17.11.2014 Views

Tampere University of Technology - Tekes

Tampere University of Technology - Tekes

Tampere University of Technology - Tekes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tailored bioabsorbable implants and scaffolds<br />

for biomedical and tissue engineering<br />

applications<br />

Minna Kellomäki<br />

Pr<strong>of</strong>essor, Dr Tech, FBSE<br />

BioMediTech<br />

and<br />

Department <strong>of</strong> Electronics and Communications Engineering<br />

<strong>Tampere</strong> <strong>University</strong> <strong>of</strong> <strong>Technology</strong>, Finland


<strong>Tekes</strong> review 289/2012, p. 63<br />

History <strong>of</strong> biomaterials research in Finland


4.9.2013<br />

1 st in the world innovations and products<br />

• 1st in the world several surgical implant families<br />

introduced to clinical studies, examples:<br />

• Ultra-high strength pins and screws for bone<br />

fracture fixation<br />

• Membranes for guided tissue regeneration<br />

• Arrows for closing <strong>of</strong> knee meniscus ruptures<br />

• Stents for urological and gastro-enterological<br />

applications<br />

• Malleable plates for craniomaxill<strong>of</strong>acial, spine<br />

and thoracic surgical applications<br />

• Antibiotic releasing screws for prophylactic<br />

applications<br />

• Bioreconstructive scaffolds for finger and toe<br />

joint regeneration<br />

3


Biomaterials research areas<br />

Leader: Minna Kellomäki Pr<strong>of</strong>, Dr Tech, FBSE<br />

• Processing, microstructures and properties <strong>of</strong>:<br />

• Bioabsorbable, synthetic polymers<br />

• Hydrogels<br />

• Modified natural organic materials<br />

• Polymer-ceramic composites<br />

• Bioceramics and bioactive glasses<br />

• Development <strong>of</strong>:<br />

• Surgical implants and implantable measuring devices<br />

• Scaffolds for tissue engineering<br />

• Drug releasing biomaterials<br />

• Biocompatible surfaces and electrical properties <strong>of</strong><br />

biomaterials


Advanced Tissue Regeneration <strong>Technology</strong>;<br />

Osteopromotive Composite Scaffolds and Cellular<br />

Response with Human Adipose Stem Cells<br />

“KURKO”


Requirements for TE-scaffold technology<br />

Requirements for a tissue<br />

engineering scaffold:<br />

• Biocompatible<br />

• Optimal pore size<br />

• Interconnected pore<br />

structure<br />

• Bioabsorbable<br />

Requirements for a technology<br />

transfer from the lab to the clinics:<br />

• Better functionality or activity<br />

compared to the existing<br />

technology<br />

• High manufacturing rate and<br />

yield<br />

• Low manufacturing costs<br />

• Easy to use


Scaffold structures<br />

• PLCL:<br />

• Porosity up to 70 %<br />

• Average pore size 500-1000 µm<br />

• Max pore size 1300-2300 µm<br />

• PLCL-β-TCP 40 wt-%:<br />

• Porosity up to 70 %<br />

• Average pore size 300-800 µm<br />

• Max pore size 600-2300 µm<br />

Scaffold + water<br />

• PLCL-β-TCP 60 wt-%:<br />

• Porosity up to 60 %<br />

• Average pore size 300-600 µm<br />

• Max pore size 600-1500 µm<br />

Scaffold phase<br />

Water phase<br />

Pore interconnectivity 98-99 %


In vitro cytocompatibility<br />

• Seeding with human<br />

adipose stem cells<br />

(660 cells/ mm 3 )<br />

• Cell attachment and<br />

viability<br />

• Live/dead-fluorescent probes<br />

• Cell proliferation<br />

• Quantitative DNA analysis<br />

(CyQuant)<br />

• Early stage osteogenic<br />

differentiation<br />

• Quantitative alkaline<br />

phosphatase activity<br />

• Adipose stem cells have<br />

been used successfully for<br />

clinical bone regeneration<br />

[2,3]<br />

[2] Mesimaki K, et al. Int J Oral Maxill<strong>of</strong>ac Surg, 2009.<br />

[3] Thesleff T, et al. Neurosurgery, 2011.


Conclusions<br />

• ScCO 2 -processing enables effective manufacturing <strong>of</strong><br />

porous and biodegradable scaffolds without harmful<br />

solvents<br />

• The scaffolds mechanical properties enable cyclic loading<br />

and easy tailoring <strong>of</strong> the scaffolds to the desired shape<br />

• PLCL 70/30 – β-TCP scaffolds support the attachment<br />

and stimulate the proliferation <strong>of</strong> hASCs<br />

• Preliminary results show also that the<br />

scaffolds induce the early osteogenic<br />

differentiation


The Team and Acknowledgements<br />

Scientific team:<br />

<strong>Tampere</strong> <strong>University</strong> <strong>of</strong> <strong>Technology</strong><br />

