21.11.2014 Views

Chapter 12-Newns-Anderson model

Chapter 12-Newns-Anderson model

Chapter 12-Newns-Anderson model

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction to the <strong>Newns</strong>-<br />

<strong>Anderson</strong> <strong>model</strong><br />

The NA <strong>model</strong> has two equally valid aspects<br />

a) the dynamic aspect, given by the Hamiltonian H<br />

∂ϕ(<br />

t)<br />

ih<br />

= Hϕ(<br />

t)<br />

∂t<br />

H determines the evolution of a general state in time.<br />

b) the aspects of eigenfunctions.<br />

H determines the eigen functions of constant energy<br />

E<br />

= hω<br />

ϕ ( t)<br />

= ϕ<br />

eigen 0<br />

e<br />

−iωt


creation and annihilation operators automatically take Pauli’s<br />

principle into account<br />

state<br />

1 filled with one electron,<br />

empty state<br />

creation(<br />

appearance)<br />

operator<br />

annihilation ( disappearance)<br />

a<br />

∗<br />

for<br />

one can fill state a only with one electron:<br />

state<br />

a<br />

0<br />

operator a for state a<br />

a<br />

∗<br />

∗<br />

0 = 1 a 1 =<br />

0<br />

one can take only one electron out of a state a : a 1 = 0 a 0 = 0<br />

With these definition it is easy to derive:<br />

∗<br />

∗<br />

a a 1 = 1 and a a 0 = 0 = 0×<br />

a<br />

Therefore, the operator a*a gives the number of electrons in state<br />

a<br />

namely 0 or 1.


<strong>Newns</strong>-<strong>Anderson</strong>-<strong>model</strong>,<br />

dynamics, with condition<br />

V ak < filled metal bandwidth<br />

single electron energy ε<br />

adsorbate is „reduced“ to the<br />

lowest unoccupied orbital<br />

(LUMO) |a><br />

Fermi<br />

energy<br />

E CT<br />

k final<br />

k initial<br />

metal with<br />

electron states k<br />

„dynamical charge transfer“<br />

Note, that Heisenberg‘s<br />

uncertainty principle allows<br />

residence in |a> for times<br />

shorter than ħ/E CT .<br />

V ak<br />

grows, the nearer the adsorbate<br />

comes to the surface<br />

z<br />

H = ε a † a + ∑ε<br />

a † a + ∑( V a † a + V * a † a)<br />

NA a k k k ak k ak k<br />

k<br />

k<br />

energy of<br />

LUMO<br />

number of<br />

electrons in<br />

|a><br />

energy of<br />

state k<br />

number<br />

of<br />

electrons<br />

in k<br />

Without energy for the excitation of<br />

an electron-hole pair: k final= k initial


<strong>Newns</strong>-<strong>Anderson</strong> <strong>model</strong>, adsorbate induced density of states<br />

H = ε a † a + ∑ε<br />

a † a + ∑( V a † a + V * a † a)<br />

NA a k k k ak k ak k<br />

k<br />

k<br />

For weak coupling (V ak < metallic bandwidth) H NA yields eigenfunctions | i >of the total system<br />

adsorbate and metal with a continuum of energies ε i .<br />

„adsorbate induced density of states“ ρ a<br />

(ε)dε=Σ i<br />

|| 2 δ(ε-ε i<br />

)dε<br />

is the projection of the LUMO of the combined system.<br />

Result:<br />

ε i<br />

ρ a<br />

(ε) = (1/π) (∆(ε)/(ε-ε a<br />

-Λ(ε)) 2 +∆(ε) 2<br />

This is a Lorentzian with center ε a<br />

+Λ(ε),<br />

2∆<br />

ε a<br />

+Λ(ε)<br />

with shift Λ(ε)=(1/π) P∫(∆(ε‘)dε‘)/(ε-ε‘)<br />

Fermi energy ε F<br />

and halfwidth ∆(ε) = π∫⏐V ak<br />

⏐ 2 δ(ε-ε k<br />

)dk<br />

The usual approximation is<br />

ρ<br />

a<br />

( ε ) =<br />

1<br />

π<br />

∆<br />

( ε ε )<br />

a<br />

2<br />

− +<br />

∆<br />

2<br />

0<br />

ρ a<br />

(ε)<br />

time average of electrons in |a>


Why is it possible that k final ≠ k initial (under condition of energy input)?<br />

|a><br />

Fermi<br />

energy<br />

E CT<br />

k final<br />

k initial<br />

electron after<br />

}<br />

hole dynamic CT<br />

† † † * †<br />

NA a k k k ak k ak k<br />

k<br />

k<br />

number of<br />

energy of electrons in energy of<br />

LUMO<br />

state k<br />

|a><br />

H = ε a a + ∑ ε a a + ∑ ( V a a + V a a )<br />

transformation without loss of generality<br />

z<br />

k<br />

∑<br />

initial<br />

∑<br />

V a a + V a a<br />

† * †<br />

ak k ak k<br />

k<br />

initial initial final final<br />

final


Self consistent calculations by N.D. Lang, A.R .Williams, Phys. Rev.B 18 (1978) 616,<br />

Cl, Si and Li atom adsorbed on jellium (r s =2), similarity to NA-resonances<br />

above: total electron density plots<br />

edge of the positive<br />

background<br />

Li Si Cl<br />

below: total electron density-minus superposition<br />

of atomic and bare metal electron density.<br />

Is it a Li ion in front of a sharp boundary or is it a polarised Li atom? This distinction is not unambiguously possible!<br />

∞<br />

However the surface averaged dipole moment d is still a good definition:<br />

d < 0 for electronegative adsorbates (e.g. Cl), d >0 for electropositive adsorbates e.g. Li<br />

d =−∫ ezδ<br />

n( r)<br />

d r<br />

One might call the SERS <strong>model</strong> of temporary charge transfer correctly the <strong>model</strong> of temporary<br />

change of the surface dipole moment, but I will not do that!<br />

−∞

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!