereomeric ratio in 80% yield (Scheme 3.7). 68<br />

124


3.2.5. Carbonylation and allylation<br />

O<br />

O<br />

O<br />

M e O O M e<br />

M e O<br />

N a H / c a t . K H<br />

O<br />

P d ( P h 3 ) 4<br />

O A c<br />

3 2 4<br />

B e n z e n e , r e f l u x<br />

3 2 3<br />

E t 3 N<br />

M e O H , 6 0 o C<br />

O<br />

M e O<br />

O<br />

+<br />

M e O<br />

O<br />

O<br />

( 4 6 % ) ( 3 2 % )<br />

3 2 2 a 3 2 2 b<br />

Scheme 3.8: Carbonylation and allylation<br />

The 2,4-diallyl-3,3-dimethylcyclohexanone 324 was converted to -keto ester 323 with<br />

dimethyl carbonate, cat. KH and NaH in benzene. 176 Mander‘s carboxylation with LDA<br />

and MeO 2 CCN failed in this system. The catalytic amount of KH was not necessary for<br />

the reaction to proceed, but it gave cleaner crude product. Without further purification,<br />

Pd-catalyzed allylation of 323 with allyl acetate and triethylamine in methanol gave<br />

diastereomeric allylic products 322a and 322b. The major diastereomer was 322a, an<br />

axial allylic product, as confirmed using NMR studies (Scheme 3.8).<br />

125


3.2.5.1. Structure and stereochemistry determination of 322a<br />

H<br />

O<br />

H<br />

H C H 3<br />

O<br />

2<br />

H<br />

4<br />

H<br />

H 3 C<br />

H<br />

H<br />

H<br />

6<br />

O M e<br />

H<br />

H<br />

Figure 3.1: Structure and stereochemistry determination of 322a using NOE<br />

The 1 H NMR chemical shifts of 322a and 322b were assigned by COSY<br />

experiments, and the stereochemistry of 322a was unambiguously determined by a<br />

NOESY experiment. In particular, the C(6) and C(4) H atoms and the H atoms of the<br />

C(2) allyl group all had strong NOE interactions, confirming that they were all axial.<br />

3.2.6. Reduction and oxidation<br />

M e O<br />

O<br />

O<br />

L i A l H 4<br />

E t 2 O<br />

H O<br />

O H<br />

D e s s - M a r t i n<br />

p e r i o d i n a n e<br />

C H 2 C l 2<br />

( 50 %)<br />

3 2 2 a 3 3 9 3 4 0<br />

H<br />

O<br />

O<br />

Scheme 3.9: Reduction and oxidation of 322a<br />

126


Keto ester 322a was reduced to its diol 339 with LAlH 4 in Et 2 O. 177 The crude product of<br />

339 was oxidized to keto aldehyde 340 with Dess–Martin periodinane in CH 2 Cl 2 in 50%<br />

yield (Scheme 3.9). 178<br />

3.2.7 Still–Gennari reaction, reduction and oxidation<br />

H<br />

O<br />

C F<br />

C F 3<br />

3<br />

O<br />

O<br />

O<br />

O O M e O M e<br />

P<br />

O<br />

341<br />

O O<br />

1 . L i A l H 4<br />

N a H M D S<br />

2 . D e s s - M a r t i n<br />

T H F<br />

p e r i o d i n a n e<br />

( 82 %)<br />

( 45 %)<br />

340 342<br />

( 15 : 1 d r )<br />

O<br />

H<br />

O<br />

+<br />

H<br />

O<br />

O<br />

3 2 1<br />

3 4 3<br />

Scheme 3.10: Still–Gennari reaction, reduction and oxidation<br />

The keto aldehyde 340 was converted to Z unsaturated ester 342 using highly<br />

stereoselective modified Horner–Emmons olefination with bis(trifluoroethyl)phosphonoacetate<br />

341 and NaHMDS in THF in 82% yield and 15.1 dr. 179 Without separation,<br />

LiAlH 4 reduction followed by Dess–Martin periodinane oxidation gave the key<br />

intermediate Z aldehyde 321 in 45% yield along with a small amount of 343 (Scheme<br />

3.10). 177,178<br />

127


3.2.8 Aldol reaction<br />

O<br />

H<br />

O<br />

?<br />

O<br />

O H<br />

3 2 1<br />

3 4 4<br />

Scheme 3.11: Aldol reaction<br />

We were anticipating the intramolecular aldol reaction of 321 to result in the<br />

bicyclo[3.3.1]nonane core structure 344 (Scheme 3.11).<br />

3.2.8.1 Aldol reaction under acidic conditions<br />

O<br />

H<br />

O<br />

H +<br />

H<br />

O<br />

O<br />

S o l v e n t<br />

3 2 1<br />

3 4 5<br />

Scheme 3.12: Aldol reaction under acidic conditions<br />

Unfortunately, all our attempts to carry out the aldol reaction in acidic medium<br />

resulted in the isomerization of 321 to the E aldehyde 345 (Scheme 3.12) (Table 1).<br />

128


Table 3.1: Acid and solvent used for aldol reaction<br />

Acid<br />

Solvent<br />

6 M HCl THF<br />

TFA CH 2 Cl 2<br />

THF<br />

Conc. H 2 SO 4<br />

Triflic acid<br />

THF<br />

THF<br />

We initially used HCl, TFA and conc. H 2 SO 4 for the reaction (Table 1). We<br />

hypothesized that, the acids‘ conjugate bases were capable of assisting the conversion of<br />

321 to 345 (Scheme 3.13).<br />

H +<br />

O<br />

H<br />

O<br />

A -<br />

H + A -<br />

S o l v e n t<br />

H<br />

O<br />

O<br />

A<br />

O H<br />

H<br />

O<br />

H<br />

O<br />

A<br />

H<br />

O<br />

Scheme 3.13: Proposed mechanism for cis-trans isomerization<br />

129


Therefore, we exposed 321 to triflic acid, whose conjugate base (CF 3 SO 3 - ) was<br />

nonnucloephilic, but the result was the same.<br />

3.2.8.2 Aldol reaction under basic conditions<br />

O<br />

H<br />

O<br />

B a s e<br />

O<br />

O<br />

H<br />

3 2 1 3 4 6<br />

Scheme 3.14: Aldol reaction under basic conditions<br />

Table 3.2: Bases and solvent used for aldol reaction<br />

Base<br />

NaH<br />

t-BuOK<br />

NaH/KOH<br />

LDA<br />

KOH<br />

Solvent<br />

Benzene<br />

THF<br />

Benzene<br />

THF<br />

MeOH<br />

130


Unfortunately, even in the various basic conditions (Table 2), we did not observe<br />

any signs of an aldol reaction. The main isolated product was the bicyclic unsaturated<br />

lactone 346 (Scheme 3.14), the product of a Tishchenko reaction.<br />

After analyzing the above data, it became very clear that the Z aldehyde 321 was<br />

strongly inhibited from enolizing under acidic or basic conditions, which was necessary<br />

for a successful aldol product.<br />

3.3 The role of 1,2-allylic strain<br />

H C H 3<br />

H C H 3<br />

H<br />

H H<br />

C H 3<br />

C H 3<br />

H 3 C C H 3<br />

H<br />

H<br />

H<br />

H 3 C<br />

C H 3<br />

C H 3<br />

H<br />

3 4 7 a<br />

3 4 7 b 3 4 7 c<br />

Scheme 3.15: The role of 1,2-allylic strain<br />

The 1,2-allylic strain (1,2-A strain) is defined as the steric interaction between the alkene<br />

moiety and the methyl group in compound 347. This interaction plays an important role<br />

in influencing the conformational equilibria of the alkenes. 180,181 For example, steric<br />

interactions between the geminal dimethyl groups and the C(sp 2 ) methyl group<br />

destabilize 347b compared to 347a and 347c (Scheme 3.15). 181<br />

131


C H O<br />

C H O<br />

O<br />

H O<br />

3 2 1 b<br />

3 2 1 c<br />

O<br />

H O<br />

O<br />

3 2 1 a<br />

O<br />

3 2 1 d<br />

Scheme 3.16: 1,2-allylic strain of 321<br />

We hypothesized that 1,2-A strain inhibited the enol and enolate formation in 321,<br />

as necessary for the aldol reaction (Scheme 3.16). The conformation 321d, the most<br />

important intermediate for intramolecular aldol product and the enolate form of 321a,<br />

experiences severe 1,2-A strain. This factor may raise the energy of the 321d sufficiently<br />

high that the aldol reaction cannot proceed at a reasonable rate<br />

132


3.4 Redesigning the synthesis<br />

The outcome of our initial route encouraged us to redesign the synthesis in a way to<br />

minimize the 1,2-A strain of the enolate intermediate for the aldol reaction. Considering<br />

these factors, we thought to disconnect the C(1)-C(2) bond of 2 instead of C(4)-C(5)<br />

(Scheme 18) to get the intermediate (Z)-keto aldehyde 27 (27a and 27b) for the<br />

intramolecular aldol reaction.<br />

O<br />

9<br />

5<br />

O<br />

O<br />

1<br />

2<br />

2 7<br />

O H<br />

P h<br />

7<br />

a c y l a t i o n ,<br />

G r u b b s I I<br />

O<br />

H O<br />

1<br />

2<br />

O<br />

3 2 0<br />

i n t r a m o l e c u l a r<br />

a l d o l<br />

O<br />

2<br />

1<br />

O<br />

O<br />

O<br />

C O 2 M e<br />

348 a C H O 348 b<br />

349<br />

O<br />

a l l y l a t i o n<br />

O<br />

O<br />

C O 2 M e<br />

350 351<br />

Scheme 3.17: Second retrosynthetic analysis<br />

3 2 5<br />

O<br />

3.4.1 New retrosynthetic analysis<br />

The C(4)-O bond and C(1)-C(2) (instead of C(4)-C(5)) bonds of 320 were<br />

disconnected to give cis enal intermediate 348. We thought that this compound might<br />

cyclize by an intramolecular aldol reaction (IA) from 348a, but we expected it to assume<br />

its thermodynamically more favorable conformer 348b. We believed that the 348a–348b<br />

equilibrium could be shifted towards 348a during the IA reaction. The enolate of 348


would not be expected to have significant 1,2-allylic strain. We thought the cis enal of<br />

348 could be made from -allyl -ketoester intermediate 349. The -ketoester<br />

intermediate 350 could be obtained after disconnection of the axial allylic group of<br />

intermediate 349. From a stereochemical point of view, it would be crucial to allylate 350<br />

trans to the C(7) allyl group in order to install the C(7) endo stereochemistry of our<br />

target. Intermediate 350 could be synthesized from disubstituted cyclohexenone 351,<br />

which could be synthesized easily from commercially available 1,3-cyclohexanedione<br />

(Scheme 3.17).<br />

3.4.2 Forward synthesis<br />

Our forward synthesis began with the synthesis of 4-allyl-3-methylcyclohexenone<br />

from the commercially available, inexpensive starting material 1,3-cyclohexanedione.<br />

3.4.2.1 Isobutyl protection, allylation, methylation and acidification<br />

O<br />

3 2 5<br />

O<br />

H 3 C<br />

H 3 C<br />

O H<br />

5 % p T s O H . 2 H 2 O<br />

B e n z e n e , r e f l u x<br />

( 9 5 % )<br />

O<br />

1 . L D A<br />

B r<br />

O<br />

2 . M e L i<br />

3 . 1 N H C l<br />

352<br />

( 90 %)<br />

H 3 C C H 3<br />

O<br />

3 5 1<br />

Scheme 3.18: Isobutyl protection, allylation, methylation and acidification<br />

The 1,3-cyclohexanedione was converted to its vinylogous ester 352 in 95%<br />

yield. Ketone 352 was allylated with LDA and allyl bromide. 146 Without purification, the<br />

crude oily material was subjected to methylation 151 followed by acidification to give 4-<br />

allyl-3-methyl-2-cyclohexenone 351 in 90% yield over 3 steps (Scheme 3.18).<br />

134


3.4.2.2 Conjugate addition and carbonylation<br />

1 . M e 2 C u L i<br />

E t 2 O , 0 o C<br />

O<br />

2 . C H 3 O C O C N O<br />

H M P A<br />

O O M e<br />

351 ( 71 %)<br />

350<br />

Scheme 3.19: Conjugate addition and carbonylation<br />

To the resulted enone 351, dimethylcuprate, HMPA, and methyl cyanoformate<br />

were added, and -keto ester intermediate 350 was obtained in 71% yield (Scheme<br />

3.19). 182 The reaction produced approximately equal amounts of O-acylation and C-<br />

acylation without the co-solvent HMPA. A common replacement for HMPA is DMPU,<br />

but the reaction gave lower yields with DMPU, and in higher scale we obtained<br />

substantial amounts of recovered by-products.<br />

3.4.2.3 Allylation and Claisen rearrangement<br />

O A c<br />

O<br />

O<br />

O M e<br />

350<br />

5 % P d ( P P h 3 ) 4<br />

E t 3 N , M e o H<br />

Scheme 3.20: Failed Pd-catalyzed allylation reaction<br />

The introduction of an axial allyl group to the -position of 350 was important to<br />

establish the C(7) endo stereochemistry of the target molecule. Unfortunately, the Pd-<br />

135


catalyzed allylation reaction failed, possibly due to steric hindrance around the reaction<br />

moiety (Scheme 3.20).<br />

O<br />

O<br />

O M e<br />

3 5 0<br />

N a H<br />

B r<br />

T H F , r e f l u x<br />

( 75 %)<br />

O<br />

O<br />

O M e<br />

353<br />

Scheme 3.21: O-allylation<br />

However, NaH and allyl bromide gave the O-allylated product 353 in 75% yield<br />

(Scheme 21), 183 and heating the allyl enol ether intermediate 353 at 150 C in toluene in a<br />

sealed tube gave two diastereomeric Claisen rearrangement products, 354a and 354b, in<br />

3:1 d.r (Scheme 3.22). 126<br />

O<br />

O<br />

O M e<br />

3 5 3<br />

T o l u e n e<br />

1 5 0 o C<br />

o v e r n i g h t<br />

( 1 0 0 % )<br />

( d r = 3 : 1 )<br />

O<br />

O<br />

O M e<br />

3 5 4 a<br />

+<br />

M e O<br />

O<br />

O<br />

3 5 4 b<br />

Scheme 3.22: Claisen rearrangement<br />

After carefully analyzing COSY and NOESY spectra of the two isomers, we found that<br />

the major product, 354a, had the desired trans relationship between the two allylic<br />

groups. In particular, one of the C(2) allylic H atoms had strong NOE interactions with<br />

136


the C(4) H and the C(3) methyl H atoms, which confirmed that C(2) allylic group was<br />

axial.<br />

C H 3<br />

H<br />

H<br />

H<br />

H<br />

4<br />

H 3 C<br />

H<br />

6<br />

H<br />

H<br />

2<br />

O<br />

C O 2 M e<br />

H<br />

H<br />

Figure 3.2: Steriochemistry determination of 354a using NOE<br />

137


3.4.2.3.1 Structure and stereochemistry determination of 354a<br />

3.4.2.3.2 Proposed model for the stereochemical products for the Claisen<br />

rearrangement<br />

O<br />

O<br />

O M e<br />

3 5 3<br />

O<br />

M e O 2 C<br />

T S 1<br />

C O 2 M e<br />

O<br />

T S 2<br />

O<br />

O<br />

M e O 2 C<br />

C O 2 M e<br />

T S 3<br />

T S 4<br />

O<br />

O O M e<br />

354 a<br />

( d r = 3 : 1 )<br />

M e O O<br />

O<br />

354 b<br />

Scheme 3.23: Proposed model for the stereochemical products for the Claisen<br />

rearrangement<br />

The stereoselectivity can be explained as above (Scheme 3.23). The most stable<br />

conformation of 353 is half-chair with the C(7) allyl group in the equatorial position. For<br />

the Claisen rearrangement, 353 can go though the TS1, TS2, TS3 and TS4 transition<br />

states to afford 354a or 354b (Scheme 24). In TS1, the Claisen rearrangement proceeds<br />

on the top face to avoid the steric repulsion from C(6) axial methyl group, where TS2<br />

experiences steric interactions between the C(6) methyl group and the incoming allyl<br />

group. As a result, TS1 has lower energy, resulting in the diastereomer 354a<br />

predominantly. TS3 and TS4 have higher energy transitions due to steric repulsion from<br />

the C(4) allyl group.<br />

138


3.4.2.4 Methyl enol ether protection, reduction and oxidation<br />

O<br />

O O M e<br />

( M e O ) 3 C H<br />

H 2 S O 4 , M e O H<br />

M e O<br />

O<br />

24 h , R T<br />

( 95 %)<br />

O M e<br />

3 5 4 a 3 5 5<br />

1 . L i A l H 4 / E t h e r<br />

2 . D M P / C H 2 C l 2<br />

M e O<br />

( 91 % f o r 2 s t e p s ) O<br />

H<br />

3 5 6<br />

Scheme 3.24: Methyl enol ether protection, reduction and oxidation<br />

The ketone of -keto ester intermediate 354a was protected with trimethyl<br />

orthoformate and a catalytic amount of concentrated sulfuric acid in methanol to give the<br />

enol ether intermediate 355 in 95% yield. 184 The aldehyde 356 was obtained in 91%<br />

yield after LiAlH 4 reduction followed by Dess–Martin periodinane oxidation (Scheme<br />

3.24). 177,178<br />

Our original plan was to convert the aldehyde 346 to its cis enal with the Still–<br />

Gennari reagent, which we used in the previous synthesis. 179 Unfortunately, the expected<br />

reaction failed, possibly due to the steric crowdedness of the reaction center. As a result,<br />

we decided to proceed with two sequential one-carbon homologations of the aldehyde.<br />

3.4.2.5 Alkynylation<br />

M e O<br />

O<br />

B u L i<br />

T M S C H N 2<br />

H 0 o C t o R T M e O<br />

356 ( 66 %)<br />

357<br />

Scheme 3.25: Alkynylation<br />

139


The aldehyde 356 was then converted to keto-protected terminal alkyne 357 with<br />

lithiated TMSCHN 2 in 66% yield. Methyl enol ether protection was crucial for this<br />

reaction. Other protecting groups such as a triethylsilyl group caused many equivalents<br />

(10 eq) of the reagents to be required, and the yields were variable (Scheme 3.25). 184,185<br />

3.4.2.6 O-Allylation and carbonylation<br />

M e O<br />

3 5 7<br />

a l l y l O H , T s O H<br />

B e n z e n e<br />

( 9 6 % )<br />

O<br />

3 5 8<br />

C O , P d C l 2<br />

C u C l 2 , N a O A c O<br />

M e O H ,<br />

( 72 %)<br />

M e O 2 C 359<br />

Scheme 3.26: O-Allylation and carbonylation<br />

The methyl enol ether 357 was transformed into its allyl enol ether 358 in 96%<br />

yield by refluxing in allyl alcohol and a catalytic pTsOH∙2H 2 O in benzene. 186 Onecarbon<br />

homologation of alkyne 358 was carried out using palladium-catalyzed<br />

carbonylation in methanol to afford alkynoate 359 in 72% yield (Scheme 3.26). 187<br />

3.4.2.7 Reduction, Claisen rearrangement and oxidation<br />

1 . L i A l H 4 , E t 2 O<br />

- 7 8 o C t o - 3 0 o C<br />

( 9 4 % )<br />

D M P / C H 2 C l 2<br />

O<br />

M e O 2 C<br />

3 5 9<br />

2 . P y r i d i n e , <br />

( 7 5 % )<br />

O<br />

H O H 2 C<br />

3 6 0<br />

( 7 8 % )<br />

O<br />

O H C<br />

3 6 1<br />

Scheme 3.27: Reduction, Claisen rearrangement and oxidation<br />

140


After LiAlH 4 reduction of 359, Claisen rearrangement in pyridine heated in a<br />

sealed tube gave the C-allylic ketone intermediate 360 in 75% yield. 186 Dess–Martin<br />

oxidation then gave alkynal 361 in 78% yield (Scheme 3.27).<br />

3.4.2.8 Syn reduction of alkynal and intramolecular aldol reaction<br />

The syn reduction of the alkynal moiety of intermediate 39 was very crucial for<br />

the intramolecular aldol reaction. The reduction had to be carried out in the presence of<br />

several allyl groups in a sterically crowded environment. Palladium-catalyzed<br />

hydrogenation reactions are very commonly used for syn reduction of alkynes, but they<br />

gave multiple products in the present system, 188-190 including reduction of double<br />

bonds. 190<br />

3.4.2.8.1 Complex with Co 2 (CO) 8 and hydrosilylation<br />

One method for syn reduction of complex systems like this was to heat the Co 2 (CO) 6<br />

complex of the sterically hindered alkyne with Et 3 SiH. 162<br />

O<br />

O H C<br />

1 . C o 2 ( C O ) 8<br />

C H 2 C l 2 , R T<br />

( 60 %)<br />

O<br />

H<br />

2 . E t 3 S i H , ( C l C H 2 ) 2<br />

T M S T M S E t 3 S i C H O<br />

361 60 o C , 1 h<br />

362<br />

( 58 %)<br />

Scheme 3.28: Complex with Co 2 (CO) 8 and hydrosilylation<br />

141


In the present case, alkynal 361 reacted with Co 2 (CO) 8 to give the Co 2 (CO) 6<br />

complex in 60% yield. The Co 2 (CO) 6 complex was treated with Et 3 SiH and<br />

