20.11.2014 Views

Mathematical Models for Nano Science - Politecnico di Milano

Mathematical Models for Nano Science - Politecnico di Milano

Mathematical Models for Nano Science - Politecnico di Milano

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mathematical</strong> <strong>Models</strong><br />

<strong>for</strong> <strong>Nano</strong> <strong>Science</strong><br />

July 4 th 2011<br />

Matteo Porro<br />

Center <strong>for</strong> <strong>Nano</strong> <strong>Science</strong> and Technology of IIT@PoliMi<br />

Dipartimento <strong>di</strong> Matematica ”Francesco Brioschi”<br />

<strong>Politecnico</strong> <strong>di</strong> <strong>Milano</strong>


Introducing myself<br />

Education<br />

• 2004 - 2008<br />

B.Sc. in <strong>Mathematical</strong> Engineering at <strong>Politecnico</strong> <strong>di</strong> <strong>Milano</strong><br />

thesis: Parametric analysis of the dynamics of a rowing boat<br />

• 2008 - 2010<br />

M.Sc. in <strong>Mathematical</strong> Engineering at <strong>Politecnico</strong> <strong>di</strong> <strong>Milano</strong><br />

thesis: Third generation solar cells: modeling and simulation<br />

Current position<br />

• 2011<br />

Fellow internship at CNST of IIT@PoliMi<br />

Future plans (???)<br />

• 2011 -<br />

Ph.D. in <strong>Mathematical</strong> <strong>Models</strong> and Methods in Material <strong>Science</strong><br />

at <strong>Politecnico</strong> <strong>di</strong> <strong>Milano</strong>


Math Research Group<br />

Prof. Riccardo Sacco<br />

• M.Sc. in Electronic Engineering and Ph.D. in Applied<br />

Mathematics<br />

Prof. Maurizio Verri<br />

• M.Sc. in Physics<br />

Carlo de Falco, Ph.D.<br />

• M.Sc. in Electronic Engineering and Ph.D. in Mathematics<br />

and Statistics <strong>for</strong> Computational <strong>Science</strong><br />

Marco Carnini, Ph.D.<br />

• M.Sc. in Physics and Ph.D. in <strong>Mathematical</strong> Engineering


Summary<br />

Past activity<br />

• Bulk heterojunction organic solar cell model<br />

• Bilayer organic solar cell model<br />

Present and future activity<br />

• SuperC model<br />

• Artificial retina model


Bulk Heterojunction solar cells<br />

light<br />

current<br />

at contacts<br />

absorbption<br />

ra<strong>di</strong>ative<br />

recombination<br />

drift / <strong>di</strong>ffusion<br />

bulk<br />

excitons<br />

<strong>di</strong>ffusion<br />

bulk<br />

free carriers<br />

interface<br />

excitons<br />

partial<br />

<strong>di</strong>ssociation<br />

geminate<br />

recombination pairs<br />

drift / <strong>di</strong>ffusion<br />

recombination<br />

interface<br />

free carriers<br />

recombination to<br />

triplet excitons<br />

<strong>di</strong>ssociation<br />

L<br />

Γ N<br />

Γ C<br />

hν<br />

Ω<br />

Γ A<br />

Γ N<br />

Assumptions<br />

• Homogeneity. Blend as a single material<br />

with averaged properties<br />

• Imme<strong>di</strong>ate transition exciton → charge<br />

transfer state<br />

• Einstein relation<br />

Unknowns: X , n, p and ϕ


Model equations - 1<br />

• Excited state<br />

equation<br />

{ ∂X<br />

∂t = G − k recX − k <strong>di</strong>ss X + γnp in Ω<br />

X (x, 0) = X 0 (x) in Ω.<br />

• No <strong>di</strong>ffusion → ODE → no need <strong>for</strong> boundary con<strong>di</strong>tions<br />

• Generation term G(x, t): constant, Beer-Lambert<br />

• Dissociation rate constant k <strong>di</strong>ss (E) accor<strong>di</strong>ng to Onsager theory<br />

• Langevin bimolecular recombination γnp<br />

• Electron<br />

equation<br />

⎧<br />

∂n<br />

∂t − 1 q <strong>di</strong>v J n = k <strong>di</strong>ss X − γnp in Ω<br />

⎪⎨<br />

J n = qD n ∇n − qµ n n∇ϕ in Ω<br />

1<br />

γ n<br />

q J n · ν = β n − α n n on Γ A ∪ Γ C<br />

⎪⎩<br />

n(x, 0) = n 0 (x) in Ω.<br />

• Drift-Diffusion model • Scott-Malliaras boundary con<strong>di</strong>tions<br />

