16.11.2014 Views

Download Presentation [1.9MB PDF] - IEEE

Download Presentation [1.9MB PDF] - IEEE

Download Presentation [1.9MB PDF] - IEEE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modeling and Control of a Cascaded Boost<br />

Converter for a Battery Electric Vehicle<br />

<br />

A. Ndtoungou, Ab. Hamadi, A. Missanda and K. Al-Haddad, Fellow member,<br />

<strong>IEEE</strong><br />

EPEC 2012 OCTOBER 10-12


Introduction<br />

contents<br />

Comparison between boost and cascade boost<br />

Modeling and control of cascade boost converter<br />

Space average model of the system<br />

Control law for output voltage control<br />

Design of the Proportional Integral (PI) controller<br />

Control Scheme of cascade boost for voltage control<br />

Simulation results<br />

Control of Battery current<br />

Simulation results<br />

Cascade boost converter used as non polluting converter<br />

Control scheme<br />

Simulation results<br />

Conclusion<br />

EPEC 2012 OCTOBER 10-12


INTRODUCTION<br />

<br />

I’s a new modeling technique of a cascade Boost converter;<br />

<br />

The nonlinear control is applied and gives good performances in grid side<br />

and in dc side.<br />

<br />

PI controller eliminates efficacy the steady state error of the dc bus voltages;<br />

<br />

The configuration proposed may be used to fast charging electrical vehicle<br />

battery by controlling the time charging;<br />

<br />

The configuration connected to the grid compensates current harmonics,<br />

reactive power, the THD of the grid current is less than 5%.<br />

EPEC 2012 OCTOBER 10-12


Comparison between Boost and cascade Boost<br />

Characteristics of boost converter and cascade boost converter<br />

The boost converter provides high currents, while the cascade boost converter<br />

achieves high voltage.<br />

The advantage of the high voltage of the cascade boost converter make it very<br />