Me 3 SiC≡CSiMe 3 in (CH 2 Cl) 2 to give (E)-α-silyl enal 362 in 58% yield with complete<br />

regio- and stereoselectivity (Scheme 3.28). However, the 1 H NMR spectrum of Co 2 (CO) 6<br />

complex appeared very broad, the yields were not consistent, and the reaction was very<br />

slow.<br />

O<br />

O<br />

a q . H C l / T H F 1 . D M P / C H 2 C l 2<br />

O<br />

S i E t 3<br />

H<br />

O H<br />

2 . T B A F / T H F<br />

E t 3 S i C H O<br />

( 25 % f o r 3 s t e p s )<br />

362 363<br />

3 6 4<br />

O<br />

Scheme 3.29: Intramolecular aldol product<br />

Nevertheless, sufficient amounts of enal 362 were obtained to subject it to acidic<br />

conditions to promote an intramolecular aldol (IA) reaction. The IA product,<br />

bicyclo[3.3.1]-nonane intermediate 363, was obtained as two diastereomers (1:1).<br />

Without purification, 363 was oxidized with Dess–Martin‘s periodinane, 178 and<br />

desilylation with TBAF gave the bicyclo[3.3.1]nonane target 364 in 25% yield over 3<br />

steps (Scheme 3.29). 191,192 An X-ray crystallographic study of 364 established its<br />

structure unambiguously.<br />

142


Figure 3.3: X-ray data structure of 364<br />

The successful preparation of the 7-endo-allylbicyclo[3.3.1]nonane skeleton<br />

shows the validity of our approach to synthesis 7-endo PPAPs and supports our<br />

hypothesis on the failure of our initial route.<br />

3.4.2.8.2 Hydrostannylation<br />

Even though this is a viable route to 364, the observed poor yields for the last few<br />

steps restricted the amount of material for further reactions towards the target molecule.<br />

Examples of hydrogenation of alkynals, apart from the H 2 and transition metal catalyst<br />

reactions, are very limited in the literature. But the Pd-catalyzed syn hydrostannylation of<br />

alkynoates is a well known reaction. 193,194 Even though there was no precedent for the<br />

hydrostannylation of alkynals, we decided to try to hydrostannylate our alkynal<br />

intermediate 361.<br />

143


O<br />

O H C<br />

3 6 1<br />

10 %<br />

P d ( P P h 3 ) 4 O<br />

H<br />

B u 3 S n H<br />

( 84 %) H<br />

C H O<br />

348<br />

Scheme 3.30: Hydrogenation<br />

The result was very surprising. Instead of hydrostannylation, we observed a<br />

highly stereoselective syn hydrogenation to give product 348 in 84% yield (dr = 90:10).<br />

If we increased the reaction temperature, larger amounts of the other isomer (trans/anti)<br />

were obtained. The mechanism of the above reaction is unclear at the moment (Scheme<br />

3.30).<br />

3.4.2.8.3 Addition of thiophenol to keto alkynal 39<br />

S H<br />

O<br />

O H C<br />

3 6 1<br />

c a t . N a O E t<br />

T H F<br />

O S H<br />

O H C<br />

365<br />

Scheme 3.31: Addition of thiophenol to keto alkynal 39<br />

In another potential approach to a cis-enal, addition of thiophenol to ynal 361<br />

gave enal 365 as a single diastereomer. Unfortunately, NOESY experiments showed that<br />

the isomer that we obtained was the (Z)-enal, 365, which was not a suitable substrate for<br />

the intramolecular aldol reaction (Scheme 3.31). In particular, the C(2) H atom of enal<br />

had strong NOE interaction with H atoms of C(4) allylic, C(5) methyl and aromatic ring,<br />

which confirmed that C(2) H atom and aldehyde H atom were trans to each other. We<br />

further confirmed the stereochemistry by the chemical shift of C(2) H atom (6.61<br />

ppm). 195,196<br />

144


3.4.2.8.4 Structure and stereochemistry determination of 365<br />

C H 3<br />

H<br />

H<br />

O<br />

S<br />

O<br />

6<br />

C H 3<br />

4<br />

H<br />

H<br />

H<br />

2<br />

H<br />

Figure 3.4: Structure and stereochemistry determination of 365<br />

3.4.2.8.5 Intramolecular aldol and oxidation reactions<br />

O<br />

H<br />

H C H O<br />

348<br />

1 . N a O E t<br />

E t O H<br />

2 . D e s s - M a r t i n<br />

p e r i o d i n a n e<br />

( 8 8 % )<br />

O<br />

3 6 4<br />

O<br />

Scheme 3.32: Intramolecular aldol and oxidation reactions<br />

The intramolecular aldol reaction of hydrostannylation product 348 under acidic<br />

conditions 162 yielded both the desired aldol product and the trans isomer of the<br />

intermediate 348. However, under basic conditions, the intramolecular aldol product was<br />

observed as a clean mixture of two diastereomeric products. 197 Without purification, the<br />

alcohol was oxidized with Dess–Martin periodinane to grant the bicyclo[3.3.1]nonane<br />

intermediate 364 in 78% yield for the last 2 steps (Scheme 3.32). 178 The syn reduction of<br />

145


the alkyne alkynal 361 with Bu 3 SnH, intramolecular aldol reaction, and oxidation gave<br />

higher yields than the previous pathway towards 364.<br />

3.4.3 Attempts to form the 2,4,9-triketone system<br />

O<br />

?<br />

O<br />

O H<br />

O<br />

O<br />

3 6 4 3 2 0<br />

Scheme 3.33: Attempts to form the 2,4,9-triketone system<br />

Our next goal was to install the hydroxyl group on the -position of the<br />

intermediate 364 to afford the intermediate 320. Previous model studies of our group 190<br />

and recently published results by Marazano and Delpech 198 had shown that many<br />

common tools such as epoxidation across the -unsaturated double bond followed by<br />

ring opening and oxidation failed to give the target product. In the dissertation of Dr.<br />

Ciochina, apart from the epoxidation, she attempted several pathways towards the<br />

formation of a 2,4,9-triketone intermediate, such as silylation, borylation, and other paths,<br />

but none of these routes were successful (Scheme 3.33). 190 Therefore it was urgent and<br />

necessary to develop new pathways towards the 2,4,9-triketone intermediate 320.<br />

3.4.3.1. Curtius rearrangement approach<br />

3.4.3.1.1. Synthetic plan 1<br />

Our plan to prepare the 2,4,9-triketone intermediate is shown in Scheme 3.34. We<br />

thought we would introduce the methyl group or a MOM-protected hydroxymethyl group<br />

in a 1,2-addition to the C(2) ketone from the less hindered side. Then allylic oxidation<br />

with rearrangement, deprotection and oxidation might gave the keto acid which might<br />

146


undergo Curtius rearrangement to give the -amino enone. Acidic workup would then<br />

give the target intermediate.<br />

O<br />

O<br />

1 , 2 a d d i t i o n<br />

O<br />

R<br />

O H<br />

P C C<br />

O<br />

O<br />

R<br />

o x i d a t i o n<br />

O<br />

O<br />

C u r t i u s<br />

r e a r r a n g e m e n t<br />

O<br />

O<br />

C O O H<br />

O H<br />

Scheme 3.34: Curtius rearrangement approach, plan 1<br />

3.4.3.1.2. 1,2-addition of Bu 3 SnCH 2 OMOM and allylic oxidation<br />

O<br />

3 6 4<br />

O<br />

B u 3 S n<br />

O M O M<br />

366<br />

B u L i<br />

( 6 2 % )<br />

O<br />

3 6 7<br />

O M O M<br />

O H<br />

P C C<br />

S . M r e c o v e r e d<br />

C r O 3 , H 2 S O 4 O<br />

A c e t o n e<br />

O<br />

C r O 3 , 3 , 5 - d i m e t h y l p y r a z o l e<br />

3 6 4<br />

C H 2 C l 2<br />

Scheme 3.35: 1,2-addition of Bu 3 SnCH 2 OMOM and allylic oxidation<br />

The 1,2-addition product intermediate 367 was obtained in 62% yield after the<br />

reaction of intermediate 364 with 366 and BuLi. 199 However, allylic oxidation of 367<br />

with PCC gave only starting material, whereas Jones oxidation 200 and CrO 3 oxidation in<br />

the presence of 3,5-dimethylpyrazole gave back diketone 364 (Scheme 3.35).<br />

147


H +<br />

O O O<br />

H +<br />

H<br />

O O +<br />

O<br />

O<br />

O<br />

H<br />

O<br />

C r<br />

O<br />

O<br />

O H<br />

367<br />

O H<br />

O<br />

H<br />

O<br />

H O<br />

O O<br />

C r<br />

O H<br />

O<br />

O<br />

3 6 4<br />

O<br />

Scheme 3.36: Proposed mechanism of oxidative cleavage<br />

We hypothesized that CrO 3 was capable of assisting the conversion of 367 to<br />

diketone 364 via the mechanism shown (Scheme 3.36).<br />

3.4.3.1.3. 1,2-addition of MeLi and allylic oxidation<br />

O<br />

M e L i<br />

O<br />

O T H F<br />

O H<br />

364 ( 75 %)<br />

368<br />

P C C , s i l i c a<br />

C H 2 C l 2<br />

C r O 3 , H 2 S O 4<br />

O<br />

O<br />

+ + S M<br />

O<br />

369 364<br />

Scheme 3.37: 1,2 addition of MeLi and allylic oxidation<br />

The diketone 364 was transformed to alcohol 368 via 1,2-addition of MeLi in<br />

THF in 75% yield. 201 Unfortunately, allylic oxidation of 368 failed with PCC. We<br />

observed only the 1,2-eliminated product 369 and starting diketone 364 (Scheme 3.37).<br />

148


3.4.3.1.4. Synthetic plan 2<br />

O<br />

1 . M e 2 C u L i<br />

O<br />

o x i d a t i o n<br />

O<br />

2 . d e s a t u r a t i o n<br />

O<br />

3 6 4<br />

O<br />

C O 2 H<br />

O<br />

1 .<br />

O<br />

( P h O ) 2 P<br />

N 3<br />

O<br />

( C u r t i u s r e a r r a n g e m e n t )<br />

2 . a q . H C l<br />

O<br />

1 . G r u b b s I I<br />

M e 2 C = C H M e<br />

O<br />

O H<br />

2 . E t 3 N<br />

320 O<br />

P h C N<br />

99<br />

O<br />

O H<br />

O<br />

P h<br />

Scheme 3.38: Curtius rearrangement approach, plan 2<br />

Since our previous reaction plan was unsuccessful, we devised another synthetic<br />

plan to prepare the 2,4,9-triketone. We thought to introduce a methyl group by 1,4-<br />

addition to the enone and reinstall the double bond to give -methylated enone. Then,<br />

oxidation of the -methyl group to give a carboxylic acid might be followed by Curtius<br />

rearrangement and acidic workup to achieve the target intermediate (Scheme 3.38)<br />

3.4.3.1.5. Me 2 CuLi addition to bicyclo enone 364<br />

O<br />

O<br />

O<br />

O R<br />

3 6 4<br />

3 6 8 : R = H<br />

3 7 0 : R = T M S<br />

Scheme 3.39: Me 2 CuLi addition to bicyclo enone 364<br />

149


Table 3.3: Reagents and conditions of Me 2 CuLi addition<br />

Reagent/Solvent Temperature Product<br />

Me 2 CuLi/Et 2 O<br />

0 o C 368<br />

(CuI/MeLi)<br />

−15 o C 368<br />

−40 o C 368<br />

−78 o C 368<br />

Me 2 CuLi/ TMSCl/ Et 2 O −78 o C 370<br />

(CuI/MeLi)<br />

Me 2 CuLi/ TMSCl/Et 2 O −78 o C- −40 o C 370<br />

(CuCN/MeLi)<br />

Me 2 CuLi/ Et 2 O<br />

(CuBr.Me 2 S/MeLi)<br />

−78 o C- −40 o C 368<br />

Unfortunately, all attempts at 1,4-addition to 364 gave the unexpected 1,2-adduct<br />

370. We hypothesized that C(4) was too hindered, and the boat conformation of 364<br />

made C(4) even more hindered to methylate (Scheme 3.39) (Table 3).<br />

150


Figure 3.2: X-ray structure of 1,2-adduct 368<br />

3.6. Experimental Section<br />

For all the compounds reported, the melting points were taken on an Electrothermal 910<br />

and the IR data were collected on a Nicolet Magna-IR 560 spectrometer. The 400 MHz<br />

1 H NMR and 100 MHz 13 C NMR data were collected on a Varian VXR-400S. The 50<br />

MHz 13 C NMR data were collected on a Varian Gemini 200.<br />

O<br />

O<br />

O<br />

323<br />

151


Methyl 3,5-diallyl-4,4-dimethyl-2-oxocyclohexanecarboxylate (323):<br />

A mixture of NaH (0.50 g, 12.5 mmol), dimethyl carbonate (4.24 mL, 50.0 mmol) and<br />

2,4-diallyl-3,3-dimethyl-cyclohexanone (1.03 g, 5.00 mmol) in dry benzene (24.0 mL)<br />

was refluxed for 1 hour under N 2. Then, a catalytic amount of KH (10.0 mg) was added.<br />

The resulting mixture was further refluxed overnight at 80-83 C. The cooled reaction<br />

mixture was acidified with acetic acid (2.10 mL) and partitioned with a mixture of ether<br />

and water. The organic layer was washed with water and brine and dried over MgSO 4 .<br />

Evaporation of the solvent left a colorless oil which was used for the next reaction step<br />

without further purification. 1 H NMR (400 MHz, CDCl 3 ): 12.2 (s, 1H), 5.54 (m, 2H),<br />

5.10 (m, 4H), 3.3 (s, 3H), 2.79 (dd, J d = 14.10 Hz, J d = 6.53 Hz, 1H), 2.52 (m, 1H), 2.41<br />

(dd, J d = 14.79 Hz J d = 10.32 Hz, 1H), 2.26 (m, 1H), 2.0-1.7 (m, 3H), 1.1 (m, 1H), 1.00<br />

(s, 3H), 0.8 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): 195.1, 158.6, 124.1, 123.7, 120.1,<br />

105.8, 103.5, 102.2, 42.7, 39.2, 29.6, 28.3, 24.4, 24.2, 20.4, 18.0, 14.6, 10.0, 9.5. Calcd<br />

for C 16 H 24 O 3 .<br />

O<br />

O<br />

O<br />

322a<br />

Methyl (1R * ,3S) 1,3,5-triallyl-4,4-dimethyl-2-oxocyclohexanecarboxylate (322a):<br />

A solution of crude keto ester (1.52 g, 5.00 mmol), allyl acetate (0.60 mL, 5.50 mmol),<br />

triethyl amine (0.50 mL, 5.50 mmol) and Pd(PPh 3 ) 4 (5 mol%, 0.28 g, 0.25 mmol) in 10<br />

mL of methanol was refluxed under nitrogen atmosphere overnight. The solution was<br />

evaporated to dryness under a vacuum, the residue was dissolved in ether and the solution<br />

was filtered through a short silica column. Solvents were evaporated, and the resulting<br />

152


yellow colored crude product was then chromatographed with 10% EtOAc and petroleum<br />

ether. The major diastereomer 322a (0.69 g, 2.30 mmol, 46%) was isolated. 1 H NMR<br />

(400 MHz, C 6 D 6 ): 5.83 (m, 2H), 5.48(m, 1H), 5.01 (m, 6H), 3.42 (s, 3H), 2.7 (dd, J d =<br />

14.0 Hz J d = 7 Hz, 2H), 2.48 (dd, dd, J d = 7.3 Hz J d = 3.5 Hz, 1H), 2.29 (dd, dd, J d = 2.4<br />

Hz J d = 9.7 Hz, 1H), 2.20 (t, J = 13.5 Hz, 1H), 2.16 (dddd, J d = 10.5 Hz J d = 4.1 Hz J d =<br />

1.5 Hz J d = 1.8 Hz, 1H), 2.05 (dd, J d = 14.3 Hz J d = 3.3 Hz, 1H), 1.9 (dddd, J d = 14.0 Hz<br />

J d = 7.7 Hz J d = 1.1 Hz J d = 1.1 Hz, 1H), 1.52 (m, 2H), 0.8 (s, 3H), 0.3 (s, 3H). Calcd for<br />

C 19 H 28 O 3 .<br />

2D NMR data for compound 322a<br />

153


O<br />

H<br />

O<br />

340<br />

(1R * ,3R)-1,3,5-triallyl-4,4-dimethyl-2-oxocyclohexanecarboxaldehyde (340):<br />

The keto ester 322a (0.14 g, 0.46 mmol) was dissolved in 10 mL of dry ether and cooled<br />

to 0 C. Then lithium aluminum hydride (0.05 g, 1.40 mmol) was added and slowly<br />

warmed to room temperature. The reaction mixture was stirred for 2.5 hours and again<br />

cooled to 0 C, and then the reaction mixture was quenched with 0.05 mL of water, 0.05<br />

mL of 15% NaOH and 0.15 mL of water. White precipitate was filtered and the filtrate<br />

was collected in a round-bottom flask. The ether was evaporated and the crude product<br />

used to carry out the next reaction.<br />

The crude alcohol was dissolved in 3.8 mL of CH 2 Cl 2 at room temperature. In a<br />

separate round-bottom flask, Dess–Martin periodinane (0.54 g, 1.3 mmol) was dissolved<br />

154


in 1.5 mL of CH 2 Cl 2 and added slowly to the reaction mixture. This was then stirred 4 h<br />

at room temperature and after the reaction was complete, 1.3 mL of 1M NaOH was added<br />

and the organic component was extracted with ether. The ether layer was then washed<br />

with water and brine and dried with anhydrous Na 2 SO 4 . The organic solvents were<br />

evaporated and the remaining crude oil was chromatographed with 5% ethyl acetate and<br />

petroleum ether to give 0.064 g (50%, 0.232 mmol) of 340. 1 H NMR (400 MHz, CDCl 3 ):<br />

9.48 (s, 1H), 5.57 (m, 1H), 5.52 (m, 2H), 5.05 (m, 6H), 2.74 (m, 1H), 2.44 (m, 2H),<br />

2.23 (m, 2H), 1.75 (m, 1H), 1.60 (m, 3H), 1.42 (m, 1H), 0.85 (s, 3H), 0.38 (s, 3H). Calcd<br />

for C 18 H 26 O 2 .<br />

O<br />

O<br />

O<br />

342<br />

Methyl (Z)-3- ((1R * ,3R)-1,3,5-triallyl-4,4-dimethyl-2-oxocyclohexyl)acrylate (342):<br />

A solution of bis(2,2,2-trifluoroethyl) (methoxycarbonylmethyl)phosphonate (0.3 g, 1.0<br />

mmol) in 20 mL of dry THF was cooled to –78 C under nitrogen and treated with<br />

NaHMDS (0.5 mL, 2.0 M in THF, 1.0 mmol). The keto aldehyde 340 (0.27 g, 1.0 mmol)<br />

was then added and the resulting mixture was stirred for 1 h at –78 C. TLC was taken<br />

and the reaction was quenched with saturated NH 4 Cl. The products were extracted into<br />

ether ( 3 mL). The ether layer was then washed with water and brine and dried with<br />

anhydrous Na 2 SO 4 . The organic solvents were evaporated and the remaining crude oil<br />

was chromatographed with 5% ethyl acetate and petroleum ether to give 0.27 g (0.82<br />

mmol, 82%) of 342. 1 H NMR (400 MHz, CDCl 3 ): 6.60 (d, 13.07 Hz, 1H), 5.91 (d,<br />

13.07 Hz, 1H), 5.70 (m, 2H), 5.41 (m, 1H), 4.02 (m, 6H), 3.68 (s, 3H), 2.95 (m, 2H), 2.61<br />

(m, 1H), 2.58 (m, 2H), 2.41 (m, 2H), 2.10 (m, 1H), 1.95 (m, 1H), 2.64 (m, 1H), 1.14 (s,<br />

3H), 0,63 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): 210.0, 166.7¸147.4, 138.6, 137.8,<br />

155


133.1, 121.1, 118.4, 116.4, 115.3, 56.8, 54.2, 51.2, 43.8, 42.4, 40.7, 38.0, 34.7, 28.2, 27.2,<br />