• Simplified Poole-Frenkel model <strong>for</strong> mobility µ(E)


• Hole<br />

equation<br />

Model equations - 2<br />

⎧<br />

∂n<br />

∂t + 1 q <strong>di</strong>v J p = k <strong>di</strong>ss X − γnp in Ω<br />

⎪⎨<br />

J p = −qD p ∇p − qµ p p∇ϕ in Ω<br />

1<br />

−γ p<br />

q J p · ν = β p − α p p on Γ A ∪ Γ C<br />

⎪⎩<br />

p(x, 0) = p 0 (x) in Ω.<br />

• Similar to electron equation. Just some <strong>di</strong>fferences in the signs<br />

• Poisson<br />

equation<br />

⎧<br />

⎪⎨<br />

( )<br />

−<strong>di</strong>v ε 0 ε r ∇ϕ = q ( p − n ) in Ω<br />

ϕ = V appl − V bi<br />

⎪⎩<br />

ϕ = 0<br />

on Γ A<br />

on Γ C<br />

• Applied and bias potential → Dirichlet boundary con<strong>di</strong>tions<br />

• Electric field E = −∇ϕ


Numerical Approach<br />

Rothe method<br />

• Fully coupled system<br />

• Strongly nonlinear equations<br />

• Time <strong>di</strong>scretization with Runge-Kutta methods<br />

• Linearization of the problems<br />

• Spatial <strong>di</strong>scretization<br />

Functional iteration algorithms<br />

• Newton method: faster convergence but less robust.<br />

• Gummel map: staggered algorithm, (possibly) slower but<br />

robust. Also useful as a solution map <strong>for</strong> the analysis of<br />

existence/uniqueness.


Spatial <strong>di</strong>scretization<br />

Triangulation of the domain<br />

• Structured<br />

• Unstructured<br />

Methods<br />

• Finite <strong>di</strong>fference • Finite element • Finite volume<br />

Possibly arising problems<br />

• Instability/numerical oscillations<br />

• Flux conservation issues<br />

• Undesired negative values


1D examples<br />

Dominant transport<br />

{<br />

− 1 ε u′′ + u ′ = 1 x ∈ (0, 1)<br />

u(0) = 0, u(1) = 0<br />

• ε = 10 2<br />

Dominant reaction<br />

{<br />

− 1 ε u′′ + u = 1 x ∈ (0, 1)<br />

u(0) = 0, u(1) = 0<br />

• ε = 10 4<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

Exact solution<br />

Numerical solution n=10<br />

Numerical solution n=20<br />

1.2<br />

1<br />

0.8<br />

u(x)<br />

0.8<br />

u(x)<br />

0.6<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

x<br />

0.4<br />

0.2<br />

0<br />

Exact solution<br />

Numerical solution n=10<br />

Numerical solution n=20<br />

0 0.2 0.4 0.6 0.8 1<br />

x<br />

• Many points <strong>for</strong> stability, even more in 2D or 3D<br />

• Solution: stabilization techniques and ad-hoc schemes


Numerical results - 1<br />

• Ideal BHJ solar cell<br />

• Short circuit con<strong>di</strong>tion (V appl = 0 V)<br />

• Same mobility <strong>for</strong> holes and electrons<br />

• Transient simulation in (0, 10 µs)<br />

• Low illumination<br />

G = 4.3 · 10 26 m −3 s −1<br />

• High illumination<br />

G = 4.3 · 10 30 m −3 s −1<br />

4 x 1019 Position [nm]<br />

2.5 x 1023 Position [nm]<br />

Electron density [m −3 ]<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30 40 50 60 70<br />

Electron density [m −3 ]<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30 40 50 60 70<br />

