19.11.2014 Views

Phase-Sensitive (Quadrature) Detection i NMR n NMR Phase ...

Phase-Sensitive (Quadrature) Detection i NMR n NMR Phase ...

Phase-Sensitive (Quadrature) Detection i NMR n NMR Phase ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Phase</strong>-<strong>Sensitive</strong> (<strong>Quadrature</strong>) <strong>Detection</strong><br />

in <strong>NMR</strong><br />

<strong>NMR</strong> detects signal in rotating frame, subtracting from<br />

a reference frequency.<br />

But, this can lead to mirror, phase-shadowed peaks on<br />

opposite side of reference if “listening” occurs on one<br />

axis only.<br />

<strong>Phase</strong>-<strong>Sensitive</strong> (<strong>Quadrature</strong>) <strong>Detection</strong><br />

Solution: Detect on two axes using two simultaneous<br />

detectors. Method is phase-sensitive.


<strong>Phase</strong>-<strong>Sensitive</strong> (<strong>Quadrature</strong>) <strong>Detection</strong><br />

Procedure is optimized by phase-cycling.<br />

Scans collected in sets of four pulses.<br />

and then two more, -x(-cos, -sin) and -y(-sin, cos).<br />

Gradient-Enhanced COSY (gCOSY)<br />

<strong>Quadrature</strong><br />

detection<br />

lengthens time<br />

(x4) of 2D <strong>NMR</strong>.<br />

Can solve this by<br />

using pulsed-field<br />

gradient—vertical<br />

range of B 0 field,<br />

applied via RF<br />

coil.<br />

<strong>NMR</strong> tube


Double-Quantum Filtered COSY<br />

(DQF-COSY)<br />

Occasional problem: Diagonal peaks overwhelm<br />

crosspeaks close to diagonal.<br />

Solution:<br />

Apply “quantum filter” to discriminate<br />

intramolecular coupling from intermolecular<br />

coherence transfer.<br />

Issues: Loss of<br />

sensitivity,<br />

splitting patterns<br />

observed in 2D.<br />

1<br />

H<br />

Double-Quantum Filtered COSY<br />

(DQF-COSY)<br />

COSY-90<br />

DQF-COSY


Heteronuclear Correlation Spectroscopy<br />

(HETCOR)<br />

Objective:<br />

Correlate protons with attached carbons.<br />

Problem:<br />

13<br />

C <strong>NMR</strong> is inefficient, so HETCOR very<br />

insensitive.<br />

f 13 2 must be C<br />

spectrum,<br />

because 1 H →<br />

13<br />

C coherence<br />

t 1 ( 1 H)<br />

unlikely. f 2 ( 13 C)<br />

Often requires high-concentration or pure (liquid) sample.<br />

Heteronuclear Multiple-Quantum<br />

Correlation (HMQC) Spectroscopy<br />

Alternative method to 1 H- 13 CHETCOR<br />

HETCOR.<br />

Uses inverse detection: 13 C frequencies are detected as<br />

echoes in 1 H channel.<br />

(This avoids low sensitivity of<br />

13<br />

C<strong>NMR</strong>.)<br />

1<br />

H<br />

13<br />

C


HMQC<br />

5<br />

2<br />

1<br />

Each peak<br />

corresponds to a<br />

1<br />

J(CH) correlation<br />

(i.e., a C-H bond).<br />

Particularly useful<br />

in identifying<br />

inequivalent<br />

geminal H’s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!