suitable for high battery voltage charging current.<br />

EPEC 2012 OCTOBER 10-12


Modeling and control of cascade<br />

boost converter<br />

D 2<br />

iL 1<br />

L 1<br />

D 1<br />

i L 2<br />

v 1<br />

L 2<br />

D 3<br />

i o<br />

V C 1<br />

Q C2<br />

R vo<br />

in<br />

ON<br />

OFF<br />

i<br />

L1<br />

i<br />

L2<br />

i o<br />

i v<br />

L 1<br />

1<br />

L<br />

v 1<br />

i<br />

L2<br />

v<br />

L2<br />

i o<br />

V in<br />

L 1<br />

i<br />

C1<br />

v<br />

L1<br />

v<br />

C1<br />

i<br />

C2<br />

C<br />

v 1 L 2<br />

v<br />

L2<br />

v<br />

1<br />

C2<br />

C2<br />

R<br />

vo<br />

Vin<br />

L 1<br />

i<br />

C1<br />

v<br />

C1<br />

i<br />

C2<br />

L 2<br />

C v<br />

1 C2<br />

C2<br />

R<br />

vo<br />

EPEC 2012 OCTOBER 10-12


Space average model of the system<br />

( − )<br />

⎧ diL<br />

1 d<br />

1<br />

1<br />

⎪ = − vC<br />

+ V<br />

1<br />

⎪ dt L1 L1<br />

⎪ diL<br />

( − )<br />

2<br />

1 1 d<br />

⎪ = v C −<br />

1<br />

v 0<br />

⎪ dt L2 L2<br />

⎨<br />

⎪ dvC<br />

( 1 − d )<br />

1<br />

1<br />

⎪<br />

= iL<br />

− i<br />

1 L2<br />

dt C1 C1<br />

⎪<br />

⎪ dv 1<br />

⎪<br />

⎩<br />

o<br />

( 1 − d )<br />

= iL<br />

−<br />

2<br />

dt C RC<br />

2 2<br />

v<br />

o<br />

in<br />

EPEC 2012 OCTOBER 10-12


Control law for output voltage control :<br />

The dynamics of the output voltage is given by<br />

dv0<br />

1<br />

C + v = ( 1 − d ) i = u<br />

2 o L<br />

dt R<br />

2<br />

The control law is<br />

u u<br />

d = 1−<br />

i<br />

L 2<br />

The right term of this equation which is linear uses PI<br />

controller to regulate the voltage v0 and we extract the<br />

control law from this equation<br />

Where :<br />

i L2<br />

is the output of the controller PI<br />

is the current in inductance<br />

L 2<br />

EPEC 2012 OCTOBER 10-12


Design of the Proportional Integral<br />

(PI) controller<br />

k k +<br />

i<br />

= + = p s k<br />

G(s) k<br />

i<br />

p<br />

s s<br />

v0ref<br />

k s + k v<br />

p i u R 0<br />

s<br />

RC s + 1<br />

Closed loop output voltage regulation<br />

2<br />

G<br />

F<br />

⎧1 + Rk<br />

⎪ RC2<br />

⎨<br />

k<br />

( k p s + k i )<br />

1<br />

G 0 C 2<br />

= =<br />

1 + G ⎛ 1 + R k ⎞ k<br />

s + ⎜ ⎟ s +<br />

⎝ R C ⎠ C<br />

p<br />

0 2 p<br />

i<br />

⎪ i 2<br />

2<br />

= ω<br />

⎪<br />

0<br />

ki = ω0 C<br />

⎪<br />

⎩<br />

2<br />

C2<br />

⎩<br />

2 2<br />

= 2ξω0<br />

⎧<br />

1<br />

⎪k p = 2ξω0C2<br />

−<br />

⇔ ⎨<br />

R<br />

G<br />

1<br />

C<br />

( k p s + k i )<br />

2<br />

F =<br />

2 2<br />

s + 2 ξ ω 0 s + ω 0<br />

The choice of the PI controller is based<br />

on the desired performance of The<br />

damping factor ζ and pulsation ω 0 to<br />

give best response.<br />

EPEC 2012 OCTOBER 10-12


Control scheme of cascade boost for voltage<br />

control<br />

Output voltage<br />

d<br />

1<br />

u<br />

v 0<br />

i L2<br />

v 0 ref<br />

Output reference<br />

voltage is chosen<br />

by user<br />

EPEC 2012 OCTOBER 10-12


Cascade boost converter is able to<br />

regulate the output voltage<br />

The best choice of inductance L2 can<br />

give iL2 positive<br />

Simulation results<br />

For the high voltage, the boost<br />

converter is not able to regulate the<br />

output voltage<br />

Simulation results with cascade boost<br />

converter<br />

Simulation results with boost converter<br />

EPEC 2012 OCTOBER 10-12


CONTROL OF BATTERY CURRENT<br />

i L1<br />

D 2<br />

D 1<br />

i L2<br />

We test the cascade boost converter<br />

to charge the battery and to compare<br />

it with the boost converter<br />

L 1<br />

v 1<br />

L 2<br />

D 3<br />

i 0<br />

V in<br />

C 1<br />

Q<br />

C 2<br />

v 0<br />

Control law :<br />

1<br />

d = + u − V<br />

1<br />

( )<br />

1 1 in<br />

vC<br />

Control scheme of cascade boost for current control<br />

EPEC 2012 OCTOBER 10-12


Simulation results<br />

The both system gives the same performance to charge the battery<br />

The slight difference is observed in the boost converter that the current flowing in the<br />

inductance presents the high ripple current compared of the cascade boost converter<br />

Simulation results of cascade boost<br />

with battery current control<br />

Simulation results of boost with<br />

battery current control<br />

EPEC 2012 OCTOBER 10-12


CASCADE BOOST CONVERTER USED AS NON POLLUTING<br />

CONVERTER<br />

D 2<br />

iL 1<br />

D 1<br />

i L 2<br />

L 1<br />

v 1<br />

L 2<br />

D 3<br />

i o<br />

L f<br />

D a<br />

D c<br />

Vin<br />

C 1<br />

Q<br />

C2<br />

R vo<br />

D b<br />

D d<br />

Cascade boost<br />

Spectrum of the grid current<br />

EPEC 2012 OCTOBER 10-12


Control law<br />

Control Scheme<br />

Reference current : i L1ref<br />

1<br />

eq. 31 d = 1+ ( ui −Vin<br />

)<br />

v<br />

eq. 29<br />

C<br />

1<br />

i<br />

v ⎛<br />

u<br />

V<br />

i<br />

⎝<br />

0<br />

in<br />

L1ref = v + C<br />

V ⎜<br />

in v0<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

EPEC 2012 OCTOBER 10-12


Grid current and grid voltage are in phase<br />

The THD of the grid current is less than 5%<br />

Simulation results<br />

During the output reference voltage variation we see that<br />

the output voltage well regulated , that the grid voltage<br />

and the grid current are in phase and sinusoidal<br />

Steady state response of a non polluting<br />

converter: upper - voltage and current<br />

source, lower - output voltage<br />

Dynamic response of a non polluting<br />

converter: upper- voltage and current<br />

source, lower- output voltage and its<br />

reference<br />

EPEC 2012 OCTOBER 10-12


CONCLUSION<br />

• The modeling of the cascade boost converter and the nonlinear<br />

control technique are presented.<br />

• The simulations results have shown good performances of the<br />

cascade Boost compared to the classical Boost converter.<br />

• The cascade Boost converter is suitable for high voltage battery.<br />

•The cascade Boost converter used as non polluting converter<br />

gives a THD less than 5% in the grid side.<br />

•The control of the battery current will help to control the<br />

charging time which may be used to fast charging electrical<br />

vehicle battery.<br />

EPEC 2012 OCTOBER 10-12


THANK YOU<br />

?<br />

EPEC 2012 OCTOBER 10-12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!