15.2. Calcd for C 21 H 30 O 3 .<br />

O<br />

O<br />

H<br />

321<br />

(Z)-3-((1R * ,3R)-1,3,5-triallyl-4,4-dimethyl-2-oxocyclohexyl)acrylaldehyde (321):<br />

The enester 342 (0.14 g, 1.00 mmol) was dissolved in 20 mL of dry ether and cooled to 0<br />

C. Lithium aluminum hydride (0.11 g, 2.80 mmol) was added and slowly warmed to<br />

room temperature. The reaction mixture was stirred for 4 hours and again cooled to 0 C,<br />

and then the reaction mixture was quenched with 0.1 mL of water, 0.1 mL of 15% NaOH<br />

and 0.3 mL of water. White precipitate was filtered and the filtrate was collected into a<br />

round-bottom flask. The ether was evaporated and the crude products used to carry out<br />

the next reaction.<br />

The crude alcohol was dissolved in 8 mL of CH 2 Cl 2 at room temperature. In a<br />

separate round-bottom flask, Dess–Martin periodinane (1.08 g, 2.60 mmol) was dissolved<br />

in 3 mL of CH 2 Cl 2 and added slowly to the reaction mixture. This was then stirred 4h at<br />

room temperature and after the reaction was completed, 2.6 mL of 1 M NaOH was added<br />

and the organic component was extracted with ether. The ether layer was then washed<br />

with water and brine and dried with anhydrous Na 2 SO 4 . The organic solvents were<br />

evaporated and the remaining crude oil was chromatographed with 5% ethyl acetate and<br />

petroleum ether to give 0.15 g (0.50 mmol, 50%) of 2. 1 H NMR (400 MHz, CDCl 3 ):<br />

9.53 (d, 7.91 Hz, 1H), 6.52 (d, 12.73 Hz, 1H), 5.99 (dd, J d = 12.73 Hz, J d = 8.26 Hz,<br />

1H), 5.71 (m, 2H), 5.43 (m, 1H), 5.0 ( m, 6H), 2.86 (dd, J d = 14.1, J d = 6.88 Hz, 1H), 2.58<br />

(m, 3H), 2.41 (ddd, J d = 16.51 Hz, J d = 5.16 Hz, J d = 2.4 Hz, 1H), 2.31 (dd, J d = 14.1 Hz,<br />

156


J d = 3.78 Hz, 1H), 2.23 (ddd, J d = 13.07 Hz, J d = 7.23 Hz, J d = 1.38 Hz, 1H), 1,94 (m,<br />

1H), 1.58 (m, 2H), 1.1 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): 209.9, 192.0, 150.1,<br />

138.0, 137.3, 131.64, 131.1, 120.0, 117.0, 115.9, 57.3, 55.3, 43.8, 43.6, 42.7, 41.8, 34.6,<br />

28.0, 27.0, 15.4. Calcd for C 20 H 28 O 2 .<br />

O<br />

O<br />

346<br />

(2Z,4aR * ,6R,9S)-4a,6,8-Triallyl-7,7-dimethyl-4a,5,6,7,8,8a-hexahydro-2H-chromen-<br />

2-one (346):<br />

The enal 342 (0.03 g, 0.10 mmol) was dissolved in THF (0.50 mL) and t BuOK was added<br />

slowly at the room temperature. Then the mixture was stirred for 3 h and TLC was taken.<br />

The reaction was quenched with water and extracted with ether (5 mL). The ether layer<br />

was then washed with water and brine and dried with anhydrous Na 2 SO 4 . The organic<br />

solvents were evaporated and the remaining crude oil was chromatographed with 5%<br />

ethyl acetate and petroleum ether. 1 H NMR (400 MHz, CDCl 3 ): 6.63 (d, 9.63 Hz, 1H),<br />

6.0 (m, 1H), 5.9 (d, 9.28 Hz, 1H), 5.56 (m, 2H), 5.0 (m, 6H), 4.0 (d, 12.04 Hz, 1H), 2.44<br />

(dd, 8.26 Hz, 1H), 2.30 (m, 1H), 2.20 (m, 4H), 1.65 ((ddd, J d = 10.04 Hz, J d = 5.16 Hz, J d<br />

= 4.470Hz, 1H), 1.55 (m, 1H), 1.42 (m, 1H), 1.25 (s,3H), 0.66 (s, 3H). 13 C NMR (400<br />

MHz,CDCl 3 ):<br />

<br />

Calcd for C 20 H 28 O 2 .<br />

157


O<br />

O<br />

O<br />

350<br />

Methyl 5-allyl-6,6-dimethyl-2-oxocyclohexanecarboxylate (350):<br />

To a stirred suspension of copper(I) iodide (1.90 g, 10.0 mmol ) in dry diethyl ether (41.5<br />

mL) at –5 C, MeLi (1.6 M in diethyl ether, 12.5 mL, 20.0 mmol) was added under<br />

nitrogen atmosphere. The mixture was stirred at the same temperature (–5 C) for 1 h,<br />

and 4-allyl-3-methylcyclohexenone (0.75 g, 5.0 mmol) in 3.6 mL of dry diethyl ether<br />

was added very slowly. The reaction mixture was stirred for 1 h further at 0 C. HMPA (<br />

6 mL, 36 mmol) was then added dropwise under vigorous stirring. The mixture was<br />

cooled to –78 C, and methyl cyanoformate (2.4 mL, 24 mmol) and diethyl ether (6 mL)<br />

were added slowly. The dry ice bath was removed, and the mixture was allowed to warm<br />

to room temperature. After stirring 1 h at room temperature saturated aqueous NH 4 Cl/<br />

NH 4 OH solution was added and the organic phase was extracted multiple times with<br />

ether. The organic layers were combined, washed with brine and dried with anhydrous<br />

NaSO 4 , and the solvent was evaporated. The resulting yellow crude product was then<br />

chromatographed with 10% EtOAc and petroleum ether and 1.59 g (71%, 7.1 mmol) of a<br />

mixture of diastereomers (350) was isolated. 1 H NMR (400 MHz, CDCl 3 ): 11.92 (s,<br />

1H), 5.79 (m, 1H), 5.0 (m, 2H), 3.7 (s+m, 3H), 3.1 (s, 1H), 2.82 (m, 1H), 2.38 (m, 2H),<br />

2.2 (m, 1H), 2.05 (m, 1H), 1.70 (m, 1H), 1.4 (m, 1H), 1.05 (s+s, 3H), 0.83 (s+s, 3H).<br />

Calcd for C 13 H 20 O 3 .<br />

158


O<br />

O<br />

O<br />

353<br />

Methyl 5-allyl-2-allyloxy-6,6-dimethyl-1-cyclohexenecarboxylate (353):<br />

NaH (60% in oil, 0.53 g, 13.1 mmol) was washed with petroleum ether (10.0 mL, 3<br />

times) in a 100 mL round-bottom flask and THF (26 mL) was added. The suspension was<br />

cooled to 0 C, and methyl 3-allyl-2,2-dimethyl-6-oxocyclohexanecarboxylate (350)<br />

(2.54 g, 11.4 mmol) in THF (26 mmol) was added dropwise over 5 min. The ice bath was<br />

removed and the reaction mixture was allowed to warm to room temperature. The<br />

reaction was stirred at room temperature for 1 h and allyl bromide (1.15 mL, 13.1 mmol)<br />

dissolved in THF (1.40 mL) was added dropwise. After the addition, the reaction mixture<br />

was stirred at 60 C for 36 h. TLC was taken, and the reaction mixture was then cooled in<br />

an ice bath with water (10 mL) added dropwise. The organic components were extracted<br />

with ether (20 mL, 3 times) and the organic layers were combined, washed with water<br />

and brine, dried with anhydrous NaSO 4 and filtered. The filtrate was evaporated under<br />

reduced pressure. The crude oil was chromatographed with 10% ethyl acetate and<br />

petroleum ether to give 2.25 g (75%, 8.55 mmol) of 353. 1 H NMR (400 MHz, CDCl 3 ):<br />

5.85 (m, 1H), 5.73 (m, 1H), 5.26 ( d, 17.12 Hz, 1H), 5.13 ( d, 10.79 Hz, 1H), 5.0 (m,<br />

2H), 4.23 (s, 2H), 3.71 (s, 3H), 2.3 ( d, 13 Hz, 1H), 2.14 (m, 1H), 1.8 (m, 1H), 1.68 (dd,<br />

J d = 23.08 Hz J d = 10.05 Hz, 1H), 1.4 (m, 1H), 1.28 (m,1H), 1.07 (s, 3H), 0.8 (s, 3H). 13 C<br />

NMR (400 MHz, CDCl 3 ): 170.2, 152.2, 138.3, 121.6, 116.7, 116.2, 68.6, 51.5, 43.4,<br />

36.1, 34.0, 27.3, 24.1, 22.6, 22.5. Calcd for C 16 H 24 O 3 .<br />

159


O<br />

O<br />

O<br />

354a<br />

Methyl (4R*,6S)-1,3-diallyl-2,2-dimethyl-6-oxocyclohexanecarboxylate: (354a)<br />

Methyl 5-allyl-2-(allyloxy)-6,6-dimethyl-1-cyclohexenecarboxylate (353) (2.18 g, 8.27<br />

mmol) and dry toluene (26 mL) were heated at 150 C for 8 h in a sealed (pressure) tube.<br />

TLC was taken, toluene was removed and crude oil was chromatographed with 10% ethyl<br />

acetate and petroleum ether to give 2.18 g (100%, 8.27 mmol) of 354a in 3:1<br />

diastereomeric ratio. 1 H NMR (400 MHz, CDCl 3 ): 5.70 (m, 1H), 5.60 (m, 1H), 5.01<br />

(m, 4H), 3.70 (s, 3H), 2.72 (m, 1H), 2.55 (m, 2H), 2.37 (ddd, J d = 12.86 Hz, J d = 5.55 Hz,<br />

J d = 1.76 Hz, 1H), 2.22 (m, 1H), 1.94 (m, 1H), 1.81 (m, 2H), 1.58 (m, 1H), 1.05 (s, 3H),<br />

0.9 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): 207.6, 171.1, 137.6, 134.0, 117.5, 116.5,<br />

68.7, 51.5, 42.6, 42.5, 38.0, 35.3, 33.8, 25.2, 24.6, 21.5 IR (neat): 3076, 2976, 2948,<br />

1745, 1713, 1639, 1434, 1225 cm -1 . Calcd for C 16 H 24 O 3 .<br />

160


2D NMR data for 354a<br />

161


162


O<br />

O<br />

O<br />

355<br />

Methyl(4R*,6R)-1,5-diallyl-2-methoxy-6,6-dimethyl-2-cyclohexenecarboxylate (355):<br />

Methyl 1,3-diallyl-2,2-dimethyl-6-oxocyclohexanecarboxylate (354a) (0.52 g, 2.00<br />

mmol) and dry trimethyl orthoformate (10 mL) in methanol (2 mL) were added to a 100<br />

mL round-bottom flask at room temperature. Then, a few drops of conc. H 2 SO 4 were<br />

added and stirred at room temperature for 48 h. After completion of the reaction, the<br />

solvents were completely removed. Saturated NaHCO 3 was added, and the organic<br />

components were extracted with ether. The organic phase was washed with water and<br />

brine and dried using anhydrous Na 2 SO 4 . The organic solvents were evaporated, and the<br />

remaining crude oil was chromatographed with 5% ethyl acetate and petroleum ether to<br />

give 0.52 g (1.90 mmol, 95%,) of 355. 1 H NMR (400 MHz, CDCl 3 ): 5.73 (m, 2H), 4.89<br />

(m, 2H), 4.86 (d, 10.5 Hz, 1H), 4.47 (d, 4.84 Hz, 1H), 3.62 (s, 3H), 3.41 (s, 3H), 2.78 (m,<br />

1H), 2.51 (dd, J d = 9.3 Hz, J d = 14.52, 1H), 2.26 (m, 1H), 2.12 (dt, J d = 16.9, J t = 5.58,<br />

1H), 1.8-1.6 (m, 3H), 1.00 (s, 3H), 0.69 (s, 3H). 13 C NMR (400 MHz, CDCl3): 174.0,<br />

154.4, 138.3, 137.1, 115.8, 115.0, 96.1, 59.6, 54.3, 51.4, 39.2, 38.8, 38.3, 34.3, 26.8, 22.5,<br />

20.1. Calcd for C 17 H 26 O 3 .<br />

163


O<br />

O H<br />

371<br />

(4R*,6S)-1-Methoxy- 6-hydroxymethyl-4,4-diallyl-5,5-dimethylcyclohexene (371):<br />

The ester (355) (3.50 g, 12.6 mmol) was dissolved in 126 mL of dry ether and the<br />

mixture was cooled in an ice bath. Then LiAlH 4 (0.76 g, 20.1 mmol) was added very<br />

slowly. After addition was completed, the ice bath was removed and the mixture was<br />

stirred 4 h at room temperature. TLC was taken and the reaction mixture was again<br />

cooled to 0 C. Then 0.75 mL of water and 0.75 mL of 10% NaOH were added. A few<br />

minutes later another 2 mL of water was added. The reaction mixture was diluted with<br />

ether and the solution was filtered. The filtrate was concentrated and the resulting<br />

colorless oil was oxidized. 1 H NMR (400 MHz, CDCl 3 ): 5.83 (m, 1H), 5.77 (m, 1H),<br />

4.95 (m, 4H), 4.72 (d, 3.35 Hz, 1H), 3.75 (dd, J d = 11.92, Hz, J d = 5.96 Hz, 1H), 3.64 (dd,<br />

J d = 11.16, Hz, J d = 8.19 Hz, 1H), 3.42 (s, 3H), 2.50 (m, 1H), 2.24 (m, 3H), 2.11 (dt, J d =<br />

16.74, Hz, J t = 5.22 Hz, 1H), 1.80 (m, 1H), 1,64 (m, 2H), 0.90 (s, 3H), 0.82 (s, 3H). 13 C<br />

NMR (400 MHz, CDCl 3 ): 157.3, 138.6, 138.1, 115.5, 114.9, 95.7, 65.4, 54.0, 49.8,<br />

39.1, 38.3, 38.2, 34.4, 27.1, 22.0, 17.9. Calcd for C 16 H 26 O 2 .<br />

164


O<br />

H<br />

O<br />

356<br />

(1R * ,5R)-1,5-diallyl-2-methoxy-6,6-dimethyl-2-cyclohexenecarboxaldehyde (356):<br />

The crude alcohol (371) was dissolved in 100 mL of CH 2 Cl 2 at room temperature. In a<br />

separate round-bottom flask, Dess–Martin periodinane (7.50 g, 17.6 mmol) was dissolved<br />

in 40 mL of CH 2 Cl 2 and added slowly to the reaction mixture. This was then stirred 4h at<br />

room temperature. After the reaction was complete, 75 mL of 1M NaOH was added and<br />

the organic components were extracted with ether. The ether layer was then washed with<br />

water and brine and dried with anhydrous Na 2 SO 4 . The organic solvents were evaporated<br />

and the remaining crude oil was chromatographed with 5% ethyl acetate and petroleum<br />

ether to give 3.34 g (11.2 mmol, 89%) of 356. 1 H NMR (400 MHz, CDCl 3 ): 9.61 (s,<br />

1H), 5.70 (m, 2H), 4.95 (m, 5H), 3.41 (s, 3H), 2.70 (dd, J d = 8.57 Hz, J d = 5.24 Hz, 1H),<br />

2.21 (m, 3H), 1.7 (m, 3H), 0.93 (s, 3H), 0.87 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): <br />

205.1, 154.1, 137.9, 136.6, 116.0, 114.8, 96.0, 60.6, 54.2, 40.0, 38.2, 35.4, 33.6, 27.3,<br />

22.2, 18.3. IR (neat): 3074, 2974, 2925, 2834, 1724, 1672, 1639, 1212 cm -1 . Calcd for<br />

C 16 H 24 O 2 .<br />

165


O<br />

357<br />

(4R,6R * )-4,6-diallyl-6-ethynyl-5,5-dimethylcyclohex-1-en-1-yl methyl ether (357):<br />

THF (27 mL) and hexane (3.5 mL) were added to a round-bottom flask and cooled to –78<br />

C under nitrogen. Then trimethylsilyldiazomethane (2 M in ether, 3.60 mL, 7.20 mmol)<br />

was added to the above mixture at –78 C, and after a few minutes BuLi (2.4 M in<br />

hexane, 3.00 mL, 7.20 mmol) was added. The reaction mixture was stirred 10 to 15<br />

minutes at the same temperature, and aldehyde 356 (5.96 mmol, 1.47 g) in 24 mL of THF<br />

was added slowly. The reaction mixture was stirred for another 10 to 15 minutes at –78<br />

C and warmed to 0 C. After warming to 0 C, the reaction mixture was stirred 1 h<br />

before completely warming to room temperature. After completely warming to room<br />

temperature the reaction was quenched with water and the organic components were<br />

extracted with ether. The ether layer was then washed with brine and dried with<br />

anhydrous Na 2 SO 4 . The organic solvents were evaporated and the remaining crude oil<br />

was chromatographed with 5% ethyl acetate and petroleum ether to give 0.96 g (3.96<br />

mmol, 67%) of 357. 1 H NMR (400 MHz, CDCl 3 ): 5.98 (m, 1H), 5.72 (m, 1H), 5.04-<br />

4.90 (m, 4H), 4.55 (m, 1H), 3.4 (s, 3H), 2.56 (dd, J d = 13.4, Hz, J d = 5.95 Hz, 1H), 2.40<br />

(dd, J d = 13.4, Hz, J d = 8.19 Hz, 1H), 2.31 (dd, J d = 6.33 Hz, J d = 2.31 Hz, 1H), 2.23 (s,<br />

1H), 2.16 (dt, J d = 17.12 Hz, J t = 4.47 Hz, 1H), 1.78 (m, 2H), 1.63 (m, 1H), 1.08 (s, 3H),<br />

1.00 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): 154.7, 138.1, 136.5, 115.8, 115.1, 93.3,<br />

85.7, 71.9, 54.4, 43.0, 39.6, 37.1, 35.4, 27.3, 23.3, 23.2, 19.3. IR (neat): 3304, 3075,<br />

2975, 2941, 2833, 2109, 1669, 1639, 1216 cm -1 . Calcd for C 17 H 24 O.<br />

166


O<br />

358<br />

(4R * ,6R)-1-Allyloxy-4,6-diallyl-6-ethynyl-5,5-dimethylcyclohexene (358):<br />

To a 25 mL round-bottom flask benzene (3.75 mL), allyl alcohol (0.70 mL) and p-<br />

TsOH∙H 2 O (0.001 g, 0.005 mmol) were added and then refluxed for 1 h with a Dean-<br />

Stark apparatus. The reaction mixture was then cooled to room temperature and methyl<br />

enol ether 357 (0.06 g, 0.25 mmol) in 1.25 mL of benzene was added. The reaction<br />

mixture was allowed to reflux for 2 h, and after the reaction was complete, the mixture<br />

was cooled to room temperature. The solvent was removed completely, and saturated<br />

NaHCO 3 was added. The organic layer was extracted with ether (25 mL) and washed<br />

with water (10 mL) and brine (10 mL). The separated organic layer was dried with<br />

anhydrous NaSO 4 and the solvent was removed to get the crude product. The crude oil<br />

was chromatographed with 5% ethyl acetate and petroleum ether to give 0.065 g (96%,<br />

0.24 mmol) of 358. 1 H NMR (400 MHz, CDCl 3 ): 6.03 (m, 1H), 5.9 (m, 1H), 5.72 (m,<br />

1H), 5.33 (d, 17.49 Hz, 1H), 5.14 (d, 10.79 Hz, 1H), 4.95 (m, 4H), 4.54 (s, 1H), 4.22 (dd,<br />

J d = 13.03 Hz, J d = 3.72 Hz, 1H), 4.04 (dd, J d = 13.03 Hz, J d = 3.35 Hz, 1H), 2.56 (dd, J d =<br />

13.4, Hz, J d = 5.95 Hz, 1H), 2.40 (dd, J d = 13.4, Hz, J d = 8.19 Hz, 1H), 2.30 (m, 1H), 2.20<br />

(s, 1H), 2,15 ((dt, J d = 17.5 Hz, J t = 3.72 Hz, 1H), 1.74 (m, 2H), 1.62 (dd, J d = 8.55 Hz, J d<br />

= 16.75 Hz, 1H), 1.08 (s, 3H), 1.00 (s, 3H).<br />

13 C NMR (400 MHz, CDCl 3 ) : 153.5,<br />

138.2, 136.8, 133.8, 116.3, 115.8, 114.9, 94.5, 85.6, 72.0, 67.7, 50.0, 43.0, 39.6, 37.1,<br />

35.4, 27.3, 23.3, 19.3. IR (neat): 3306, 3076, 2975, 2922, 2359, 1669, 1639, 1205 cm -1 .<br />

