20.11.2014 Views

IIT-JEE 2010 - Career Point

IIT-JEE 2010 - Career Point

IIT-JEE 2010 - Career Point

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

X<br />

O<br />

4<br />

C<br />

A<br />

8 F<br />

B<br />

10.4<br />

14<br />

F is at a distance 2.4 cm from C.<br />

∴ Focal length of lens = 2.4 × 10 = 24 cm<br />

By calculation<br />

1 1 1 = –<br />

f v u<br />

1 1<br />

= – 60 − 40<br />

∴ f = 24 cm<br />

100 1<br />

= = 2400 24<br />

v 60 3<br />

Magnification = = = u 40 2<br />

=<br />

=<br />

length of image<br />

length of object<br />

3 mm<br />

2 mm<br />

= 2<br />

3<br />

5. Calculate the magnetic field B at the point P shown<br />

in the figure. Assume that i = 10 A and a = 8.0 cm.<br />

B a/4<br />

a<br />

4<br />

i<br />

A<br />

P<br />

i<br />

Sol. First of all, we determine the expression of B at a<br />

distance R from a straight conductor of length l.<br />

x<br />

x 2<br />

x 1<br />

φ<br />

dx<br />

i<br />

R<br />

Consider a typical element dx. The magnitude of the<br />

contribution dB of this element to the magnetic field<br />

at P as found from Biot-Savart's law is<br />

r<br />

C<br />

i<br />

D<br />

I<br />

X<br />

µ 0idxsin<br />

θ<br />

dB =<br />

...(i)<br />

2<br />

4πr<br />

Since, the direction of the contribution dB at the<br />

point P for all elements are identical viz, at right<br />

angle into the plane of the figure, the resultant field is<br />

obtained by simply integration equation (i), which<br />

gives<br />

x<br />

B =<br />

∫ 2 µ 0i<br />

dB =<br />

4π<br />

x1<br />

x 2<br />

∫<br />

x1<br />

sin θdx<br />

where, sin θ = r<br />

R and r = (x 2 + R 2 ) 1/2<br />

µ 0iR<br />

∴ B =<br />

4π<br />

x2<br />

r<br />

∫<br />

+<br />

x1<br />

2<br />

dx<br />

2 2<br />

( x R )<br />

3/ 2<br />

Let x = R tan φ, such that dx = R sec 2 φ dφ<br />

At x = x 1 φ 1 = tan –1 ⎛ x ⎞<br />

⎜ 1<br />

⎟ and x = x 2 ,<br />

⎝ R ⎠<br />

x 2<br />

φ 2 = tan –1 ⎛ ⎞<br />

⎜ ⎟<br />

⎝ R ⎠<br />

Also, x 2 + R 2 = R 2 tan 2 φ + R 2 = R 2 sec 2 φ<br />

Hence, equation (ii) becomes<br />

B =<br />

µ 0iR<br />

4π<br />

∫ − 1 x<br />

tan<br />

2<br />

R<br />

−1<br />

x<br />

tan<br />

1<br />

R<br />

µ tan<br />

=<br />

∫ −<br />

0iR<br />

−<br />

4π<br />

tan<br />

1 x2<br />

R<br />

1 x1<br />

R<br />

R sec<br />

R<br />

3<br />

sec<br />

2<br />

2<br />

φ<br />

φ<br />

cosφ<br />

dφ<br />

...(ii)<br />

µ 0 iR ⎡ ⎛ −1<br />

x 2 ⎞ ⎛ −1<br />

x1<br />

⎞⎤<br />

= ⎢sin⎜<br />

tan ⎟ − sin⎜<br />

tan ⎟⎥ ...(iii)<br />

4π<br />

⎣ ⎝ R ⎠ ⎝ R ⎠ ⎦<br />

Let, z = tan –1 ⎛ x ⎞<br />

⎜ ⎟ ,<br />

⎝ R ⎠<br />

x<br />

Thus, tan z = R<br />

⇒<br />

sin z<br />

1−<br />

sin<br />

2<br />

z<br />

= R<br />

x<br />

⇒ R 2 sin 2 z = x 2 (1 – sin 2 z)<br />

⇒ sin 2 z(R 2 + x 2 ) = x 2<br />

⇒ sin z =<br />

x<br />

2<br />

x<br />

+ R<br />

⎛<br />

⇒ z = sin –1 ⎟ ⎟ ⎞<br />

⎜ x<br />

⎜<br />

⎝ x 2 + R<br />

2 ⎠<br />

2<br />

XtraEdge for <strong>IIT</strong>-<strong>JEE</strong> 24 DECEMBER 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!