C. de Falco & al. 2010


Numerical results - 2<br />

• Photodetector fabricated in DEI labs<br />

• BHJ of squaraine dyes and PCBM (ratio 1:3)<br />

• Thickness 220 nm, area 4 mm 2 , I = 6.3 Wm −2 , λ = 700 nm<br />

0<br />

x10 -7<br />

• With light<br />

measured data<br />

simulation results<br />

• Dark<br />

Current [A]<br />

-5<br />

-10<br />

-15<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Applied bias [V]<br />

M. Binda & al. 2009<br />

C. de Falco & al. 2010


Bilayer solar cells<br />

light<br />

current<br />

at contacts<br />

absorbption<br />

ra<strong>di</strong>ative<br />

recombination<br />

drift / <strong>di</strong>ffusion<br />

bulk<br />

excitons<br />

<strong>di</strong>ffusion<br />

bulk<br />

free carriers<br />

interface<br />

excitons<br />

partial<br />

<strong>di</strong>ssociation<br />

geminate<br />

recombination pairs<br />

drift / <strong>di</strong>ffusion<br />

recombination<br />

interface<br />

free carriers<br />

recombination to<br />

triplet excitons<br />

<strong>di</strong>ssociation<br />

2H<br />

Ω n<br />

Γ C<br />

hν<br />

Ω H<br />

Γ N<br />

Assumptions<br />

• Depletion of electrons in Ω p and of<br />

holes in Ω n<br />

Ω p<br />

• Dissociation area Ω H<br />

• Einstein relation<br />

Γ A<br />

Unknowns: X , P, n, p and ϕ


Model equations - 1<br />

• Exciton<br />

equation<br />

⎧<br />

∂X<br />

∂t + <strong>di</strong>v J X = G − X τ X<br />

⎪⎨<br />

∂X<br />

∂t + <strong>di</strong>v J X = G − X −<br />

X + ηk rec P<br />

τ X τ <strong>di</strong>ss<br />

J X = −D X ∇X<br />

in Ω n ∪ Ω p<br />

in Ω H<br />

in Ω<br />

X = 0<br />

on Γ C ∪ Γ A<br />

⎪⎩<br />

X (x, 0) = X 0 (x) in Ω.<br />

• Excitons have null net charge → Only <strong>di</strong>ffusion (Fick law)<br />

• Generation term G(x, t): constant, Beer-Lambert<br />

• Exciton lifetime τ X , geminate pair <strong>for</strong>mation time τ <strong>di</strong>ss<br />

• Geminate pair recombination rate constant k rec and triplet<br />

exciton fraction η<br />

• X and J X are continuous in Ω


Model equations - 2<br />

• Geminate pair<br />

equation<br />

⎧<br />

∂P<br />

⎪⎨ ∂t = X − (k <strong>di</strong>ss + k rec )P + γnp in Ω H<br />

τ <strong>di</strong>ss<br />

P = 0<br />

in Ω n ∪ Ω p<br />

⎪⎩<br />

P(x, 0) = P 0 (x) in Ω.<br />

• No <strong>di</strong>ffusion → ODE → no need <strong>for</strong> boundary con<strong>di</strong>tions<br />

• Mo<strong>di</strong>fied <strong>di</strong>ssociation rate constant k <strong>di</strong>ss (E)<br />

• Langevin bimolecular recombination γnp<br />

• Electron<br />

equation<br />

(Hole equation<br />

is analogous)<br />

⎧<br />

∂n<br />

∂t − 1 q <strong>di</strong>v J n = 0<br />

∂n<br />

⎪⎨ ∂t − 1 q <strong>di</strong>v J n = k <strong>di</strong>ss P − γnp<br />

J n = qD n ∇n − qµ n n∇ϕ<br />

n = 0<br />

in Ω n<br />

in Ω H<br />

in Ω n ∪ Ω H<br />

in Ω p<br />

n = n C<br />

on Γ C<br />

⎪⎩<br />

n(x, 0) = n 0 (x) in Ω.


Model equations - 3<br />

• Poisson<br />

equation<br />

⎧ ( )<br />

−<strong>di</strong>v ε∇ϕ = −qn in Ω n<br />

( )<br />

−<strong>di</strong>v ε∇ϕ = +q ( p − n ) in Ω ⎪⎨<br />

H<br />

( )<br />

−<strong>di</strong>v ε∇ϕ = +qp in Ω p<br />

ϕ = V appl − V bi<br />

⎪⎩<br />

ϕ = 0<br />

on Γ A<br />

on Γ C<br />

• Applied and bias potential → Dirichlet boundary con<strong>di</strong>tions<br />

• The <strong>di</strong>electric constant ε may vary in the materials<br />

• The electric potential ϕ and the normal component of the<br />

electric <strong>di</strong>splacement field −ε∇ϕ · ν are continuous


Interface lumping - 1<br />

• Device thickness ≫ active layer thickness<br />

(∼ 10 2 /∼ 10 0 nm)<br />

• Still a certain number of nodes in Ω H is<br />

needed<br />

Idea<br />

• Neglect the thickness of the active layer<br />

• Assume the phenomena to occur just on<br />

the mathematical interface Γ<br />

• Many nodes<br />

Γ C<br />

Γ N<br />

Ω n<br />

Γ<br />

hν<br />

Ω p<br />

Γ N<br />

New computational<br />

domain<br />

• Less nodes<br />

• Same definition<br />

Γ A


Interface lumping - 2<br />

Lumping procedure<br />

• Integrate the equations in Ω H and let active layer thickness<br />

H → 0<br />

• P becomes surface density<br />

• Volumetric terms in the equations → flux interface con<strong>di</strong>tions<br />