Calcd for C 19 H 26 O.<br />

167


O<br />

O<br />

O<br />

359<br />

Methyl3-[(1S * ,5R)-1,5-diallyl-2-allyloxy-6,6-dimethyl-2-cyclohexen-1-yl]-2-<br />

propynoate (359):<br />

PdCl 2 (3.54 mg, 0.02 mmol), CuCl 2 (144 mg, 0.85 mmol), and NaOAc (69.9 mg, 0.85<br />

mmol) were placed in a 25 mL round-bottom flask and alkyne 358 (108 mg, 0.40 mmol)<br />

in methanol (4.24 mL) were added. A rubber balloon filled with carbon monoxide was<br />

attached to the flask, and mixture was allowed to stir at room temperature. The green<br />

solution turned black after 2 h, and the reaction was stopped by adding 2 mL of water.<br />

The organic layer was extracted with ether (10 mL) and then EtOAc (5 mL). The organic<br />

fractions were combined and washed with brine and dried over anhydrous NaSO 4 . The<br />

crude oil was chromatographed with 5% ethyl acetate and petroleum ether to give (0.28<br />

mmol, 0.09 g, 72% yield) of 359. 1 H NMR (400 MHz, CDCl 3 ): 6.02-5.84 (m, 2H), 5.7<br />

(m, 1H), 5.34 (dd, J d = 17.43 Hz, J d = 1.47 Hz, 1H), 5.53 (dd, J d = 10.58 Hz, J d = 1.47<br />

Hz,1H), 5.02-5.46 (m, 4H), 4.54 (m, 1H), 4.20 (dd, J d = 13.22 Hz, J d = 4.47 Hz, 1H), 4.00<br />

(dd, J d = 13.23 Hz, J d = 2.94 Hz, 1H), 3.70 (s, 3H), 2.58 (dd, J d = 13.81 Hz, J d = 6.17 Hz,<br />

1H), 2.43 (dd, J d = 13.52 Hz, J d = 8.23 Hz, 1H), 2.29 (dd, J d = 9.70 Hz, J d = 5.88 Hz, 1H),<br />

2.15 (dt, J d = 17.34 Hz, J t = 4.41 Hz, 1H), 1.74 (m, 2H), 1,62 (dd, J d = 8.23 Hz, J d = 17.34<br />

Hz, 1H), 1.06 (s, 3H), 0.90 (s, H). 13 C NMR (400 MHz, CDCl 3 ): 152.3, 137.8, 135.8,<br />

133.5, 116.2, 116.0, 115.6, 94.8, 91.2, 76.5, 67.5, 52.6, 42.4, 40.0, 37.1, 35.1, 27.2, 23.6,<br />

19.5. IR (neat): 3409, 3076, 2975, 2949, 2840, 2231, 1715, 1672, 1640, 1434, 1244 cm -1 .<br />

Calcd for C 21 H 28 O 3 .<br />

168


O<br />

O H<br />

3-[(1S * ,5R)-1,5-diallyl-2-allyloxy-6,6-dimethylcyclohex-2-en-1-yl]-2-propyn-1-ol:<br />

The alkyne ester (359) (1.30 g, 3.99 mmol) was dissolved in 40 mL of dry ether and the<br />

mixture was cooled to –78 C in a dry ice/acetone bath. Then LiAlH 4 (0.242 g, 6.38<br />

mmol) was added very slowly. After addition was completed, reaction mixture was<br />

warmed to 30 C and stirred for 6 h. TLC was taken and 0.24 mL of water and 0.24 mL<br />

of 10% NaOH were added. A few minutes later another 0.7 mL of water was added. The<br />

reaction mixture was diluted with ether and the solution was filtered. Then the crude<br />

eluted with 15% EtOAc in petroleum ether. Solvent was evaporated and pure alcohol was<br />

obtained 1.12 g (94%, 3.73 mmol). 1 H NMR (400 MHz, CDCl 3 ): 5.99 (m, 1H), 5.9 (m,<br />

1H), 5.7 (m, 1H), 5.32 (d, 17.2 Hz, 1H), 5.13 (d, 10.8 Hz, 1H), 5.52 (m, 4H), 4.52 (s,<br />

1H), 4.28 (d, 5.20 Hz, 2H), 4.2 (d, 13.2 1H), 4.02 (d, 12.4 Hz, 1H), 2.5 (dd, J d = 14.00<br />

Hz, J d = 6.00 Hz, 1H), 2.37 (dd, J d = 12.8 Hz, J d = 8.4 Hz, 1H), 2.3 (m, 1H), 2,14 (d, 17.2<br />

Hz, 1H), 1.86 (m, 1H), 1.73 (m, 2H), 1.62 (dd, J d = 7.6 Hz, J d = 17.2 Hz, 1H), 1.01 (s,<br />

3H), 0.99 (s, 3H). 13 C NMR ( 400 MHz, CDCl 3 ): 153.7, 138.2, 136.9, 133.9, 116.2,<br />

115.8, 114.8, 94.6, 87.1, 82.3, 77.4, 67.6, 51.7, 43.0, 39.8, 37.1, 35.4, 27.4, 23.5, 19.5. IR<br />

(neat): 3395, 3074, 2973, 2919, 1669, 1639, 1204 cm -1 . Calcd for C 20 H 28 O 2 .<br />

169


O<br />

O H<br />

360<br />

2,4,6-triallyl-2-(3-hydroxy-1-propyn-1-yl)-3,3-dimethylcyclohexanone (360):<br />

O-allyl enol ether (1.12 g, 3.73 mmol) and dry pyridine (33 mL) were heated at 150 C<br />

for 1.5 h in a sealed (pressure) tube. TLC was taken, pyridine was removed and crude<br />

was isolated as a brown/red colored oil. The crude was purified using column<br />

chromatography and the pure compound 360 (0.83 g, 2.79 mmol, 75%) was isolated. 1 H<br />

NMR (400 MHz, CDCl 3 ): 5.70 (m, 3H), 5.05 (m, 6H), 4.33 (d, 5.55 Hz, 2H), 2.75 (m,<br />

1H), 2.45 (m, 3H), 2.31 ( m, 1H), 2.04 (m, 1H), 1.92 (m, 2H), 1.75 (m, 1H), 1.66 (m,<br />

2H), 1.18 (s, 3H), 0.80 (s, 3H). 13 C NMR (400<br />

MHz, CDCl 3 ): 208.3, 137.6, 136.4, 133.1, 118.3, 116.7, 116.6, 85.7, 84.9, 62.0, 51.6,<br />

45.9, 44.5, 40.4, 39.0, 35.3, 34.5, 34.1, 24.0, 19.1. IR (neat): 3434, 3075, 2973, 2937,<br />

2834, 1715, 1640, 912 cm -1 . Calcd for C 20 H 26 O 2 .<br />

170


O<br />

O<br />

H<br />

361<br />

3-((1S * , 3R)-1,3,5-triallyl-2,2-dimethyl-6-oxocyclohexyl)-2-propynal (361):<br />

The alcohol 360 (825 mg, 2.77 mmol) was dissolved in 20 mL of CH 2 Cl 2 at room<br />

temperature. In a separate round-bottom flask, Dess–Martin periodinane (1.53 g, 3.60<br />

mmol) was dissolved in 7.7 mL of CH 2 Cl 2 and added slowly to the reaction mixture.<br />

Then the mixture was stirred for 3 h at room temperature and after the reaction was<br />

complete, 15 mL of 1M NaOH was added and the organic components were extracted<br />

with ether. The ether layer was then washed with water and brine and dried with<br />

anhydrous Na 2 SO 4 . The organic solvents were evaporated and the remaining crude oil<br />

was chromatographed with 5% ethyl acetate and petroleum ether to give 0.68 g of 361<br />

(2.29 mmol, 83%). 1 H NMR (400 MHz, CDCl 3 ): 9.21 (s, 1H), 5.63 (m, 3H), 5.0 (m,<br />

6H), 2.80 (dd, J d = 12.81 Hz, J d = 8.24 Hz, 1H), 2.54-2.34 (m, 3H), 2.65 (d, 12.11 Hz,<br />

1H), 2.4 (dd, J d = 16.30 Hz, J d = 4.35 Hz, 1H), 1.9 (m, 2H), 1.65 (m, 2H), 1,10 (s, 3H),<br />

0,84 (s, 3H). 13 C (400 MHz, CDCl 3 ): 207.1, 177.0, 137.1, 121.8, 119.3, 117.0, 116.9,<br />

96.9, 87.5, 62.8, 44.9, 44.7, 40.3, 38.2, 34.9, 34.3, 33.9, 24.0, 19.2. IR (neat): 3077, 2975,<br />

2940, 2212, 1716, 1667, 1640 cm -1 . Calcd for C 20 H 26 O 2 .<br />

<br />

171


O H C<br />

O<br />

S i E t 3<br />

362<br />

2-Triethylsilyl-3-(1,3,5-triallyl-2,2-dimethyl-6-oxocyclohexyl)acrylaldehyde (362):<br />

Co 2 (CO) 8 (0.31 g, 0.91 mmol) was added to a solution of eynal 361 (0.24 g, 0.81 mmol)<br />

in CH 2 Cl 2 (6.5 mL) at 0 °C. After about 7 h at room temperature, TLC was taken and the<br />

solvent was evaporated. The residue was filtered through a short column of silica gel,<br />

eluting with hexane (the brown eluant was discarded) and then with 30% EtOAc in<br />

petroleum ether. The solvent was evaporated and resulted in the Co 2 (CO) 6 complex of<br />

enal (0.28 g, 0.48 mmol, 87% yield) as a dark red oil.<br />

The complex (0.28 g, 0.48 mmol,) was redissolved in dry (CHCl) 2 (3.25 mL), and<br />

bis(trimethylsilyl)acetylene (0.22 g, 0.98 mmol) and triethylsilane ( 0.40 mL, 2.80 mmol)<br />

were added. The mixture was stirred at 65 °C for 2 h (monitored by TLC). The solvent<br />

was evaporated, and the residue was filtered through a short column of silica gel, eluting<br />

with hexane (the brown eluant was discarded) and then with 10% EtOAc in petroleum<br />

ether. The solvent was evaporated to provide enal 362 (0.11 g, 0.28 mmol, 58% yield) as<br />

a colorless liquid.<br />

172


H O<br />

S i E t 3<br />

O<br />

Four drops of 6 M HCl were added to a solution of enal (0.20 g, 0.48 mmol) in THF (5<br />

mL). After 4.5 h (monitored by TLC), water was added. The aqueous layer was extracted<br />

with ether (2 30 mL), and the combined organic layers were washed with brine, dried<br />

over MgSO 4 , and then evaporated. The remaining crude oil was chromatographed with<br />

10% ethyl acetate and petroleum ether to give two diastereomers.<br />

H O<br />

S i E t 3<br />

O<br />

1 H NMR (400 MHz, CDCl 3 ): 5.85 (s+m, 2H), 5.55 (m,1H), 5.47 (m, 1H), 5.13-4.88<br />

(m, 6H), 4.17 (d, 7.91 Hz, 1H), 2.74 (dd, J d =13.2 Hz, J d = 5.20 Hz, 1H), 2.38 (dd, J d =<br />

8.0 Hz, J d = 7.20 Hz, 2H), 2.14 (d, 10.4 Hz, 1H), 1.88 (dd, J d = 13.2 Hz, J d = 8.80 Hz,<br />

1H), 1.75 (dd, J d = 14.00 Hz, J d = 3.60 Hz, 1H), 1.6 ( t, 13.2 Hz, 1H), 1.1 (m, 1H), 0.92<br />

(t, 8 Hz, 9H), 0.88 (s, 3H), 0.87 (s, 3H), 0.63 (m, 6H).<br />

173


H O<br />

S i E t 3<br />

O<br />

1 H NMR (400 MHz, CDCl 3 ): 6.0 (m, 1H), 5.66 (s, 1H), 5.58 (m, 1H), 5.38 (m, 1H),<br />

5.15 (d, 16.99 Hz, 1H), 5.04 (d, 9.96 Hz, 1H), 4.98 (m, 4H), 4.15 (d, 5.57 Hz, 1H), 2.72<br />

(dd, J d = 13.6 Hz, J d = 5.20 Hz, 1H), 2.44 (d, 8.4 Hz, 2H), 2,20 (d, 14.8, 1H), 2.13 (dd, J d<br />

= 14.0 Hz, J d = 13.60 Hz, 1H), 1.92 (dd, J d = 13.2 Hz, J d = 8.80 Hz, 1H), 1.85 (d, 6.8 Hz,<br />

1H), 1.68 (m, 1H), 1.31( m, 1H), 1.06 (m, 1H), 0.94(t, 7.6 Hz, 9H), 0,93 (s, 3H), 0,91 (s,<br />

3H), 0.65 (m, 6H).<br />

O<br />

S i E t 3<br />

O<br />

372<br />

3-triethylsilyl-1,5,7-triallyl-6,6-dimethylbicyclo[3.3.1]non-3-ene-2,9-dione (372)<br />

The crude alcohol (without separating the diastereomers) (0.05 g, 0.13 mmol) was<br />

dissolved in 2.00 mL of CH 2 Cl 2 in 25 mL round-bottom flask under nitrogen. The Dess–<br />

Martin periodinane (0.08 g, 0.18 mmol) was dissolved in 0.5 mL of CH 2 Cl 2 and added to<br />

the reaction mixture and stirred for 2 h at room temperature. The reaction was quenched<br />

by adding 0.25 mL of 1 M NaOH and the product was extracted with ether. The organic<br />

layer was washed with brine, dried with anhydrous NaSO 4 , and evaporated in the solvent.<br />

The remaining crude oil was used to do the next reaction. 1 H NMR (400 MHz, CDCl 3 ): <br />

6.85 (s, 1H), 5.8 (m, 1H), 5.48 (m, 1H), 5.36 (m, 1H), 5.10-4.84 (m, 6H), 2.88 (dd, J d =<br />

174


13.39 Hz, J d = 4.10 Hz, 1H), 2.46 (dd, J d = 13.77 Hz, J d = 6.7 Hz, 1H), 2.39 (dd, J d =<br />

13.77 Hz, J d = 7.82 Hz, 1H), 2.2 (d, 3.77 Hz, 1H), 2.0 (m, 3 H), 1.72 (m, 2H), 1.32 (m,<br />

1H), 1.05 (s, 3H), 0.80 (s, 3H), 0.85 (t, 7.83 Hz, 9H), 0.64 (m, 6H). 13 C NMR (400 MHz,<br />

CDCl 3 ): 209.7, 202.4, 162.9, 138.6, 137.2, 134.5, 134.3, 118.6, 118.4, 177.6, 65.3,<br />

58.3, 45.4, 37.3, 35.3, 34.7, 37.7, 26.0, 20.47, 7.5, 2.9. IR (neat): 3435, 3056, 2956, 2876,<br />

1724, 1664, 1639, 1585, 1418 cm -1 .<br />

O H C<br />

O<br />

348<br />

3-((1R * , 3R)-1,3,5-triallyl-2,2-dimethyl-6-oxocyclohexyl)acrylaldehyde (348):<br />

Ynal 361 (90.0 mg, 0.30 mmol) and Pd(PPh 3 ) 4 (17.3 mg, 0.01 mmol, 5 mol%) were<br />

dissolved in 0.3 mL of dry THF under nitrogen and cooled to 0 C. Bu 3 SnH (0.08 mL,<br />

0.31 mmol) in 0.3 mL of THF was added dropwise via syringe and stirred at 0 C for 1 h.<br />

After completion, the reaction THF was removed by a rotary evaporator and cold pentane<br />

(10 mL) was added. The precipitated Pd was removed by filtering the solution through a<br />

cilite column. Then, pentane was removed and the collected yellow colored crude oil<br />

crude was chromatographed with 5% ethyl acetate and petroleum ether to give 0.07 g<br />

(0.25 mmol, 84%) of 348. 1 H NMR (400 MHz, CDCl 3 ): 9.7 (d, 7.94 Hz, 1H), 6.49 (d,<br />

13.51 Hz, 1H), 6.10 (dd, J d = 13.23, Hz, J d = 7.93 Hz, 1H), 3.03 (dd, J d = 15.28, Hz, J d =<br />

7.5 Hz, 1H), 2.68 (m, 2H), 2.45 (m, 1H), 2.31 (dd, J d = 13.52, Hz, J d = 3.82 Hz, 1H), 2.11<br />

(m, 2H), 1.95 (ddd, J d = 14.11, Hz, J d = 7.35 Hz, J d = 6.76 Hz, 1H), 1.68 (ddd, J d = 13.52,<br />

Hz, J d = 9.40 Hz, J d = 4.12 Hz, 1H), 1.08 (s, 3H), 0.70 (s, 3H). 13 C NMR (400 MHz,<br />

CDCl 3 ): 211.6, 193.2, 145.1, 137.4, 136.2, 132.4, 132.1, 119.7, 117.0, 116.9, 64.4,<br />

45.6, 45.5, 40.8, 38.2, 35.2, 34.8, 34.3, 22.9, 18.9. IR (neat): 3076, 2975, 2938, 1705,<br />

1673, 1640, 1440, 1370, 914 cm -1 . Calcd for C 20 H 28 O 2 .<br />

175


H O<br />

O<br />

373<br />

1,5,7-Triallyl-4-hydroxy-8,8-dimethylbicyclo[3.3.1]non-2-en-9-one (373):<br />

Cis-enal (348) (0.96 g, 0.32 mmol) was dissolved in 3.2 mL of ethanol under nitrogen<br />

atmosphere. Then, NaOEt (0.04 g, 0.64 mmol) was added slowly to the above reaction<br />

mixture and stirred at room temperature for 2 h. The reaction mixture was quenched by<br />

adding water, (1 mL) and the organic compounds were extracted in ether (10 mL) in<br />

multiple extractions. Collected organic layers were pooled and solvent was removed.<br />

Without purification the crude alcoholic compound was subjected to the next step.<br />

O<br />

O<br />

364<br />

(1R * ,5R,7R)-1,5,7-Triallyl-6,6-dimethylbicyclo[3.3.1]non-3-ene-2,9-dione (364):<br />

The crude alcoholic compound was dissolved in 3.23 mL of CH 2 Cl 2 in 25 mL roundbottom<br />

flask under nitrogen. The Dess–Martin periodinane (0.20 g, 0.48 mmol) was<br />

dissolved in 1 mL of CH 2 Cl 2 , added to the reaction mixture, and stirred for 2 h at room<br />

temperature. The reaction was quenched by adding 2 mL of 1 M NaOH and extracted in<br />

ether. The organic layer was washed with brine, dried with anhydrous NaSO 4 , and<br />

evaporated in the solvent, and the remaining crude oil was chromatographed with 5%<br />

ethyl acetate and petroleum ether to give 0.08 g (0.28 mmol, 88% for 2 steps) of yellow<br />

solid 364. 1 H NMR (400 MHz, CDCl 3 ): 6.8 (d, 10.25 Hz, 1H), 6.13 (d, 10.2 Hz, 1H),<br />

176


5.82 (m, 1H), 5.44 (m, 2H), 5.0 (m, 6H), 2.91 (dd, J d = 14.0, Hz, J d = 5.2 Hz, 1H), 2.56<br />

(m, 2H), 2.45 (m, 2H), 2.27 (m, H), 2.05 (m, 3H), 1.84 (ddd, J d = 16.0 Hz, J d = 10.4 Hz,<br />

J d = 4.0 Hz, 1H), 1.4 (m, 1H), 1.01 (s, 3H), 0.99 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): <br />

209.1, 199.5, 153.4, 137.4, 134.1, 134.1, 129.4, 118.8, 118.8, 117.1, 64.5, 57.2, 45.2,<br />

38.0, 35.7, 34.7, 34.6, 29.9, 26.3, 21.1. IR (neat): 3076, 2976, 1727, 1678, 1639, 1614<br />

cm 1 . Calcd for C 20 H 26 O 2 .<br />

H O<br />

O<br />

368<br />

(1R * ,5R * ,7R,4R)-1,5,7-Triallyl-4-hydroxy-4,8,8-trimethylbicyclo[3.3.1]non-2-en-9-<br />

one (368):<br />

The bicyclic enone 364 (0.03 g, 0.10 mmol) was dissolved in 1.5 mL of THF under<br />

nitrogen. Then, the reaction mixture was cooled to 0 C and MeLi (0.11 mmol, 1.6 M in<br />

Et 2 O, 0,06 mL) was added. TLC was taken after 3 h at 0 C, and the reaction was<br />

quenched with water. The organic layer was extracted with ether, and the ether layer was<br />

then washed with water, brine, and dried with anhydrous Na 2 SO 4 . The organic solvents<br />

were evaporated, and the remaining crude oil was chromatographed with 5% ethyl<br />

acetate and petroleum ether to give 0.023 g (0.07 mmol, 75%) of 368. 1 H NMR (400<br />

