20.11.2014 Views

Reaction of Furan and Thiophene

Reaction of Furan and Thiophene

Reaction of Furan and Thiophene

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Reaction</strong> <strong>of</strong> <strong>Furan</strong> <strong>and</strong> <strong>Thiophene</strong><br />

Assis.Pr<strong>of</strong>.Dr.Mohammed Hassan<br />

Lecture 6


a) Oxidation<br />

Br 2 / CH 3 OH<br />

H<br />

O<br />

MeO<br />

H<br />

O OMe<br />

cis / trans<br />

2,5-Dihydro-2,5-dimethoxyfuran<br />

This reaction involves electrophilic addition <strong>of</strong> bromine in<br />

presence <strong>of</strong> methanol at 2 & 5 positions followed by<br />

substitution by methanol.<br />

<strong>Thiophene</strong> is oxidized by peracids to <strong>Thiophene</strong>-1-oxide <strong>and</strong><br />

2-hydroxythiophene oxide.<br />

S<br />

O<br />

S<br />

O<br />

OH


Raney Ni / H 2<br />

b) Reduction<br />

O<br />

O<br />

2-Methyltetrahydr<strong>of</strong>uran<br />

On the other h<strong>and</strong> thiophene can not be reduced under the<br />

same conditions due to sulfur poison the catalyst <strong>and</strong><br />

desulphurization occurs with ring opening.<br />

However, partial reduction can take place by metals in<br />

acidic medium.<br />

Raney Ni / H 2<br />

+ NiS<br />

S<br />

Zn / HCl<br />

S CH 2 CH 3 S<br />

CH 2 CH 3


Electrophilic Aromatic substitution <strong>Reaction</strong>s<br />

1) Nitration<br />

O<br />

CH 3 COONO 2<br />

Pyridine<br />

O<br />

NO 2<br />

S<br />

CH 3 COONO 2<br />

AcOH / Ac 2 O<br />

2) Sulphonation<br />

S<br />

NO 2<br />

O<br />

N<br />

SO 3<br />

SO 3 / Pyridine complex<br />

HO 3 S<br />

O<br />

SO 3 H<br />

S<br />

95 % H 2 SO 4<br />

S<br />

SO 3 H<br />

Heterocyclic Chemistry


3) Halogenation<br />

NBS<br />

S<br />

S<br />

Br<br />

X<br />

X<br />

O<br />

X 2 / r.t<br />

x= Clor Br<br />

X<br />

O<br />

X<br />

Cl 2 / CH 2 Cl 2<br />

- 40 C°<br />

Br 2 / Dioxane<br />

O<br />

Cl<br />

0 C ° O Br<br />

Indirect insertion <strong>of</strong> iodine in furan ring<br />

I 2 / KI<br />

O<br />

COOH<br />

KOH<br />

O I<br />

Heterocyclic Chemistry


4) Acylation<br />

(CH 3 CO) 2 O /<br />

S<br />

S<br />

COCH 3<br />

H 3 PO 4<br />

(CH 3 ) 2 CCl / FeCl 3<br />

Ac 2 O / SnCl 4<br />

O<br />

O<br />

COCH 3<br />

5) Alkylation<br />

It is very low yielding reaction due to formation <strong>of</strong><br />

polyalkylated products or polymers.<br />

O<br />

Heterocyclic Chemistry<br />

t-Bu<br />

O<br />

t-Bu


4) Lithiation<br />

X<br />

X = O, S<br />

BuLi<br />

X<br />

Li<br />

RX<br />

X<br />

R<br />

5) Diazocoupling:<br />

<strong>Furan</strong> <strong>and</strong> thiophene can not couple with diazonium salts<br />

which shows that they are less reactive than pyrrole.<br />

O<br />

Ar N=N + Cl -<br />

No <strong>Reaction</strong><br />

S<br />

Heterocyclic Chemistry


Second Electrophilic Substitution in <strong>Furan</strong> <strong>and</strong><br />

<strong>Thiophene</strong><br />

a) Monosubstituted furan & thiophene with electron withdrawing groups such as<br />

COOH, CHO, CN, COR, SO 3 H are less reactive than unsubstitutted compounds<br />

i) EWG at position 2<br />

O 2 N<br />

HNO 3 (incoming E + is directed to m-position i.e. position 4)<br />

S CN S CN<br />

Less reactive than thiopene<br />

O 2 N<br />

+<br />

CH COONO 3 2<br />

O CHO<br />

O 2 N O CHO O CHO<br />

Pyridine<br />

Less reactive than furan<br />

O<br />

COOH<br />

Br 2 / Dioxane<br />

ii) EWG at position 3<br />

3 : 1<br />

(incoming E + is directed to position 5 mainly <strong>and</strong> to position 4<br />

as well )<br />

Br<br />

+<br />

Br O COOH<br />

O COOH<br />

X<br />

EWG<br />

E +<br />

E<br />

X<br />

EWG<br />

(incoming E + is directed to position 5)<br />

Heterocyclic Chemistry


) Monosubstituted furan & thiophene with electron donating group such as CH 3 , OH, NH 2 ,<br />

OCH 3<br />

i) EDG at position 2<br />

E + O COCH 3<br />

X<br />

EDG<br />

More reactive than unsubstituted<br />

compound<br />

E<br />

X<br />

EDG<br />

(incoming E + is directed to position 5)<br />

ii) EDG at position 3<br />

EDG<br />

X<br />

EDG<br />

EDG<br />

or<br />

E + X E<br />

E X<br />

(incoming E + directed to 2 mainly or 5 due to steric effects )<br />

CH 3 CH 3<br />

Ac 2 O / r.t.<br />

+<br />

CH 3<br />

O<br />

25 % H 3 PO 4<br />

H 3 COC<br />

O<br />

Heterocyclic Chemistry


Ac 2 O / HNO 3<br />

H 3 C<br />

S<br />

COOH<br />

H 3 C<br />

S NO 2<br />

(Replacement <strong>of</strong> leaving group takes place)<br />

Heterocyclic Chemistry

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!