[[X ]] = 0,<br />

[[J X · ν]] = ηk rec P − 2H<br />

τ <strong>di</strong>ss<br />

X<br />

on Γ<br />

∂P<br />

∂t = 2H<br />

τ <strong>di</strong>ss<br />

X − (k <strong>di</strong>ss + k rec ) P + 2Hγnp on Γ.<br />

1<br />

q J n · ν = 1 q J p · ν = −k <strong>di</strong>ss P + 2Hγnp<br />

[[A]] is the jump of A across Γ<br />

[[ϕ]] = [[ε∇ϕ · ν]] = 0<br />

on Γ<br />

on Γ


Numerical results - 1<br />

Ω p<br />

Γ<br />

Γ C<br />

Ω n<br />

• Ideal morphology of<br />

nanostructured<br />

polymers<br />

• Cell thickness 150 nm,<br />

nanorods 79 × 55 nm<br />

Current Density [mA m −2 ]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Γ A<br />

• V bi = 0.6 V 0<br />

0 0.2 0.4 0.6 0.8 1<br />

Applied Potential [V]<br />

Open Circuit Voltage [V]<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

10 20 10 21 10 22 10 23 10 24 10 25 10 26<br />

Exciton Generation Rate [m −3 s −1 ]<br />

de Falco & al. 2011<br />

Short Circuit Current Density [mA m −2 ]<br />

10 0<br />

10 −2<br />

10 −4<br />

10 −6<br />

10 20 10 22 10 24 10 26 10 28 10 30<br />

10 2 Exciton Generation Rate [m −3 s −1 ]


Numerical results - 2<br />

Short circuit (V appl = 0 V) Open circuit (V appl = 0.9 V)<br />

de Falco & al. 2011


Numerical results - 3<br />

• Very complex morphology<br />

• Remarkable reduction of<br />

computational cost<br />

de Falco & al. 2011<br />

Current Density [mA m −2 ]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Applied Potential [V]


Conclusions and future work<br />

Conclusions<br />

• Development of a PDE/ODE model <strong>for</strong> organic solar<br />

cells<br />

• Validation on real devices and numerical results from<br />

literature<br />

Future work<br />

• Implementation of a 3D version of the model<br />

• Inclusion of solar ra<strong>di</strong>ation spectrum and of material<br />

absorption spectrum<br />

• Further validation on experimental data, possibly with<br />

<strong>di</strong>fferent devices<br />

• More accurate models <strong>for</strong> physical parameters


Activity at CNST - SuperC<br />

• Photoactivated capacitor<br />

• Structure similar to that of<br />

a solar cell<br />

• Possibility of stacking<br />

multiple layers with<br />

<strong>di</strong>fferent materials<br />

Au electrode<br />

<strong>di</strong>electric<br />

H2PC/CuPC<br />

PTCBI/C60<br />

<strong>di</strong>electric<br />

H2PC/CuPC<br />

d d d a h<br />

PTCBI/C60<br />

<strong>di</strong>electric<br />

nd d + nd a + (n + 1)h<br />

<strong>di</strong>electric<br />

H2PC/CuPC<br />

PTCBI/C60<br />

<strong>di</strong>electric<br />

ITO electrode<br />

Vc(t)<br />

C<br />

- - - - - - - -<br />

+ + + +<br />

+ + + +<br />

+<br />

+<br />

+<br />

+<br />

+ +<br />

- - - - - - - -<br />

+ +<br />

Vp(t)<br />

i(t)<br />

• Included blackbody<br />

ra<strong>di</strong>ation with material<br />

absorption spectra<br />

• Same model as organic solar<br />

cells with mo<strong>di</strong>fications <strong>for</strong><br />

zero outward current flux<br />

• Possibly back to volumetric<br />

model (L dev ≃ H)<br />

R


Activity at CNST - Artificial Retina<br />

Structure<br />

• Photoactive<br />

polymer layer<br />

• Electrolyte<br />

• Neuronal cell<br />

V m<br />

V b<br />

C i<br />

R s<br />

R i<br />

Polymer<br />

ITO<br />

Proposed model<br />

• Bulk/bilayer solar<br />

cell model<br />

• Poisson-Nernst-<br />

Planck<br />

model<br />

• Hodgkin–Huxley<br />

model<br />

Major issues<br />

Substrate<br />

• Rates of electrochemical reactions<br />

strongly dependent on local potential<br />

and concentrations<br />

• Treatment of ionic layers in the liquid<br />

phase close to the interfaces

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!