MHz, CDCl 3 ): 5.92 (m, 1H), 5.6 (d, 9.99 Hz, 1H), 5.56 (m, 1H), 5.42 (d, 10.28 Hz,<br />

1H), 5.35 (m, 1H), 5.12 (d, 17.05 Hz, 1H), 5.03 (d, 9.99 Hz, 1H), 4.93 (m, 4H), 2.69 (dd,<br />

J d = 13.51, Hz, J d = 5.87 Hz, 1H), 2.50 (dd, J d = 13.51, Hz, J d = 5.58 Hz, 1H), 2.32 (dd, J d<br />

= 13.52, Hz, J d = 9.4 Hz, 1H), 2.16 (m, 2H), 1.8 (m, 3H), 1.58 (m, 1H), 1.05 (s, 3H), 0.87<br />

(s, 3H), 0.85 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): 214.5, 137.6, 135.2, 135.0, 134.9,<br />

131.7, 118.7, 117.5, 116.7, 80.2, 58.2, 54.6, 44.7, 43.2, 35.1, 34.6, 34.0, 33.9, 25.2, 24.4,<br />

18.3. Calcd for C 21 H 30 O 2<br />

177


H O<br />

O<br />

O<br />

O M e<br />

367<br />

4-[(Methoxymethoxy)methyl]-(1R * ,5R * ,7R,4R)-1,5,7-triallyl-4-hydroxy-8,8-<br />

dimethylbicyclo[3.3.1]non-2-en-9-one (367):<br />

(Methoxymethoxy)methyltributyltin (0.07 g, 0.20 mmol) was dissolved in 0.5 mL of<br />

THF under nitrogen. Then, the reaction mixture was cooled to C and MeLi (0.20<br />

mmol, 1.6 M in Et 2 O, 0.12 mL) was added and stirred for 20 minutes. Then, enone 364<br />

(0.02 g, 0.10 mmol) was added and stirred for 4 h at the same temperature. TLC was<br />

taken and the reaction was quenched with water. The organic layer was extracted with<br />

ether, and the ether layer was then washed with water, brine, and dried with anhydrous<br />

Na 2 SO 4 . The organic solvents were evaporated and the remaining crude oil was<br />

chromatographed with 5% ethyl acetate and petroleum ether to give 0.02 g (0.06 mmol,<br />

62%) of 2. 1 H NMR (400 MHz, CDCl 3 ): 5.88 (m, 1H), 5.67 (d, 10 Hz, 1H), 5.58 (m,<br />

1H), 5.54 (d, 10 Hz, 1H), 5.40 (m, 1H), 5.10 (d, 16.8 Hz, 4.95 (m, 5H), 4.58 (d, 6.4 Hz,<br />

1H), 4.53 (d, 6.4 Hz, 1H), 3.40 (d, 10.4 Hz, 1H), 3,31 (s, 3H), 3.24 (d, 10 Hz, 1H), 2.83<br />

(s, 1H), 2.70 (dd, J d = 13.6 Hz, J d = 6 Hz, 1H), 2.53 (dd, J d = 13.2, Hz, J d = 6 Hz, 1H),<br />

2.26 (m, 2H), 2.13 (dd, J d = 13.6, Hz, J d = 2.8 Hz, 1H), 1.83 (m, 2H), 1.6 (m, 1H), 1.05<br />

(m, 1H), 0.88 (s, 3H), 0.87 (s, 3H). 13 C NMR (400 MHz, CDCl 3 ): 214.1, 137.5, 135.0,<br />

134.8, 133.8, 132.3, 97.2, 80.6, 72.4, 56.8, 55.7, 54.7, 44.1, 35.2, 34.5, 34.2. Calcd for<br />

C 23 H 34 O 4 .<br />

Copyright © <strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage 2010<br />

178


Chapter 4. Conclusion<br />

Plant Rheedia gardneriana produces an interesting type B PPAP, 7-epiclusianone,<br />

and it has shown in vitro anti-HIV, anticancer and antibiotic activities. . 7-<br />

epi-Clusianone, like a large majority of type B PPAPs and a large minority of type A<br />

PPAPs, is a 7-endo PPAP. To this date, there are no synthetic efforts found in the<br />

literature towards 7-endo PPAPs.<br />

The goal of my research project was to develop a stereocontrolled synthesis of 7-<br />

epi-clusianone. A successful synthesis of this molecule will give a synthetic route to 7-<br />

endo-PPAPs and will enable to contribute to the current synthetic tools by developing<br />

new methodologies and procedures.<br />

During our first approach, we hypothesized that the 1,2-allylic strain inhibits the<br />

enolization of the keto aldehyde to undergo intramolecular aldol reaction. After<br />

redesigning the synthesis, we were able to construct the bicyclo[3.3.1]nonane core with<br />

correct C(7) endo stereochemistry. Successful preparation of the 7-endoallylbicyclo[3.3.1]nonane<br />

skeleton shows the validity of our approach in synthesising of<br />

7-endo PPAPs and supports our hypothesis on the failure of our initial route. This<br />

synthetic pathway also led us to find other unusual reaction patterns such as the<br />

hydrogenation of an alkynal with Pd(PPh 3 ) 4 and Bu 3 SnH. This reaction has not been<br />

reported in the literature, and further investigation of it is being carried out in our<br />

laboratory.<br />

Finally, in our lab, we were able to develop a catalytic classical resolution method to<br />

synthesize enantiomerically pure 3,4-substituted 2-cyclohexenones. If a racemic synthesis<br />

of 7-epi-clusianone can be completed, then with the help of enantiopure starting<br />

meterials, we may be able to complete the first enantioselective total synthesis of 7-epiclusianone<br />

as well.<br />

Copyright © <strong>Pushpa</strong> <strong>Suresh</strong> <strong>Jayasekara</strong> Mudiyanselage 2010<br />