Pr<strong>of</strong>essor Minna Kellomäki<br />

Kaarlo Paakinaho<br />

Niina Ahola<br />

Pr<strong>of</strong>essor Mika Valden<br />

Leena Vuori<br />

Pr<strong>of</strong>essor Jari Hyttinen<br />

Markus Hannula<br />

<strong>Tampere</strong> <strong>University</strong><br />

Doc. Susanna Miettinen<br />

Suvi Haimi<br />

Laura Tirkkonen<br />

Sanna Huttunen<br />

Funding and collaboration:<br />

The Finnish Funding Agency for<br />

<strong>Technology</strong> and Innovation<br />

Industrial collaboration:<br />

Aalto <strong>University</strong><br />

Pr<strong>of</strong>essor Jukka Seppälä<br />

Laura Elomaa<br />

International collaboration with:<br />

Pr<strong>of</strong>essor Dirk Grijpma, <strong>University</strong> <strong>of</strong> Twente, The Netherlands<br />

Pr<strong>of</strong>essor Marcy Zenobi-Wong, ETH Zürich, Switzerland<br />

Pr<strong>of</strong>essor Maria Rita Passos-Bueno, <strong>University</strong> <strong>of</strong> Sao Paulo, Brazil


Biomaterials for regenerative<br />

medicine<br />

-<br />

Human Spare Parts project<br />

http://www.biomeditech.fi/research/human_spare_parts_program.php


In the picture 1990’s human spare parts<br />

Scientific teams:<br />

<strong>Tampere</strong> <strong>University</strong> <strong>of</strong> <strong>Technology</strong><br />

Pr<strong>of</strong>essor Minna Kellomäki (Biomaterials)<br />

Pr<strong>of</strong>essor Jari Hyttinen (Imaging and image analysis)<br />

Pt<strong>of</strong>essor Jukka Lekkala (Biosensors and measurements)<br />

Pr<strong>of</strong>essor Pasi Kallio (Biomimetic environments)<br />

<strong>Tampere</strong> <strong>University</strong><br />

Doc. Susanna Miettinen (Adipose stem cells)<br />

Doc. Susanna Narkilahti (Neuro)<br />

Doc. Heli Skottman (Ophthalmology)<br />

Doc. Katriina Aalto-Setälä (Cardiac cells and tissues)<br />

Main funding:<br />

The Finnish Funding Agency for<br />

<strong>Technology</strong> and Innovation<br />

http://www.biomeditech.fi/research/human_<br />

spare_parts_program.php


Biomaterials research themes in HSP<br />

1. Fibers and 2D & 3D textiles<br />

2. Hydrogels and functionalization <strong>of</strong><br />

materials<br />

3. Biodegradable sensors<br />

Application areas:<br />

1. Regenerative medicine<br />

2. Cell culture surfaces and devices<br />

3. Material development and characterization<br />

13<br />

4.9.2013


Melt-spun biodegradable fibers<br />

4.9.2013<br />

Melt processing <strong>of</strong> biodegradable polymers<br />

tools<br />

- Design and manufacturing <strong>of</strong> the equipment and<br />

- Optimization <strong>of</strong> parameters for spinning <strong>of</strong> fibers<br />

Coarse Fine Ultra fine Nano & Hollow fibers<br />

•> 100 µm 100-30 µm 30-1 µm < 1 µm > 60 µm<br />

Slide by Ville Ellä / TUT BME


From fibers different<br />

textile structures<br />

4.9.2013<br />

From fibers<br />

production <strong>of</strong> multiple textile structures<br />

from textiles scaffolds and implants<br />

e.g. Knits Braids Non-wovens Wovens<br />

Slide by Ville Ellä / TUT BME


PLA96 + fibrin hybrids<br />

16<br />

Tschoeke B et al. Tissue Engineering 2009<br />

Koch et al, Biomaterials 2010


Two photon polymerization<br />

4.9.2013<br />

- structures and functionalization<br />

- (additional partner: VTT)<br />

(a) (b) (c)<br />

Neurocages (2PP)<br />

Protein structures: BSA (left) and avidin (right) (2PP)<br />

Designed scaffold; close-up <strong>of</strong> nanostructure; cultured<br />

ASCs(2PP)<br />

Miniaturized 17 trabecular<br />

bone replica (2PP)


Shift <strong>of</strong> Frequency (MHz)<br />

Embedded measuring circuits<br />

- Measuring circuit embedded inside polymer foils<br />

- Distant reader system<br />

- Detection <strong>of</strong> water diffusion into the polymer<br />

structure<br />

- We can use this information to e.g.<br />

- Understand material behavior<br />

more deeply<br />

- Enhance material selection<br />

process for applications<br />

- By improving models how<br />

polymers degrade<br />

(collaboration pr<strong>of</strong> Pan,<br />

Univ Leicester)<br />

0<br />

-0.5<br />

-1<br />

Salpavaara et al, 2012<br />

PCL 2,40 mm<br />

PLCL 2,09 mm<br />

PDMS 2.19 mm<br />

-1.5<br />

0 20 40 60 80


Biomaterial requests in HSP<br />

4.9.2013<br />

‣ Permanent –> temporary<br />

‣ Biostabile – bioabsorbable –> bioactive<br />

‣ Replacement - repair –> tissue engineering<br />

‣ Solid -> porous<br />

‣ Hard/rigid & s<strong>of</strong>t/flexible & hydrogel/gel<br />

‣ 2D & 3D<br />

‣ Macro & micro & nano<br />

‣ Basic research<br />

–> R&D<br />

–> commercialization/products<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!