179


Appendix<br />

Table A.1: Crystal data and structure refinement for 364<br />

Identification code 364<br />

Empirical formula C 20 H 26 O 2<br />

Formula weight 298.41<br />

Temperature<br />

90.0(2) K<br />

Wavelength (Å) 1.54178<br />

Crystal system, space group Monoclinic, P 21/c<br />

Unit cell dimensions<br />

a (Å) 9.1543(2)<br />

α (°) 90<br />

b (Å) 25.4610(7)<br />

β (°) 109.647(1)<br />

c (Å) 7.7090(2)<br />

γ (°) 90<br />

Volume (Å 3 ) 1692.19(7)<br />

Z, Calculated density (Mg/m 3 ) 4, 1.171<br />

Absorption coefficient (mm -1 ) 0.573<br />

F(000) 648<br />

Crystal size (nm) 0.35 x 0.15 x 0.06<br />

Θ range for data collection (°) 3.47 to 69.44<br />

Limiting indices<br />

-10≤h≤10<br />

-30≤k≤30<br />

-9≤l≤7<br />

Reflections collected / unique 22129 / 3088<br />

180


Completeness to θ = 69.44 97.2 %<br />

[R(int) = 0.0405]<br />

Absorption correction<br />

Semi-empirical from equivalents<br />

Max. and min. transmission 0.966 and 0.793<br />

Refinement method Full-matrix least-squares on F 2<br />

Data / restraints / parameters 3088 / 0 / 202<br />

Goodness-of-fit on F 2 1.161<br />

Final R indices [I>2σ(I)] R1 = 0.0400, wR2 = 0.1048<br />

R indices (all data) R1 = 0.0420, wR2 = 0.1065<br />

Extinction coefficient 0.0037(6)<br />

Largest diff. peak and hole 0.314 and -0.224 (e·Å–3<br />

)<br />

181


Table A.2: Atomic coordinates ( x 10 4 ) and equivalent isotropic<br />

displacement parameters (A 2 x 10 3 ) for 364<br />

U(eq) is defined as one third of the trace of the<br />

orthogonalized<br />

U ij tensor.<br />

________________________________________________________________<br />

x y z U(eq)<br />

________________________________________________________________<br />

C(1) 6896(2) 3519(1) 5929(2) 18(1)<br />

C(2) 6900(2) 2958(1) 6596(2) 19(1)<br />

C(3) 5764(2) 2608(1) 5932(2) 20(1)<br />

C(4) 4307(2) 2747(1) 4482(2) 18(1)<br />

C(5) 4061(2) 3337(1) 4093(2) 18(1)<br />

C(6) 3733(2) 3573(1) 5808(2) 19(1)<br />

C(7) 4736(2) 4053(1) 6605(2) 20(1)<br />

C(8) 6517(2) 3933(1) 7299(2) 20(1)<br />

C(9) 5600(2) 3564(1) 4082(2) 17(1)<br />

O(10) 5765(1) 3762(1) 2734(1) 21(1)<br />

C(11) 8501(2) 3615(1) 5723(2) 21(1)<br />

C(12) 8947(2) 3209(1) 4574(2) 23(1)<br />

C(13) 10141(2) 2887(1) 5193(2) 29(1)<br />

C(14) 4194(2) 4309(1) 8106(2) 25(1)<br />

C(15) 2571(2) 4523(1) 7371(2) 29(1)<br />

C(16) 2217(2) 5024(1) 7220(2) 35(1)<br />

C(17) 2727(2) 3433(1) 2276(2) 21(1)<br />

C(18) 2304(2) 4002(1) 1880(2) 22(1)<br />

C(19) 1006(2) 4213(1) 1935(2) 27(1)<br />

O(20) 3340(1) 2421(1) 3696(2) 24(1)<br />

C(21) 7364(2) 4455(1) 7315(2) 26(1)<br />

C(22) 7079(2) 3705(1) 9252(2) 24(1)<br />

________________________________________________________________<br />

182


Table A.3: Bond lengths [Å] and angles [°] for 364<br />

_____________________________________________________________<br />

C(1)-C(2) 1.519(2)<br />

C(1)-C(9) 1.5201(19)<br />

C(1)-C(11) 1.5494(19)<br />

C(1)-C(8) 1.6101(19)<br />

C(2)-C(3) 1.333(2)<br />

C(2)-H(2) 0.9500<br />

C(3)-C(4) 1.467(2)<br />

C(3)-H(3) 0.9500<br />

C(4)-O(20) 1.2176(18)<br />

C(4)-C(5) 1.534(2)<br />

C(5)-C(9) 1.5250(19)<br />

C(5)-C(17) 1.537(2)<br />

C(5)-C(6) 1.5694(19)<br />

C(6)-C(7) 1.529(2)<br />

C(6)-H(6A) 0.9900<br />

C(6)-H(6B) 0.9900<br />

C(7)-C(14) 1.5474(19)<br />

C(7)-C(8) 1.566(2)<br />

C(7)-H(7) 1.0000<br />

C(8)-C(22) 1.532(2)<br />

C(8)-C(21) 1.537(2)<br />

C(9)-O(10) 1.2099(17)<br />

C(11)-C(12) 1.504(2)<br />

C(11)-H(11A) 0.9900<br />

C(11)-H(11B) 0.9900<br />

C(12)-C(13) 1.322(2)<br />

C(12)-H(12) 0.9500<br />

C(13)-H(13A) 0.9500<br />

C(13)-H(13B) 0.9500<br />

C(14)-C(15) 1.504(2)<br />

C(14)-H(14A) 0.9900<br />

C(14)-H(14B) 0.9900<br />

C(15)-C(16) 1.312(2)<br />

C(15)-H(15) 0.9500<br />

C(16)-H(16A) 0.9500<br />

C(16)-H(16B) 0.9500<br />

C(17)-C(18) 1.503(2)<br />

C(17)-H(17A) 0.9900<br />

C(17)-H(17B) 0.9900<br />

C(18)-C(19) 1.318(2)<br />

C(18)-H(18) 0.9500<br />

C(19)-H(19A) 0.9500<br />

C(19)-H(19B) 0.9500<br />

C(21)-H(21A) 0.9800<br />

C(21)-H(21B) 0.9800<br />

C(21)-H(21C) 0.9800<br />

C(22)-H(22A) 0.9800<br />

C(22)-H(22B) 0.9800<br />

C(22)-H(22C) 0.9800<br />

183


C(2)-C(1)-C(9) 107.45(11)<br />

C(2)-C(1)-C(11) 106.80(12)<br />

C(9)-C(1)-C(11) 111.15(11)<br />

C(2)-C(1)-C(8) 111.72(11)<br />

C(9)-C(1)-C(8) 107.02(11)<br />

C(11)-C(1)-C(8) 112.62(11)<br />

C(3)-C(2)-C(1) 125.87(13)<br />

C(3)-C(2)-H(2) 117.1<br />

C(1)-C(2)-H(2) 117.1<br />

C(2)-C(3)-C(4) 121.52(13)<br />

C(2)-C(3)-H(3) 119.2<br />

C(4)-C(3)-H(3) 119.2<br />

O(20)-C(4)-C(3) 122.50(13)<br />

O(20)-C(4)-C(5) 122.47(13)<br />

C(3)-C(4)-C(5) 114.97(12)<br />

C(9)-C(5)-C(4) 107.23(11)<br />

C(9)-C(5)-C(17) 112.81(12)<br />

C(4)-C(5)-C(17) 110.68(12)<br />

C(9)-C(5)-C(6) 107.40(11)<br />

C(4)-C(5)-C(6) 105.43(11)<br />

C(17)-C(5)-C(6) 112.87(11)<br />

C(7)-C(6)-C(5) 112.64(11)<br />

C(7)-C(6)-H(6A) 109.1<br />

C(5)-C(6)-H(6A) 109.1<br />

C(7)-C(6)-H(6B) 109.1<br />

C(5)-C(6)-H(6B) 109.1<br />

H(6A)-C(6)-H(6B) 107.8<br />

C(6)-C(7)-C(14) 109.75(12)<br />

C(6)-C(7)-C(8) 113.40(12)<br />

C(14)-C(7)-C(8) 112.67(12)<br />

C(6)-C(7)-H(7) 106.9<br />

C(14)-C(7)-H(7) 106.9<br />

C(8)-C(7)-H(7) 106.9<br />

C(22)-C(8)-C(21) 108.52(12)<br />

C(22)-C(8)-C(7) 112.12(12)<br />

C(21)-C(8)-C(7) 107.41(12)<br />

C(22)-C(8)-C(1) 108.75(12)<br />

C(21)-C(8)-C(1) 110.60(11)<br />

C(7)-C(8)-C(1) 109.44(11)<br />

O(10)-C(9)-C(1) 123.50(13)<br />

O(10)-C(9)-C(5) 123.03(13)<br />

C(1)-C(9)-C(5) 113.47(11)<br />

C(12)-C(11)-C(1) 113.97(12)<br />

C(12)-C(11)-H(11A) 108.8<br />

C(1)-C(11)-H(11A) 108.8<br />

C(12)-C(11)-H(11B) 108.8<br />

C(1)-C(11)-H(11B) 108.8<br />

H(11A)-C(11)-H(11B) 107.7<br />

C(13)-C(12)-C(11) 124.72(15)<br />

C(13)-C(12)-H(12) 117.6<br />

C(11)-C(12)-H(12) 117.6<br />

C(12)-C(13)-H(13A) 120.0<br />

C(12)-C(13)-H(13B) 120.0<br />

H(13A)-C(13)-H(13B) 120.0<br />

C(15)-C(14)-C(7) 113.29(13)<br />

184


C(15)-C(14)-H(14A) 108.9<br />

C(7)-C(14)-H(14A) 108.9<br />

C(15)-C(14)-H(14B) 108.9<br />

C(7)-C(14)-H(14B) 108.9<br />

H(14A)-C(14)-H(14B) 107.7<br />

C(16)-C(15)-C(14) 124.71(17)<br />

C(16)-C(15)-H(15) 117.6<br />

C(14)-C(15)-H(15) 117.6<br />

C(15)-C(16)-H(16A) 120.0<br />

C(15)-C(16)-H(16B) 120.0<br />

H(16A)-C(16)-H(16B) 120.0<br />

C(18)-C(17)-C(5) 114.15(12)<br />

C(18)-C(17)-H(17A) 108.7<br />

C(5)-C(17)-H(17A) 108.7<br />

C(18)-C(17)-H(17B) 108.7<br />

C(5)-C(17)-H(17B) 108.7<br />

H(17A)-C(17)-H(17B) 107.6<br />

C(19)-C(18)-C(17) 124.14(14)<br />

C(19)-C(18)-H(18) 117.9<br />

C(17)-C(18)-H(18) 117.9<br />

C(18)-C(19)-H(19A) 120.0<br />

C(18)-C(19)-H(19B) 120.0<br />

H(19A)-C(19)-H(19B) 120.0<br />

C(8)-C(21)-H(21A) 109.5<br />

C(8)-C(21)-H(21B) 109.5<br />

H(21A)-C(21)-H(21B) 109.5<br />

C(8)-C(21)-H(21C) 109.5<br />

H(21A)-C(21)-H(21C) 109.5<br />

H(21B)-C(21)-H(21C) 109.5<br />

C(8)-C(22)-H(22A) 109.5<br />

C(8)-C(22)-H(22B) 109.5<br />

H(22A)-C(22)-H(22B) 109.5<br />

C(8)-C(22)-H(22C) 109.5<br />

H(22A)-C(22)-H(22C) 109.5<br />

H(22B)-C(22)-H(22C) 109.5<br />

_____________________________________________________________<br />

185


Table A.4: Anisotropic displacement parameters (A 2 x 10 3 ) for 364. The<br />

anisotropic displacement factor exponent takes the form:<br />

-2 Π 2 [ h 2 a* 2 U11 + ... + 2 h k a* b* U12 ]<br />

_______________________________________________________________________<br />

U12<br />

U11 U22 U33 U23 U13<br />

_______________________________________________________________________<br />

C(1) 18(1) 22(1) 16(1) -1(1) 7(1) -<br />

2(1)<br />

C(2) 20(1) 24(1) 15(1) 2(1) 8(1)<br />

3(1)<br />

C(3) 22(1) 20(1) 19(1) 2(1) 10(1)<br />

2(1)<br />

C(4) 19(1) 22(1) 18(1) -2(1) 11(1) -<br />

1(1)<br />

C(5) 18(1) 21(1) 16(1) -1(1) 7(1) -<br />

1(1)<br />

C(6) 19(1) 22(1) 18(1) 1(1) 10(1)<br />

1(1)<br />

C(7) 25(1) 21(1) 16(1) 0(1) 9(1)<br />

0(1)<br />

C(8) 24(1) 22(1) 16(1) -2(1) 9(1) -<br />

3(1)<br />

C(9) 19(1) 17(1) 16(1) -2(1) 8(1)<br />

1(1)<br />

O(10) 22(1) 27(1) 17(1) 2(1) 10(1)<br />

0(1)<br />

C(11) 17(1) 28(1) 19(1) 0(1) 6(1) -<br />

4(1)<br />

C(12) 17(1) 32(1) 21(1) -1(1) 8(1) -<br />

4(1)<br />

C(13) 22(1) 36(1) 32(1) 1(1) 12(1) -<br />

1(1)<br />

C(14) 32(1) 25(1) 20(1) -2(1) 13(1)<br />

1(1)<br />

C(15) 35(1) 32(1) 25(1) -4(1) 17(1)<br />

2(1)<br />

C(16) 44(1) 36(1) 29(1) -1(1) 18(1)<br />

7(1)<br />

C(17) 18(1) 26(1) 18(1) -2(1) 6(1)<br />

0(1)<br />

C(18) 22(1) 27(1) 18(1) 1(1) 6(1) -<br />

1(1)<br />

C(19) 23(1) 26(1) 30(1) -1(1) 7(1)<br />

1(1)<br />

O(20) 23(1) 24(1) 26(1) -4(1) 9(1) -<br />

4(1)<br />

C(21) 31(1) 26(1) 25(1) -6(1) 13(1) -<br />

7(1)<br />

186


C(22) 26(1) 30(1) 16(1) -1(1) 6(1) -<br />

1(1)<br />

_______________________________________________________________________<br />

187


Table A.5: Hydrogen coordinates ( x 10 4 ) and isotropic<br />

displacement parameters (Å 2 x 10 3 ) for 364.<br />

_______________________________________________________________________<br />

x y z U(eq)<br />

_______________________________________________________________________<br />

H(2) 7791 2846 7575 23<br />

H(3) 5902 2261 6410 24<br />

H(6A) 2625 3673 5442 22<br />

H(6B) 3930 3299 6773 22<br />

H(7) 4538 4314 5583 24<br />

H(11A) 8495 3965 5160 26<br />

H(11B) 9300 3621 6965 26<br />

H(12) 8325 3183 3312 27<br />

H(13A) 10788 2902 6448 35<br />

H(13B) 10351 2640 4384 35<br />

H(14A) 4250 4044 9067 30<br />

H(14B) 4914 4598 8693 30<br />

H(15) 1742 4278 6988 35<br />

H(16A) 3015 5281 7589 42<br />

H(16B) 1162 5131 6741 42<br />

H(17A) 3023 3287 1251 25<br />

H(17B) 1800 3239 2312 25<br />

H(18) 3016 4222 1571 27<br />

H(19A) 270 4003 2240 33<br />

H(19B) 808 4576 1671 33<br />

H(21A) 8487 4399 7844 40<br />

H(21B) 7042 4713 8059 40<br />

H(21C) 7104 4586 6052 40<br />

H(22A) 7002 3974 10126 37<br />

H(22B) 8161 3593 9569 37<br />

H(22C) 6434 3403 9309 37<br />

_______________________________________________________________________<br />

188


Table A.6: Torsion angles [°] for 364.<br />

________________________________________________________________<br />

C(9)-C(1)-C(2)-C(3) -14.83(19)<br />

C(11)-C(1)-C(2)-C(3) -134.17(15)<br />

C(8)-C(1)-C(2)-C(3) 102.27(16)<br />

C(1)-C(2)-C(3)-C(4) -3.0(2)<br />

C(2)-C(3)-C(4)-O(20) 170.50(14)<br />

C(2)-C(3)-C(4)-C(5) -12.15(19)<br />

O(20)-C(4)-C(5)-C(9) -139.78(13)<br />

C(3)-C(4)-C(5)-C(9) 42.87(15)<br />

O(20)-C(4)-C(5)-C(17) -16.35(18)<br />

C(3)-C(4)-C(5)-C(17) 166.29(12)<br />

O(20)-C(4)-C(5)-C(6) 106.00(15)<br />

C(3)-C(4)-C(5)-C(6) -71.36(14)<br />

C(9)-C(5)-C(6)-C(7) 16.03(16)<br />

C(4)-C(5)-C(6)-C(7) 130.13(12)<br />

C(17)-C(5)-C(6)-C(7) -108.93(14)<br />

C(5)-C(6)-C(7)-C(14) 172.13(12)<br />

C(5)-C(6)-C(7)-C(8) -60.89(15)<br />

C(6)-C(7)-C(8)-C(22) -83.30(15)<br />

C(14)-C(7)-C(8)-C(22) 42.14(16)<br />

C(6)-C(7)-C(8)-C(21) 157.58(12)<br />

C(14)-C(7)-C(8)-C(21) -76.99(14)<br />

C(6)-C(7)-C(8)-C(1) 37.46(15)<br />

C(14)-C(7)-C(8)-C(1) 162.90(11)<br />

C(2)-C(1)-C(8)-C(22) 28.91(16)<br />

C(9)-C(1)-C(8)-C(22) 146.27(12)<br />

C(11)-C(1)-C(8)-C(22) -91.29(14)<br />

C(2)-C(1)-C(8)-C(21) 147.98(13)<br />

C(9)-C(1)-C(8)-C(21) -94.67(14)<br />

C(11)-C(1)-C(8)-C(21) 27.78(17)<br />

C(2)-C(1)-C(8)-C(7) -93.88(14)<br />

C(9)-C(1)-C(8)-C(7) 23.48(14)<br />

C(11)-C(1)-C(8)-C(7) 145.92(12)<br />

C(2)-C(1)-C(9)-O(10) -131.95(14)<br />

C(11)-C(1)-C(9)-O(10) -15.43(19)<br />

C(8)-C(1)-C(9)-O(10) 107.93(15)<br />

C(2)-C(1)-C(9)-C(5) 48.46(15)<br />

C(11)-C(1)-C(9)-C(5) 164.97(11)<br />

C(8)-C(1)-C(9)-C(5) -71.67(14)<br />

C(4)-C(5)-C(9)-O(10) 116.96(14)<br />

C(17)-C(5)-C(9)-O(10) -5.15(19)<br />

C(6)-C(5)-C(9)-O(10) -130.15(14)<br />

C(4)-C(5)-C(9)-C(1) -63.45(14)<br />

C(17)-C(5)-C(9)-C(1) 174.45(11)<br />

C(6)-C(5)-C(9)-C(1) 49.45(15)<br />

C(2)-C(1)-C(11)-C(12) 52.34(16)<br />

C(9)-C(1)-C(11)-C(12) -64.57(16)<br />

C(8)-C(1)-C(11)-C(12) 175.34(12)<br />

C(1)-C(11)-C(12)-C(13) -116.16(17)<br />

C(6)-C(7)-C(14)-C(15) -63.99(16)<br />

C(8)-C(7)-C(14)-C(15) 168.62(13)<br />

189


C(7)-C(14)-C(15)-C(16) -109.33(18)<br />

C(9)-C(5)-C(17)-C(18) -65.55(16)<br />

C(4)-C(5)-C(17)-C(18) 174.31(12)<br />

C(6)-C(5)-C(17)-C(18) 56.42(16)<br />

C(5)-C(17)-C(18)-C(19) -109.68(17)<br />

________________________________________________________________<br />

190


Table A.8: Crystal data and structure refinement for 368.<br />

Identification code 368<br />

Empirical formula C 21 H 30 O 2<br />

Formula weight 314.45<br />

Temperature<br />

90.0(2) K<br />

Wavelength (Å) 1.54178<br />

Crystal system, space group Triclinic, P -1<br />

Unit cell dimensions<br />

a (Å) 6.3410(1)<br />

α (°) 82.198(1)<br />

b (Å) 8.9482(2)<br />

β (°) 84.205(1)<br />

c (Å) 17.1320(3)<br />

γ (°) 70.411(1)<br />

Volume 905.74(3) A 3<br />

Z, Calculated density (Mg/m 3 ) 2, 1.153<br />

Absorption coefficient (mm -1 ) 0.555<br />

F(000) 344<br />

Crystal size (nm)<br />

0.22 x 0.05 x 0.04 mm<br />

θ range for data collection (°) 2.61 to 67.97<br />

Limiting indices<br />

-6≤h≤7<br />

-10≤k≤10<br />

-20≤l≤20<br />

Reflections collected / unique 12602 / 3239<br />

[R(int) = 0.0378]<br />

Completeness to θ = 67.97 97.9 %<br />

Absorption correction<br />

Semi-empirical from equivalents<br />

191


Max. and min. transmission 0.9781 and 0.8876<br />

Refinement method Full-matrix least-squares on F 2<br />

Data / restraints / parameters 3239 / 0 / 213<br />

Goodness-of-fit on F 2 1.090<br />

Final R indices [I>2σ(I)] R1 = 0.0398, wR2 = 0.1002<br />

R indices (all data) R1 = 0.0412, wR2 = 0.1014<br />

Extinction coefficient 0.0042(12)<br />

Largest diff. peak and hole 0.300 and -0.186 (e·Å–3<br />

)<br />

192


Table A.9: Atomic coordinates ( x 10 4 ) and equivalent<br />

isotropic<br />

displacement parameters (A 2 x 10 3 ) for 368.<br />

U(eq) is defined as one third of the trace of the<br />

orthogonalized<br />

U ij tensor.<br />

_______________________________________________________________________<br />

x y z U(eq)<br />

_______________________________________________________________________<br />

C(1) 950(2) 2860(1) 3184(1) 18(1)<br />

C(2) -833(2) 2360(2) 3718(1) 19(1)<br />

C(3) -1091(2) 938(2) 3782(1) 20(1)<br />

C(4) 284(2) -395(2) 3305(1) 19(1)<br />

C(5) 1403(2) 346(1) 2560(1) 18(1)<br />

C(6) -463(2) 1489(1) 2032(1) 18(1)<br />

C(7) -7(2) 3051(2) 1739(1) 20(1)<br />

C(8) -48(2) 4047(1) 2426(1) 20(1)<br />

C(9) 2558(2) 1352(1) 2880(1) 18(1)<br />

O(10) 4579(1) 984(1) 2901(1) 23(1)<br />

C(11) 2159(2) 3583(2) 3691(1) 22(1)<br />

C(12) 2776(2) 2637(2) 4476(1) 25(1)<br />

C(13) 2647(2) 3268(2) 5138(1) 33(1)<br />

C(14) -1585(2) 3999(2) 1086(1) 25(1)<br />

C(15) -1038(3) 3224(2) 337(1) 34(1)<br />

C(16) -2447(4) 2821(2) -37(1) 53(1)<br />

C(17) 3084(2) -972(2) 2108(1) 22(1)<br />

C(18) 4045(2) -417(2) 1330(1) 25(1)<br />

C(19) 6199(2) -672(2) 1148(1) 30(1)<br />

C(20) 1986(2) -1653(2) 3823(1) 26(1)<br />

O(21) -1082(1) -1213(1) 3057(1) 21(1)<br />

C(22) 1418(2) 5096(2) 2133(1) 26(1)<br />

C(23) -2411(2) 5128(2) 2640(1) 25(1)<br />

_______________________________________________________________________<br />

193


Table A.10: Bond lengths [Å] and angles [°] for 368<br />

_____________________________________________________________<br />

C(1)-C(9) 1.5148(17)<br />

C(1)-C(2) 1.5273(16)<br />

C(1)-C(11) 1.5422(17)<br />

C(1)-C(8) 1.5991(17)<br />

C(2)-C(3) 1.3258(18)<br />

C(2)-H(2) 0.9500<br />

C(3)-C(4) 1.5075(17)<br />

C(3)-H(3) 0.9500<br />

C(4)-O(21) 1.4317(15)<br />

C(4)-C(20) 1.5252(18)<br />

C(4)-C(5) 1.5736(16)<br />

C(5)-C(9) 1.5179(17)<br />

C(5)-C(17) 1.5380(17)<br />

C(5)-C(6) 1.5553(16)<br />

C(6)-C(7) 1.5299(16)<br />

C(6)-H(6A) 0.9900<br />

C(6)-H(6B) 0.9900<br />

C(7)-C(14) 1.5398(17)<br />

C(7)-C(8) 1.5626(17)<br />

C(7)-H(7) 1.0000<br />

C(8)-C(23) 1.5262(17)<br />

C(8)-C(22) 1.5360(17)<br />

C(9)-O(10) 1.2152(15)<br />

C(11)-C(12) 1.5015(19)<br />

C(11)-H(11A) 0.9900<br />

C(11)-H(11B) 0.9900<br />

C(12)-C(13) 1.318(2)<br />

C(12)-H(12) 0.9500<br />

C(13)-H(13A) 0.9500<br />

C(13)-H(13B) 0.9500<br />

C(14)-C(15) 1.496(2)<br />

C(14)-H(14A) 0.9900<br />

C(14)-H(14B) 0.9900<br />

C(15)-C(16) 1.316(2)<br />

C(15)-H(15) 0.9500<br />

C(16)-H(16A) 0.9500<br />

C(16)-H(16B) 0.9500<br />

C(17)-C(18) 1.5011(18)<br />

C(17)-H(17A) 0.9900<br />

C(17)-H(17B) 0.9900<br />

C(18)-C(19) 1.319(2)<br />

C(18)-H(18) 0.9500<br />

C(19)-H(19A) 0.9500<br />

C(19)-H(19B) 0.9500<br />

C(20)-H(20A) 0.9800<br />

C(20)-H(20B) 0.9800<br />

C(20)-H(20C) 0.9800<br />

O(21)-H(21) 0.8400<br />

C(22)-H(22A) 0.9800<br />

C(22)-H(22B) 0.9800<br />

194


C(22)-H(22C) 0.9800<br />

C(23)-H(23A) 0.9800<br />

C(23)-H(23B) 0.9800<br />

C(23)-H(23C) 0.9800<br />

C(9)-C(1)-C(2) 106.28(10)<br />

C(9)-C(1)-C(11) 110.71(10)<br />

C(2)-C(1)-C(11) 107.86(10)<br />

C(9)-C(1)-C(8) 106.53(9)<br />

C(2)-C(1)-C(8) 112.99(10)<br />

C(11)-C(1)-C(8) 112.31(10)<br />

C(3)-C(2)-C(1) 125.28(11)<br />

C(3)-C(2)-H(2) 117.4<br />

C(1)-C(2)-H(2) 117.4<br />

C(2)-C(3)-C(4) 124.29(11)<br />

C(2)-C(3)-H(3) 117.9<br />

C(4)-C(3)-H(3) 117.9<br />

O(21)-C(4)-C(3) 111.24(9)<br />

O(21)-C(4)-C(20) 105.19(10)<br />

C(3)-C(4)-C(20) 109.54(10)<br />

O(21)-C(4)-C(5) 109.54(10)<br />

C(3)-C(4)-C(5) 108.26(10)<br />

C(20)-C(4)-C(5) 113.08(10)<br />

C(9)-C(5)-C(17) 111.45(10)<br />

C(9)-C(5)-C(6) 107.60(10)<br />

C(17)-C(5)-C(6) 112.14(10)<br />

C(9)-C(5)-C(4) 105.33(9)<br />

C(17)-C(5)-C(4) 110.88(10)<br />

C(6)-C(5)-C(4) 109.16(9)<br />

C(7)-C(6)-C(5) 111.68(10)<br />

C(7)-C(6)-H(6A) 109.3<br />

C(5)-C(6)-H(6A) 109.3<br />

C(7)-C(6)-H(6B) 109.3<br />

C(5)-C(6)-H(6B) 109.3<br />

H(6A)-C(6)-H(6B) 107.9<br />

C(6)-C(7)-C(14) 110.32(10)<br />

C(6)-C(7)-C(8) 112.63(10)<br />

C(14)-C(7)-C(8) 113.44(10)<br />

C(6)-C(7)-H(7) 106.7<br />

C(14)-C(7)-H(7) 106.7<br />

C(8)-C(7)-H(7) 106.7<br />

C(23)-C(8)-C(22) 108.58(10)<br />

C(23)-C(8)-C(7) 112.13(10)<br />

C(22)-C(8)-C(7) 106.78(10)<br />

C(23)-C(8)-C(1) 109.51(10)<br />

C(22)-C(8)-C(1) 110.55(10)<br />

C(7)-C(8)-C(1) 109.26(9)<br />

O(10)-C(9)-C(1) 122.59(11)<br />

O(10)-C(9)-C(5) 123.69(11)<br />

C(1)-C(9)-C(5) 113.72(10)<br />

C(12)-C(11)-C(1) 114.07(11)<br />

C(12)-C(11)-H(11A) 108.7<br />

C(1)-C(11)-H(11A) 108.7<br />

C(12)-C(11)-H(11B) 108.7<br />

C(1)-C(11)-H(11B) 108.7<br />

195


H(11A)-C(11)-H(11B) 107.6<br />

C(13)-C(12)-C(11) 124.47(14)<br />

C(13)-C(12)-H(12) 117.8<br />

C(11)-C(12)-H(12) 117.8<br />

C(12)-C(13)-H(13A) 120.0<br />

C(12)-C(13)-H(13B) 120.0<br />

H(13A)-C(13)-H(13B) 120.0<br />

C(15)-C(14)-C(7) 112.47(12)<br />

C(15)-C(14)-H(14A) 109.1<br />

C(7)-C(14)-H(14A) 109.1<br />

C(15)-C(14)-H(14B) 109.1<br />

C(7)-C(14)-H(14B) 109.1<br />

H(14A)-C(14)-H(14B) 107.8<br />

C(16)-C(15)-C(14) 125.55(17)<br />

C(16)-C(15)-H(15) 117.2<br />

C(14)-C(15)-H(15) 117.2<br />

C(15)-C(16)-H(16A) 120.0<br />

C(15)-C(16)-H(16B) 120.0<br />

H(16A)-C(16)-H(16B) 120.0<br />

C(18)-C(17)-C(5) 115.76(10)<br />

C(18)-C(17)-H(17A) 108.3<br />

C(5)-C(17)-H(17A) 108.3<br />

C(18)-C(17)-H(17B) 108.3<br />

C(5)-C(17)-H(17B) 108.3<br />

H(17A)-C(17)-H(17B) 107.4<br />

C(19)-C(18)-C(17) 124.83(13)<br />

C(19)-C(18)-H(18) 117.6<br />

C(17)-C(18)-H(18) 117.6<br />

C(18)-C(19)-H(19A) 120.0<br />

C(18)-C(19)-H(19B) 120.0<br />

H(19A)-C(19)-H(19B) 120.0<br />

C(4)-C(20)-H(20A) 109.5<br />

C(4)-C(20)-H(20B) 109.5<br />

H(20A)-C(20)-H(20B) 109.5<br />

C(4)-C(20)-H(20C) 109.5<br />

H(20A)-C(20)-H(20C) 109.5<br />

H(20B)-C(20)-H(20C) 109.5<br />

C(4)-O(21)-H(21) 109.5<br />

C(8)-C(22)-H(22A) 109.5<br />

C(8)-C(22)-H(22B) 109.5<br />

H(22A)-C(22)-H(22B) 109.5<br />

C(8)-C(22)-H(22C) 109.5<br />

H(22A)-C(22)-H(22C) 109.5<br />

H(22B)-C(22)-H(22C) 109.5<br />

C(8)-C(23)-H(23A) 109.5<br />

C(8)-C(23)-H(23B) 109.5<br />

H(23A)-C(23)-H(23B) 109.5<br />

C(8)-C(23)-H(23C) 109.5<br />

H(23A)-C(23)-H(23C) 109.5<br />

H(23B)-C(23)-H(23C) 109.5<br />

_____________________________________________________________<br />

196


Table A.11: Anisotropic displacement parameters (A 2 x 10 3 ) for 368.<br />

The anisotropic displacement factor exponent takes the form:<br />

-2 pi 2 [ h 2 a* 2 U11 + ... + 2 h k a* b* U12 ]<br />

_______________________________________________________________________<br />

U12<br />

U11 U22 U33 U23 U13<br />

_______________________________________________________________________<br />

C(1) 14(1) 19(1) 24(1) -4(1) 2(1) -8(1)<br />

C(2) 13(1) 23(1) 22(1) -5(1) 1(1) -7(1)<br />

C(3) 13(1) 25(1) 22(1) -1(1) 1(1) -8(1)<br />

C(4) 14(1) 19(1) 26(1) -1(1) 1(1) -8(1)<br />

C(5) 14(1) 18(1) 24(1) -2(1) 1(1) -7(1)<br />

C(6) 16(1) 19(1) 22(1) -4(1) 1(1) -8(1)<br />

C(7) 17(1) 20(1) 23(1) -2(1) 1(1) -9(1)<br />

C(8) 18(1) 17(1) 25(1) -3(1) 1(1) -7(1)<br />

C(9) 15(1) 20(1) 20(1) -1(1) 2(1) -8(1)<br />

O(10) 13(1) 28(1) 30(1) -6(1) 1(1) -8(1)<br />

C(11) 18(1) 26(1) 26(1) -8(1) 3(1) -12(1)<br />

C(12) 17(1) 32(1) 30(1) -6(1) 0(1) -11(1)<br />

C(13) 26(1) 44(1) 31(1) -8(1) -3(1) -10(1)<br />

C(14) 28(1) 23(1) 27(1) 3(1) -4(1) -12(1)<br />

C(15) 52(1) 32(1) 24(1) 5(1) -4(1) -23(1)<br />

C(16) 90(2) 55(1) 32(1) 5(1) -15(1) -49(1)<br />

C(17) 18(1) 19(1) 29(1) -6(1) 3(1) -7(1)<br />

C(18) 28(1) 21(1) 27(1) -9(1) 4(1) -9(1)<br />

C(19) 31(1) 31(1) 31(1) -8(1) 8(1) -15(1)<br />

C(20) 20(1) 26(1) 31(1) 1(1) -1(1) -9(1)<br />

O(21) 15(1) 19(1) 32(1) -2(1) -1(1) -9(1)<br />

C(22) 29(1) 24(1) 29(1) -3(1) 2(1) -16(1)<br />

C(23) 21(1) 21(1) 31(1) -4(1) 2(1) -5(1)<br />

_______________________________________________________________________<br />

197


Table A.12: Hydrogen coordinates ( x 10 4 ) and isotropic<br />

displacement parameters (Å 2 x 10 3 ) for 368.<br />

________________________________________________________________<br />

x y z U(eq)<br />

________________________________________________________________<br />

H(2) -1838 3131 4029 23<br />

H(3) -2215 746 4153 24<br />

H(6A) -553 955 1572 22<br />

H(6B) -1927 1727 2337 22<br />

H(7) 1551 2753 1488 23<br />

H(11A) 3541 3671 3393 27<br />

H(11B) 1177 4675 3780 27<br />

H(12) 3294 1506 4497 31<br />

H(13A) 2135 4394 5139 40<br />

H(13B) 3066 2596 5615 40<br />

H(14A) -3150 4099 1274 31<br />

H(14B) -1478 5087 978 31<br />

H(15) 452 3003 112 41<br />

H(16A) -3954 3020 167 63<br />

H(16B) -1957 2332 -512 63<br />

H(17A) 4338 -1563 2448 26<br />

H(17B) 2330 -1732 2014 26<br />

H(18) 3025 159 939 30<br />

H(19A) 7269 -1244 1524 36<br />

H(19B) 6681 -283 642 36<br />

H(20A) 1218 -1961 4312 39<br />

H(20B) 3119 -1215 3949 39<br />

H(20C) 2715 -2593 3539 39<br />

H(21) -2345 -555 2950 32<br />

H(22A) 927 5691 1624 38<br />

H(22B) 2987 4419 2072 38<br />

H(22C) 1275 5846 2518 38<br />

H(23A) -2383 5654 3103 38<br />

H(23B) -3413 4488 2760 38<br />

H(23C) -2953 5938 2195 38<br />

________________________________________________________________<br />

198


Table A.13: Torsion angles [°]for 368.<br />

________________________________________________________________<br />

C(9)-C(1)-C(2)-C(3) -10.23(17)<br />

C(11)-C(1)-C(2)-C(3) -128.99(13)<br />

C(8)-C(1)-C(2)-C(3) 106.25(14)<br />

C(1)-C(2)-C(3)-C(4) -3.0(2)<br />

C(2)-C(3)-C(4)-O(21) -139.34(12)<br />

C(2)-C(3)-C(4)-C(20) 104.78(14)<br />

C(2)-C(3)-C(4)-C(5) -18.94(16)<br />

O(21)-C(4)-C(5)-C(9) 173.01(9)<br />

C(3)-C(4)-C(5)-C(9) 51.55(12)<br />

C(20)-C(4)-C(5)-C(9) -70.02(13)<br />

O(21)-C(4)-C(5)-C(17) -66.31(12)<br />

C(3)-C(4)-C(5)-C(17) 172.23(10)<br />

C(20)-C(4)-C(5)-C(17) 50.66(14)<br />

O(21)-C(4)-C(5)-C(6) 57.72(12)<br />

C(3)-C(4)-C(5)-C(6) -63.74(12)<br />

C(20)-C(4)-C(5)-C(6) 174.69(10)<br />

C(9)-C(5)-C(6)-C(7) 22.04(13)<br />

C(17)-C(5)-C(6)-C(7) -100.86(12)<br />

C(4)-C(5)-C(6)-C(7) 135.86(10)<br />

C(5)-C(6)-C(7)-C(14) 168.13(10)<br />

C(5)-C(6)-C(7)-C(8) -63.99(13)<br />

C(6)-C(7)-C(8)-C(23) -86.53(12)<br />

C(14)-C(7)-C(8)-C(23) 39.69(14)<br />

C(6)-C(7)-C(8)-C(22) 154.66(10)<br />

C(14)-C(7)-C(8)-C(22) -79.12(13)<br />

C(6)-C(7)-C(8)-C(1) 35.06(13)<br />

C(14)-C(7)-C(8)-C(1) 161.29(10)<br />

C(9)-C(1)-C(8)-C(23) 150.38(10)<br />

C(2)-C(1)-C(8)-C(23) 34.05(14)<br />

C(11)-C(1)-C(8)-C(23) -88.25(12)<br />

C(9)-C(1)-C(8)-C(22) -90.03(11)<br />

C(2)-C(1)-C(8)-C(22) 153.64(10)<br />

C(11)-C(1)-C(8)-C(22) 31.35(13)<br />

C(9)-C(1)-C(8)-C(7) 27.21(12)<br />

C(2)-C(1)-C(8)-C(7) -89.11(12)<br />

C(11)-C(1)-C(8)-C(7) 148.59(10)<br />

C(2)-C(1)-C(9)-O(10) -130.99(12)<br />

C(11)-C(1)-C(9)-O(10) -14.12(16)<br />

C(8)-C(1)-C(9)-O(10) 108.27(13)<br />

C(2)-C(1)-C(9)-C(5) 48.20(13)<br />

C(11)-C(1)-C(9)-C(5) 165.07(10)<br />

C(8)-C(1)-C(9)-C(5) -72.54(12)<br />

C(17)-C(5)-C(9)-O(10) -12.53(16)<br />

C(6)-C(5)-C(9)-O(10) -135.85(12)<br />

C(4)-C(5)-C(9)-O(10) 107.79(13)<br />

C(17)-C(5)-C(9)-C(1) 168.29(10)<br />

C(6)-C(5)-C(9)-C(1) 44.96(13)<br />

C(4)-C(5)-C(9)-C(1) -71.39(12)<br />

C(9)-C(1)-C(11)-C(12) -70.97(13)<br />

C(2)-C(1)-C(11)-C(12) 44.92(14)<br />

199


C(8)-C(1)-C(11)-C(12) 170.08(10)<br />

C(1)-C(11)-C(12)-C(13) -141.21(13)<br />

C(6)-C(7)-C(14)-C(15) -69.78(14)<br />

C(8)-C(7)-C(14)-C(15) 162.78(11)<br />

C(7)-C(14)-C(15)-C(16) 124.75(16)<br />

C(9)-C(5)-C(17)-C(18) -70.46(14)<br />

C(6)-C(5)-C(17)-C(18) 50.25(14)<br />

C(4)-C(5)-C(17)-C(18) 172.55(10)<br />

C(5)-C(17)-C(18)-C(19) 121.07(14)<br />

________________________________________________________________<br />

200


Table A.14. Hydrogen bonds for 368 [[Å] and [°]].<br />

_______________________________________________________________________<br />

D-H...A d(D-H) d(H...A) d(D...A)<br />


References<br />

(1) Ben-Erik Van Wyk, M. W. Medicinal Plants of the World: An Illustrated<br />

Scientific Guide to Important Medicinal Plants and Their Uses; Timber Press, 2004.<br />

(2) Clark, A. M. Pharmaceutical research 1996, 13, 1133-44.<br />

(3) Rishton, G. M. American Journal of Cardiology 2008, 101, 43D-49D.<br />

(4) Schmidt, B.; Ribnicky, D. M.; Poulev, A.; Logendra, S.; Cefalu, W. T.;<br />

Raskin, I. Metabolism, Clinical and Experimental 2008, 57, S3-S9.<br />

(5) Available from:<br />

<br />

(6) Verotta, L. Phytochemistry Reviews 2003, 1, 389-407.<br />

(7) de Oliveira, C. M. A.; Porto, A. M.; Bittrich, V.; Vencato, I.; Marsaioli, A.<br />

J. Tetrahedron Letters 1996, 37, 6427-6430.<br />

(8) Roberts, J. C. Chemical Reviews (Washington, DC, United States) 1961,<br />

61, 591-605.<br />

(9) Rao, B. S. Journal of the Chemical Society 1937, 853-5.<br />

(10) Kartha, G.; Ramachandran, G. N.; Bhat, H. B.; Nair, P. M.; Raghavan, V.<br />

K. V.; Venkataraman, K. Tetrahedron Letters 1963, 459-72.<br />

(11) Karanjgaonkar, C. G.; Nair, P. M.; Venkataraman, K. Tetrahedron Letters<br />

1966, 687-91.<br />

(12) Gustafson, K. R.; Blunt, J. W.; Munro, M. H. G.; Fuller, R. W.; McKee, T.<br />

C.; Cardellina, J. H., II; McMahon, J. B.; Cragg, G. M.; Boyd, M. R. Tetrahedron 1992,<br />

48, 10093-102.<br />

(13) Locksley, H. D.; Moore, I.; Scheinmann, F. Tetrahedron 1967, 23, 2229-<br />

34.<br />

(14) Rama Rao, A. V.; Venkatswamy, G.; Pendse, A. D. Tetrahedron Letters<br />

1980, 21, 1975-8.<br />

(15) Gurevich, A. I.; Dobrynin, V. N.; Kolosov, M. N.; Popravko, S. A.;<br />

Ryabova, I. D.; Chernov, B. K.; Derbentseva, N. A.; Aizenman, B. E.; Garagulya, A. D.<br />

Antibiotiki (Moscow) 1971, 16, 510-13.<br />

(16) Bystrov, N. S.; Chernov, B. K.; Dobrynin, V. N.; Kolosov, M. N.<br />

Tetrahedron Letters 1975, 2791-4.<br />

(17) Karanjgoakar, C. G.; Rao, A. V. R.; Venkataraman, K.; Yemul, S. S.;<br />

Palmer, K. J. Tetrahedron Letters 1973, 4977-80.<br />

(18) Fung, S. Y.; Brussee, J.; van der Hoeven, R. A. M.; Niessen, W. M. A.;<br />

Scheffer, J. J. C.; Verpoorte, R. Journal of Natural Products 1994, 57, 452-9.<br />

(19) Mizobuchi, S.; Sato, Y. Agricultural and Biological Chemistry 1985, 49,<br />

399-403.<br />

(20) Zhao, F.; Watanabe, Y.; Nozawa, H.; Daikonnya, A.; Kondo, K.;<br />

Kitanaka, S. Journal of Natural Products 2005, 68, 43-49.<br />

(21) Fung, S. Y.; Zuurbier, K. W. M.; Paniego, N. B.; Scheffer, J. J. C.;<br />

Verpoorte, R. Phytochemistry (Elsevier) 1997, 44, 1047-1053.<br />

(22) Zuurbier, K. W. M.; Fung, S.-Y.; Scheffer, J. J. C.; Verpoorte, R.<br />

Phytochemistry (Elsevier) 1995, 38, 77-82.<br />

202


(23) Zuurbier, K. W. M.; Fung, S.-Y.; Scheffer, J. J. C.; Verpoorte, R.<br />

Phytochemistry (Elsevier) 1998, 49, 2315-2322.<br />

(24) Ciochina, R.; Grossman, R. B. Chemical Reviews (Washington, DC,<br />

United States) 2006, 106, 3963-3986.<br />

(25) Weng, J.-R.; Tsao, L.-T.; Wang, J.-P.; Wu, R.-R.; Lin, C.-N. Journal of<br />

Natural Products 2004, 67, 1796-1799.<br />

(26) Cuesta-Rubio, O.; Velez-Castro, H.; Frontana-Uribe, B. A.; Cardenas, J.<br />

Phytochemistry (Elsevier) 2001, 57, 279-283.<br />

(27) Dreyer, D. L. Phytochemistry (Elsevier) 1974, 13, 2883-4.<br />

(28) Blount, J. F.; Williams, T. H. Tetrahedron Letters 1976, 2921-4.<br />

(29) McCandlish, L. E.; Hanson, J. C.; Stout, G. H. Acta Crystallographica,<br />

Section B Structural Crystallography and Crystal Chemistry 1976, B32, 1793-801.<br />

(30) De Oliveira, C. M. A.; Porto, A. L. M.; Bittrich, V.; Marsaioli, A. J.<br />

Phytochemistry (Elsevier) 1999, 50, 1073-1079.<br />

(31) Matsuhisa, M.; Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda,<br />

Y.; Shibata, H.; Higuti, T.; Kodzhimatov, O. K.; Ashurmetov, O. Journal of Natural<br />

Products 2002, 65, 290-294.<br />

(32) Fukuyama, Y.; Kuwayama, A.; Minami, H. Chemical & pharmaceutical<br />

bulletin 1997, 45, 947-949.<br />

(33) Grossman, R. B.; Jacobs, H. Tetrahedron Letters 2000, 41, 5165-5169.<br />

(34) Weng, J.-r.; Lin, C.-n.; Tsao, L.-t.; Wang, J.-p. Chemistry--A European<br />

Journal 2003, 9, 5520-5527.<br />

(35) Hernandez Ingrid, M.; Fernandez Mercedes, C.; Cuesta-Rubio, O.;<br />

Piccinelli Anna, L.; Rastrelli, L. J Nat Prod 2005, 68, 931-4.<br />

(36) Weng, J.-R.; Lin, C.-N.; Tsao, L.-T.; Wang, J.-P. Chemistry--A European<br />

Journal 2003, 9, 1958-1963.<br />

(37) Rao, A. V. R.; Venkatswamy, G.; Yemul, S. S. Indian Journal of<br />

Chemistry, Section B Organic Chemistry Including Medicinal Chemistry 1980, 19B, 627-<br />

33.<br />

(38) Cuesta-Rubio, O.; Frontana-Uribe, B. A.; Ramirez-Apan, T.; Cardenas, J.<br />

Zeitschrift fuer Naturforschung, C Journal of Biosciences 2002, 57, 372-378.<br />

(39) Krishnamurthy, N.; Lewis, Y. S.; Ravindranath, B. Tetrahedron Letters<br />

1981, 22, 793-6.<br />

(40) Sahu, A.; Das, B.; Chatterjee, A. Phytochemistry (Elsevier) 1989, 28,<br />

1233-5.<br />

(41) Rubio, O. C.; Cuellar, A. C.; Rojas, N.; Velez Castro, H.; Rastrelli, L.;<br />

Aquino, R. Journal of Natural Products 1999, 62, 1013-1015.<br />

(42) Baggett, S.; Mazzola, E. P.; Kennelly, E. J. Studies in Natural Products<br />

Chemistry 2005, 32, 721-771.<br />

(43) Iinuma, M.; Tosa, H.; Tanaka, T.; Kanamaru, S.; Asai, F.; Kobayashi, Y.;<br />

Miyauchi, K.-i.; Shimano, R. Biological & Pharmaceutical Bulletin 1996, 19, 311-14.<br />

(44) Roux, D.; Hadi, H. A.; Thoret, S.; Guenard, D.; Thoison, O.; Paies, M.;<br />

Sevenet, T. Journal of Natural Products 2000, 63, 1070-1076.<br />

(45) Drawert, F.; Beier, J. Phytochemistry (Elsevier) 1976, 15, 1695-6.<br />

203


(46) Adam, P.; Arigoni, D.; Bacher, A.; Eisenreich, W. Journal of Medicinal<br />

Chemistry 2002, 45, 4786-4793.<br />

(47) Karppinen, K.; Hokkanen, J.; Tolonen, A.; Mattila, S.; Hohtola, A.<br />

Phytochemistry (Elsevier) 2007, 68, 1038-1045.<br />

(48) Liu, B.; Falkenstein-Paul, H.; Schmidt, W.; Beerhues, L. Plant Journal<br />

2003, 34, 847-855.<br />

(49) Klingauf, P.; Beuerle, T.; Mellenthin, A.; El-Moghazy, S. A. M.;<br />

Boubakir, Z.; Beerhues, L. Phytochemistry (Elsevier) 2005, 66, 139-145.<br />

(50) Beerhues, L. Phytochemistry (Elsevier) 2006, 67, 2201-2207.<br />

(51) Bystrov, N. S.; Dobrynin, V. N.; Kolosov, M. N.; Popravko, S. A.;<br />

Chernov, B. K. Bioorganicheskaya Khimiya 1978, 4, 791-7.<br />

(52) Maisenbacher, P.; Kovar, K. A. Planta Medica 1992, 58, 291-3.<br />

(53) Decosterd, L. A.; Stoeckli-Evans, H.; Chapuis, J. C.; Msonthi, J. D.;<br />

Sordat, B.; Hostettmann, K. Helvetica Chimica Acta 1989, 72, 464-71.<br />

(54) Lokvam, J.; Braddock, J. F.; Reichardt, P. B.; Clausen, T. P.<br />

Phytochemistry (Elsevier) 2000, 55, 29-34.<br />

(55) Henry, G. E.; Raithore, S.; Zhang, Y.; Jayaprakasam, B.; Nair, M. G.;<br />

Heber, D.; Seeram, N. P. Journal of Natural Products 2006, 69, 1645-1648.<br />

(56) Henry, G. E.; Jacobs, H.; Carrington, C. M. S.; McLean, S.; Reynolds, W.<br />

F. Tetrahedron 1999, 55, 1581-1596.<br />

(57) Fukuyama, Y.; Minami, H.; Kuwayama, A. Phytochemistry (Elsevier)<br />

1998, 49, 853-857.<br />

(58) Collins, E.; Shannon, P. V. R. Journal of the Chemical Society, Perkin<br />

Transactions 1 Organic and Bio-Organic Chemistry (1972-1999) 1973, 419-24.<br />

(59) Cao, S.; Low, K.-N.; Glover, R. P.; Crasta, S. C.; Ng, S.; Buss, A. D.;<br />

Butler, M. S. Journal of Natural Products 2006, 69, 707-709.<br />

(60) Verotta, L.; Appendino, G.; Belloro, E.; Jakupovic, J.; Bombardelli, E.<br />

Journal of Natural Products 1999, 62, 770-772.<br />

(61) Verotta, L.; Appendino, G.; Jakupovic, J.; Bombardelli, E. Journal of<br />

Natural Products 2000, 63, 412-415.<br />

(62) Teixeira, J. S. A. R.; Cruz, F. G. Tetrahedron Letters 2005, 46, 2813-<br />

2816.<br />

(63) Siegel, D. R.; Danishefsky, S. J. Journal of the American Chemical<br />

Society 2006, 128, 1048-1049.<br />

(64) Xiao, Z. Y.; Mu, Q.; Shiu, W. K. P.; Zeng, Y. H.; Gibbons, S. Journal of<br />

Natural Products 2007, 70, 1779-1782.<br />

(65) Christian, O. E.; Henry, G. E.; Jacobs, H.; McLean, S.; Reynolds, W. F. J<br />

Nat Prod 2001, 64, 23-5.<br />

(66) Winkelmann, K.; Heilmann, J.; Zerbe, O.; Rali, T.; Sticher, O. Helvetica<br />

Chimica Acta 2001, 84, 3380-3392.<br />

(67) Porto, A. L. M.; Machado, S. M. F.; de Oliveira, C. M. A.; Bittrich, V.;<br />

Amaral, M. d. C. E.; Marsaioli, A. J. Phytochemistry (Elsevier) 2000, 55, 755-768.<br />

(68) Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez, R.; Cowley, A.<br />

Organic Letters 2003, 5, 3049-3052.<br />

204


(69) Shan, M. D.; Hu, L. H.; Chen, Z. L. Journal of Natural Products 2001, 64,<br />

127-130.<br />

(70) Tanaka, N.; Takaishi, Y.; Shikishima, Y.; Nakanishi, Y.; Bastow, K.; Lee,<br />

K.-H.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O. K.; Ashurmetov, O. Journal of<br />

Natural Products 2004, 67, 1870-1875.<br />

(71) Henry, G. E.; Jacobs, H.; Sean Carrington, C. M.; McLean, S.; Reynolds,<br />

W. F. Tetrahedron Letters 1996, 37, 8663-8666.<br />

(72) Chatterjee, S. S.; Bhattacharya, S. K.; Wonnemann, M.; Singer, A.;<br />

Muller, W. E. Life Sciences 1998, 63, 499-510.<br />

(73) Alves, T. M. d. A.; Alves, R. d. O.; Romanha, A. J.; Dos Santos, M. H.;<br />

Nagem, T. J.; Zani, C. L. Journal of Natural Products 1999, 62, 369-371.<br />

(74) Schempp, C. M.; Pelz, K.; Wittmer, A.; Schopf, E.; Simon, J. C. Lancet<br />

1999, 353, 2129.<br />

(75) Linde, K.; Ramirez, G.; Mulrow, C. D.; Pauls, A.; Weidenhammer, W.;<br />

Melchart, D. BMJ (Clinical research ed.) 1996, 313, 253-8.<br />

(76) Whiskey, E.; Werneke, U.; Taylor, D. International clinical<br />

psychopharmacology 2001, 16, 239-52.<br />

(77) Chatterjee, S. S.; Noldner, M.; Koch, E.; Erdelmeier, C.<br />

Pharmacopsychiatry 1998, 31, 7-15.<br />

(78) Medina, M. A.; Martinez-Poveda, B.; Amores-Sanchez, M. I.; Quesada,<br />

A. R. Life Sciences 2006, 79, 105-111.<br />

(79) Muller, W. E. Pharmacological Research 2003, 47, 101-109.<br />

(80) Hostanska, K.; Reichling, J.; Bommer, S.; Weber, M.; Saller, R. European<br />

Journal of Pharmaceutics and Biopharmaceutics 2003, 56, 121-132.<br />

(81) Schempp, C. M.; Kirkin, V.; Simon-Haarhaus, B.; Kersten, A.; Kiss, J.;<br />

Termeer, C. C.; Gilb, B.; Kaufmann, T.; Borner, C.; Sleeman, J. P.; Simon, J. C.<br />

Oncogene 2002, 21, 1242-1250.<br />

(82) Dona, M.; Dell'Aica, I.; Pezzato, E.; Sartor, L.; Calabrese, F.; Della<br />

Barbera, M.; Donella-Deana, A.; Appendino, G.; Borsarini, A.; Caniato, R.; Garbisa, S.<br />

Cancer Research 2004, 64, 6225-6232.<br />

(83) Martinez-Poveda, B.; Quesada, A. R.; Medina, M. A. International<br />

Journal of Cancer 2005, 117, 775–780.<br />

(84) Erdelmeier, C. A. J. Pharmacopsychiatry 1998, 31, 2-6.<br />

(85) Verpoorte, T. L. a. R. 1999, 432.<br />

(86) Lang, F.; Biber, A.; Erdelmeier, C. Pharmazie in unserer Zeit 2002, 31,<br />

512-4.<br />

(87) Verotta, L.; Appendino, G.; Belloro, E.; Bianchi, F.; Sterner, O.; Lovati,<br />

M.; Bombardelli, E. Journal of Natural Products 2002, 65, 433-438.<br />

(88) Verotta, L.; Appendino, G.; Bombardelli, E.; Brun, R. Bioorganic &<br />

Medicinal Chemistry Letters 2007, 17, 1544-1548.<br />

(89)<br />

(90) Diaz-Carballo, D.; Malak, S.; Freistuehler, M.; Elmaagacli, A.;<br />

Bardenheuer, W.; Reusch, H. P. International Journal of Clinical Pharmacology and<br />

Therapeutics 2008, 46, 428-439.<br />

205


(91) Piccinelli, A. L.; Cuesta-Rubio, O.; Chica, M. B.; Mahmood, N.; Pagano,<br />

B.; Pavone, M.; Barone, V.; Rastrelli, L. Tetrahedron 2005, 61, 8206-8211.<br />

(92) Williams, R. B.; Hoch, J.; Glass, T. E.; Evans, R.; Miller, J. S.; Wisse, J.<br />

H.; Kingston, D. G. I. Planta Medica 2003, 69, 864-866.<br />

(93) Fuller, R. W.; Blunt, J. W.; Boswell, J. L.; Cardellina, J. H., II; Boyd, M.<br />

R. Journal of Natural Products 1999, 62, 130-132.<br />

(94) Cuesta-Rubio, O.; Padron, A.; Castro, H. V.; Pizza, C.; Rastrelli, L.<br />

Journal of Natural Products 2001, 64, 973-975.<br />

(95) Baggett, S.; Protiva, P.; Mazzola, E. P.; Yang, H.; Ressler, E. T.; Basile,<br />

M. J.; Weinstein, I. B.; Kennelly, E. J. Journal of Natural Products 2005, 68, 354-360.<br />

(96) Nilar; Nguyen, L.-H. D.; Venkatraman, G.; Sim, K.-Y.; Harrison, L. J.<br />

Phytochemistry (Elsevier) 2005, 66, 1718-1723.<br />

(97) Venkatswamy, G.; Yemul, S. S.; Rao, A. V. R.; Palmer, K. J. Indian<br />

Journal of Chemistry 1975, 13, 1355.<br />

(98) Marti, G.; Eparvier, V.; Moretti, C.; Susplugas, S.; Prado, S.; Grellier, P.;<br />

Retailleau, P.; Gueritte, F.; Litaudon, M. Phytochemistry (Elsevier) 2009, 70, 75-85.<br />

(99) Delle Monache, F.; Delle Monache, G.; Gacs-Baitz, E. Phytochemistry<br />

(Elsevier) 1991, 30, 2003-5.<br />

(100) Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. Studies in Natural<br />

Products Chemistry 2005, 32, 671-720.<br />

(101) Santos, M. H.; Speziali, N. L.; Nagem, T. J.; Oliveira, T. T. Acta<br />

Crystallographica, Section C Crystal Structure Communications 1998, C54, 1990-1992.<br />

(102) Herath, K.; Jayasuriya, H.; Ondeyka, J. G.; Guan, Z.; Borris, R. P.;<br />

Stijfhoorn, E.; Stevenson, D.; Wang, J.; Sharma, N.; MacNaul, K.; Menke, J. G.; Ali, A.;<br />

Schulman, M. J.; Singh, S. B. Journal of Natural Products 2005, 68, 617-619.<br />

(103) Hamed, W.; Brajeul, S.; Mahuteau-Betzer, F.; Thoison, O.; Mons, S.;<br />

Delpech, B.; Nguyen, V. H.; Sevenet, T.; Marazano, C. Journal of Natural Products<br />

2006, 69, 774-777.<br />

(104) Bokesch, H. R.; Groweiss, A.; McKee, T. C.; Boyd, M. R. Journal of<br />

Natural Products 1999, 62, 1197-1199.<br />

(105) Huang, S.-X.; Feng, C.; Zhou, Y.; Xu, G.; Han, Q.-B.; Qiao, C.-F.; Chang,<br />

D. C.; Luo, K. Q.; Xu, H.-X. Journal of Natural Products 2009, 72, 130-135.<br />

(106) Winkelmann, K.; Heilmann, J.; Zerbe, O.; Rali, T.; Sticher, O. Journal of<br />

Natural Products 2000, 63, 104-108.<br />

(107) Yamaguchi, F.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. Journal of<br />

Agricultural and Food Chemistry 2000, 48, 180-185.<br />

(108) Huang, M.-T.; Liu, Y.; Badmaev, V.; Ho, C.-T. ACS Symposium Series<br />

2008, 987, 293-303.<br />

(109) Ito, C.; Itoigawa, M.; Miyamoto, Y.; Onoda, S.; Rao, K. S.; Mukainaka,<br />

T.; Tokuda, H.; Nishino, H.; Furukawa, H. Journal of Natural Products 2003, 66, 206-<br />

209.<br />

(110) Yamaguchi, F.; Saito, M.; Ariga, T.; Yoshimura, Y.; Nakazawa, H.<br />

Journal of Agricultural and Food Chemistry 2000, 48, 2320-2325.<br />

(111) Chatterjee, A.; Yasmin, T.; Bagchi, D.; Stohs, S. J. Molecular and<br />

Cellular Biochemistry 2003, 243, 29-35.<br />

206


(112) Dos Santos, M. H.; Nagem, T. J.; Braz-Filho, R.; Lula, I. S.; Speziali, N.<br />

L. Magnetic Resonance in Chemistry 2001, 39, 155-159.<br />

(113) Murata, R. M.; Branco de Almeida, L. S.; Yatsuda, R.; dos Santos, M. H.;<br />

Nagem, T. J.; Rosalen, P. L.; Koo, H. FEMS Microbiology Letters 2008, 282, 174-181.<br />

(114) Neves, J. S.; Coelho, L. P.; Cordeiro, R. S. B.; Veloso, M. P.; Rodrigues e<br />

Silva, P. M.; dos Santos, M. H.; Martins, M. A. Planta Medica 2007, 73, 644-649.<br />

(115) Cruz, A. J.; Lemos, V. S.; dos Santos, M. H.; Nagem, T. J.; Cortes, S. F.<br />

Phytomedicine 2006, 13, 442-445.<br />

(116) Protiva, P.; Hopkins, M. E.; Baggett, S.; Yang, H.; Lipkin, M.; Holt, P. R.;<br />

Kennelly, E. J.; Bernard, W. I. International Journal of Cancer 2008, 123, 687-694.<br />

(117) Kumar, S.; Chattopadhyay, S. K.; Darokar, M. P.; Garg, A.; Khanuja, S. P.<br />

S. Planta Medica 2007, 73, 1452-1456.<br />

(118) Kumar, S.; Chattopadhyay, S. K. Biomedical Chromatography 2007, 21,<br />

139-163.<br />

(119) Tosa, H.; Iinuma, M.; Tanaka, T.; Nozaki, H.; Ikeda, S.; Tsutsui, K.;<br />

Tsutsui, K.; Yamada, M.; Fujimori, S. Chemical & pharmaceutical bulletin 1997, 45,<br />

418-420.<br />

(120) Gey, C.; Kyrylenko, S.; Hennig, L.; Nguyen, L.-H. D.; Buettner, A.;<br />

Pham, H. D.; Giannis, A. Angewandte Chemie, International Edition 2007, 46, 5219-<br />

5222.<br />

(121) Holdsworth, D. L., E. Q J. Crude Drug Res 1981, 19, 141-154.<br />

(122) Winkelmann, K.; Heilmann, J.; Zerbe, O.; Rali, T.; Sticher, O. Journal of<br />

Natural Products 2001, 64, 701-706.<br />

(123) Wu, C.-C.; Weng, J.-R.; Won, S.-J.; Lin, C.-N. Journal of Natural<br />

Products 2005, 68, 1125-1127.<br />

(124) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao, G. Q.; Kim, S.; Kessabi, J.<br />

Organic Letters 1999, 1, 807-10.<br />

(125) Nuhant, P.; David, M.; Pouplin, T.; Delpech, B.; Marazano, C. Organic<br />

Letters 2007, 9, 287-289.<br />

(126) Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M.<br />

Journal of the American Chemical Society 2005, 127, 14200-14201.<br />

(127) Rodeschini, V.; Ahmad, N. M.; Simpkins, N. S. Organic Letters 2006, 8,<br />

5283-5285.<br />

(128) Ahmad, N. M.; Rodeschini, V.; Simpkins, N. S.; Ward, S. E.; Blake, A. J.<br />

Journal of Organic Chemistry 2007, 72, 4803-4815.<br />

(129) Tsukano, C.; Siegel Dionicio, R.; Danishefsky Samuel, J. Angewandte<br />

Chemie (International ed. in English) 2007, 46, 8840-4.<br />

(130) Qi, J.; Porco, J. A., Jr. Journal of the American Chemical Society 2007,<br />

129, 12682-12683.<br />

(131) Usuda, H.; Kanai, M.; Shibasaki, M. Tetrahedron Letters 2002, 43, 3621-<br />

3624.<br />

(132) Usuda, H.; Kanai, M.; Shibasaki, M. Organic Letters 2002, 4, 859-862.<br />

(133) Landi, J. J., Jr.; Ramig, K. Synthetic Communications 1991, 21, 167-71.<br />

207


(134) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung,<br />

J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; et al. Journal of Organic<br />

Chemistry 1992, 57, 2768-71.<br />

(135) Satoh, T.; Ikeda, M.; Miura, M.; Nomura, M. Journal of Organic<br />

Chemistry 1997, 62, 4877-4879.<br />

(136) Nicolaou, K. C.; Vassilikogiannakis, G.; Montagnon, T. Angewandte<br />

Chemie, International Edition 2002, 41, 3276-3281.<br />

(137) Sun, Y.-J.; Li, Y.-L.; Zhao, L.-Y.; Xiao, L. Hecheng Huaxue 1995, 3, 127-<br />

30.<br />

(138) Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. Organic Letters 2002, 4,<br />

1939-1942.<br />

(139) Nicolaou, K. C.; Pfefferkorn, J. A.; Kim, S.; Wei, H. X. Journal of the<br />

American Chemical Society 1999, 121, 4724-4725.<br />

(140) Lipshutz, B. H.; Koerner, M.; Parker, D. A. Tetrahedron Letters 1987, 28,<br />

945-8.<br />

(141) Grieco, P. A.; Oguri, T.; Gilman, S.; DeTitta, G. T. Journal of the<br />

American Chemical Society 1978, 100, 1616-18.<br />

(142) Hughes, G.; Lautens, M.; Wen, C. Organic Letters 2000, 2, 107-110.<br />

(143) Keck, G. E.; Yates, J. B. Journal of the American Chemical Society 1982,<br />

104, 5829-31.<br />

(144) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao, G.-Q.; Kim, S.; Kessabi, J.<br />

Organic Letters 1999, 1, 807-810.<br />

(145) Miura, K.; Ichinose, Y.; Nozaki, K.; Fugami, K.; Oshima, K.; Utimoto, K.<br />

Bulletin of the Chemical Society of Japan 1989, 62, 143-7.<br />

(146) Spessard, S. J.; Stoltz, B. M. Organic Letters 2002, 4, 1943-1946.<br />

(147) Effenberger, F.; Schoenwaelder, K. H. Chemische Berichte 1984, 117,<br />

3270-9.<br />

(148) Majetich, G.; Hull, K.; Casares, A. M.; Khetani, V. Journal of Organic<br />

Chemistry 1991, 56, 3958-73.<br />

(149) Heiszwolf, G. J.; Kloosterziel, H. Chemical Communications (London)<br />

1966, 51.<br />

(150) Zapf, C. W.; Harrison, B. A.; Drahl, C.; Sorensen, E. J. Angewandte<br />

Chemie, International Edition 2005, 44, 6533-6537.<br />

(151) Johnson, W. S.; McCarry, B. E.; Markezich, R. L.; Boots, S. G. Journal of<br />

the American Chemical Society 1980, 102, 352-9.<br />

(152) Nicolaou, K. C.; Carenzi, G. E. A.; Jeso, V. Angewandte Chemie,<br />

International Edition 2005, 44, 3895-3899.<br />

(153) Cole, B. M.; Han, L.; Snider, B. B. Journal of Organic Chemistry 1996,<br />

61, 7832–7847.<br />

(154) Kraus, G. A.; Dneprovskaia, E.; Nguyen, T. H.; Jeon, I. Tetrahedron 2003,<br />

59, 8975-8978.<br />

(155) Kraus, G. A.; Nguyen, T. H.; Jeon, I. Tetrahedron Letters 2003, 44, 659-<br />

661.<br />

(156) Kraus, G. A.; Jeon, I. Tetrahedron 2005, 61, 2111-2116.<br />

(157) Kraus, G. A.; Jeon, I. Tetrahedron Letters 2008, 49, 286-288.<br />

208


(158) Kende, A. S.; Roth, B.; Sanfilippo, P. J. Journal of the American Chemical<br />

Society 1982, 104, 1784-5.<br />

(159) Mehta, G.; Bera, M. K. Tetrahedron Letters 2004, 45, 1113-1116.<br />

(160) Mehta, G.; Bera, M. K. Tetrahedron Letters 2009, 50, 3519-3522.<br />

(161) Young, D. G. J.; Zeng, D. Journal of Organic Chemistry 2002, 67, 3134-<br />

3137.<br />

(162) Ciochina, R.; Grossman, R. B. Organic Letters 2003, 5, 4619-4621.<br />

(163) Abe, M.; Nakada, M. Tetrahedron Letters 2006, 47, 6347-6351.<br />

(164) Abe, M.; Nakada, M. Tetrahedron Letters 2007, 48, 4873-4877.<br />

(165) Takagi, R.; Inoue, Y.; Ohkata, K. Journal of Organic Chemistry 2008, 73,<br />

9320-9325.<br />

(166) Sang, S.; Pan, M.-H.; Cheng, X.; Bai, N.; Stark, R. E.; Rosen, R. T.; Lin-<br />

Shiau, S.-Y.; Lin, J.-K.; Ho, C.-T. Tetrahedron 2001, 57, 9931-9938.<br />

(167) Verhe, R.; Schamp, N.; De Buyck, L.; De Kimpe, N.; Sadones, M.<br />

Bulletin des Societes Chimiques Belges 1975, 84, 747-59.<br />

(168) Barrack, S. A.; Okamura, W. H. Journal of Organic Chemistry 1986, 51,<br />

3201-6.<br />

(169) Stork, G.; Danheiser, R. L. Journal of Organic Chemistry 1973, 38, 1775-<br />

6.<br />

(170) Stotter, P. L.; Hill, K. A. Tetrahedron Letters 1972, 4067-70.<br />

(171) Huckin, S. N.; Weiler, L. Journal of the American Chemical Society 1974,<br />

96, 1082-7.<br />

(172) Ohashi, M.; Inoue, S.; Sato, K. Bulletin of the Chemical Society of Japan<br />

1976, 49, 2292-3.<br />

(173) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y.<br />

Journal of the American Chemical Society 1989, 111, 4392-8.<br />

(174) Srikrishna, A.; Anebouselvy, K. Journal of Organic Chemistry 2001, 66,<br />

7102-7106.<br />

(175) Binkley, E. S.; Heathcock, C. H. Journal of Organic Chemistry 1975, 40,<br />

2156-60.<br />

(176) Tamai, Y.; Hagiwara, H.; Uda, H. Journal of the Chemical Society, Perkin<br />

Transactions 1 Organic and Bio-Organic Chemistry (1972-1999) 1986, 1311-15.<br />

(177) Nystrom, R. F.; Brown, W. G. Journal of the American Chemical Society<br />

1947, 69, 1197-9.<br />

(178) Dess, D. B.; Martin, J. C. Journal of Organic Chemistry 1983, 48, 4155-6.<br />

(179) Still, W. C.; Gennari, C. Tetrahedron Letters 1983, 24, 4405-8.<br />

(180) Johnson, F. Chemical Reviews (Washington, DC, United States) 1968, 68,<br />

375-413.<br />

(181) Broeker, J. L.; Hoffmann, R. W.; Houk, K. N. Journal of the American<br />

Chemical Society 1991, 113, 5006-17.<br />

(182) Laval, G.; Audran, G.; Galano, J. M.; Monti, H. The Journal of organic<br />

chemistry 2000, 65, 3551-4.<br />

(183) Magatti, C. V.; Kaminski, J. J.; Rothberg, I. Journal of Organic Chemistry<br />

1991, 56, 3102-8.<br />

(184) McCloskey, P. J.; Schultz, A. G. Heterocycles 1987, 25, 437-47.<br />

209


(185) Colvin, E. W.; Hamill, B. J. Journal of the Chemical Society, Perkin<br />

Transactions 1 Organic and Bio-Organic Chemistry (1972-1999) 1977, 869-74.<br />

(186) Gardi, R.; Castelli, P. P. Gazzetta Chimica Italiana 1963, 93, 1681-94.<br />

(187) Vasilevsky, S. F.; Trofimov, B. A.; Mal'kina, A. G.; Brandsma, L.<br />

Synthetic Communications 1994, 24, 85-8.<br />

(188) Hosokawa, S.; Isobe, M. Tetrahedron Letters 1998, 39, 2609-2612.<br />

(189) Kira, K.; Tanda, H.; Hamajima, A.; Baba, T.; Takai, S.; Isobe, M.<br />

Tetrahedron 2002, 58, 6485-6492.<br />

(190) Ciochina, R. G., R. B. dissertation 2006.<br />

(191) Fristad, W. E.; Bailey, T. R.; Paquette, L. A. Journal of Organic<br />

Chemistry 1980, 45, 3028-37.<br />

(192) Yamamoto, K.; Kimura, T.; Tomo, Y. Tetrahedron Letters 1985, 26,<br />

4505-8.<br />

(193) Piers, E.; Tillyer, R. D. Journal of the Chemical Society, Perkin<br />

Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) 1989, 2124-5.<br />

(194) Cochran, J. C.; Bronk, B. S.; Terrence, K. M.; Phillips, H. K. Tetrahedron<br />

Letters 1990, 31, 6621-4.<br />

(195) Albert, S.; Soret, A.; Blanco, L.; Deloisy, S. Tetrahedron 2007, 63, 2888-<br />

2900.<br />

(196) Blanco, L.; Bloch, R.; Bugnet, E.; Deloisy, S. Tetrahedron Letters 2000,<br />

41, 7875–7878.<br />

(197) Shimizu, Y.; Kuramochi, A.; Usuda, H.; Kanai, M.; Shibasaki, M.<br />

Tetrahedron Letters 2007, 48, 4173-4177.<br />

(198) Pouplin, T.; Tolon, B.; Nuhant, P.; Delpech, B.; Marazano, C. European<br />

Journal of Organic Chemistry 2007, 5117-5125.<br />

(199) Friedrich, D.; Bohlmann, F. Tetrahedron 1988, 44, 1369-92.<br />

(200) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem.<br />

Soc. 1946, 39-45.<br />

(201) Hagiwara, H.; Inome, K.; Uda, H. Journal of the Chemical Society, Perkin<br />

Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) 1995, 757-64.<br />

210


Vita<br />

The author was born in Colombo, Sri Lanka May 3 rd 1974. He received a Bachelor of<br />

Science degree in chemistry in 2001 from University of Colombo, Sri Lanka. He worked<br />

as undergraduate and post undergraduate research assistant with Professor E.D. de Silva<br />

at the University of Colombo and investigated the antibiotic and antifungal activity of<br />

compounds present in Barringtonia ceylanica and Drosera indica. During his<br />

undergraduate studies, he was the recipient of Mahapola National Scholarship, Sri Lanka.<br />

He joined the Graduate Program at the Chemistry Department, University of Kentucky in<br />

the Fall of 2003, and joined the research group of Dr. Robert B. Grossman in the Spring<br />

of 2004. During his tenure at the University of Kentucky she was the recipient of the<br />

100% PLUS award for outstanding achievement in Chemistry (2007) and the RTCF<br />

Research Fellow (2009).<br />

Nawarathne P. H. K. I. N., <strong>Jayasekara</strong> M. P. S., de Silva E. D. , Perera P. ,<br />

Wijendra W. A. S.; ― Investigation of Antifungal Activity of Drosera indica,‖<br />

Chemistry in Sri Lanka, 2005, 22(2), 18-19.<br />

<br />

<br />

<strong>Jayasekara</strong> M. P. S, Ronghua Lu, Grossman R. B.; Catalytic Classical resolution<br />

of γ-substituted cyclohexenones – manuscript in preparation<br />

<strong>Jayasekara</strong> M. P. S, Grossman R. B.; Intramolecular aldol approach to 7-endo<br />

Polycyclic Polyprenylated Acylphloroglucinols - Total synthesis towards 7-epiclusioanone-<br />

manuscript in preparation<br />

211

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!