21.11.2014 Views

EE 511 Solutions to Problem Set 5

EE 511 Solutions to Problem Set 5

EE 511 Solutions to Problem Set 5

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>EE</strong> <strong>511</strong> <strong>Solutions</strong> <strong>to</strong> <strong>Problem</strong> <strong>Set</strong> 5<br />

1. (a) The sample functions are shown in Figure 1.<br />

2<br />

X t<br />

(0)<br />

1<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

1<br />

t<br />

X t<br />

(1)<br />

0<br />

−1<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

1<br />

t<br />

X t<br />

(2)<br />

0<br />

−1<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

1<br />

t<br />

X t<br />

(3)<br />

0<br />

−1<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

t<br />

Figure 1:<br />

(b) X 0 = 0. X 0.5 (0) = 1, X 0.5 (1) = −1, X 0.5 (2) = 1, and X 0.5 (3) = −1. X 0.25 (0) = 1,<br />

X 0.25 (1) = 0, X 0.25 (2) = −1, and X 0.25 (3) = 0. The marginal CDF’s of X 0 , X 0.25 ,<br />

and X 0.5 are shown in Figure 2.<br />

(c) Given that X 0.5 = −1, X 0.25 = 0 with probability 1.<br />

(d) Given that X 0.5 = 1, X 0.25 = 1 with probability 0.5 and X 0.25 = −1 with probability<br />

0.5.<br />

2. a) E[X t ] = 0.<br />

E[X t+τ X t ] = E[A 2 cos (2πf c t + Θ) cos (2πf c (t + τ) + Θ)]<br />

= A2<br />

2 [cos 2πf cτ + E[cos (2πf c (2t + τ) + 2Θ)]]<br />

= A2<br />

2 cos 2πf cτ<br />

b) We can choose any pdf for Θ as long as E[cos (2πf c (2t + τ) + 2Θ)] = 0 and<br />

E[cos (2πf c t + Θ)] = constant for any t, τ. Θ can be defined as follows:<br />

⎧<br />

⎪⎨<br />

Θ =<br />

⎪⎩<br />

0 with prob. 1 4<br />

π<br />

2<br />

with prob. 1 4<br />

π with prob. 1 4<br />

3π<br />

2<br />

with prob. 1 4<br />

1


CDf of X 0<br />

F<br />

X0<br />

(x)<br />

CDF of X 0.25<br />

F<br />

X0.25<br />

(x)<br />

CDF of X 0.25<br />

F<br />

X0.5<br />

(x)<br />

1<br />

0.5<br />

0<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3<br />

x<br />

1<br />

0.5<br />

0<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3<br />

x<br />

1<br />

0.5<br />

0<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3<br />

x<br />

Figure 2:<br />

Another possible choice for Θ is:<br />

⎧<br />

⎪⎨<br />

Θ =<br />

⎪⎩<br />

0 with prob. 1 12<br />

π<br />

4<br />

with prob. 1 6<br />

π<br />

2<br />

with prob. 1 12<br />

3π<br />

4<br />

with prob. 1 6<br />

π with prob. 1 12<br />

5π<br />

4<br />

with prob. 1 6<br />

3π<br />

2<br />

with prob. 1 12<br />

7π<br />

4<br />

with prob. 1 6<br />

A more general choice for f Θ (θ) can be made as follows:<br />

(i) Let us assume that the range of Θ is from 0 <strong>to</strong> 2π.<br />

(ii) The condition for mean <strong>to</strong> be constant can be obtained as follows:<br />

E[cos (2πf c t + Θ)] = ∫ 2π<br />

0 cos (2πf c t + θ)f Θ (θ)dθ<br />

= ∫ π<br />

0 cos (2πf ct + θ)f Θ (θ)dθ + ∫ 2π<br />

π cos (2πf ct + θ)f Θ (θ)dθ<br />

(using θ ′ = θ − π) = ∫ π<br />

0 cos (2πf ct + θ)f Θ (θ)dθ + ∫ π<br />

0 cos (2πf ct + θ ′ + π)f Θ (θ ′ + π)dθ ′<br />

= ∫ π<br />

0 cos (2πf ct + θ)f Θ (θ)dθ + ∫ π<br />

0 [− cos (2πf ct + θ ′ )]f Θ (θ ′ + π)dθ ′<br />

= ∫ π<br />

0 cos (2πf ct + θ)[f Θ (θ) − f Θ (θ + π)]dθ<br />

Therefore, if f Θ (θ) = f Θ (θ + π) for θ in [0,π], then E[cos (2πf c t + Θ)] = 0.<br />

2


(iii) The additional condition for the au<strong>to</strong>-correlation funtion <strong>to</strong> be a function of τ can<br />

be obtained as follows:<br />

E[cos (2πf c (2t + τ) + 2Θ)] = ∫ 2π<br />

0 cos (2πf c (2t + τ) + 2θ)f Θ (θ)dθ<br />

(using φ = 2θ) = 1 2<br />

= 1 2<br />

(using φ ′ = φ − 2π) = 1 2<br />

= 1 2<br />

+ 1 2<br />

+ 1 2<br />

∫ 4π<br />

0 cos (2πf c (2t + τ) + φ)f Θ<br />

( φ<br />

2)<br />

dφ<br />

∫ 2π<br />

0 cos (2πf c (2t + τ) + φ)f Θ<br />

( φ<br />

2)<br />

dφ<br />

∫ 4π<br />

2π cos (2πf c(2t + τ) + φ)f Θ<br />

( φ<br />

2)<br />

dφ<br />

∫ 2π<br />

0 cos (2πf c (2t + τ) + φ)f Θ<br />

( φ<br />

2)<br />

dφ<br />

( )<br />

∫ 2π<br />

0 cos (2πf c (2t + τ) + φ ′ φ<br />

)f ′<br />

Θ + π dφ ′<br />

2<br />

[<br />

∫ ( ) )]<br />

2π<br />

0 cos (2πf c (2t + τ) + φ) f φ<br />

Θ 2 +<br />

(φ ′<br />

fΘ + π dφ.<br />

2<br />

Assuming that we satisfy the condition from (ii) above, we get<br />

E[cos (2πf c (2t + τ) + 2Θ)] =<br />

Now, proceeding as in (ii), we need<br />

)<br />

f Θ<br />

( φ<br />

2<br />

∫ 2π<br />

0<br />

cos (2πf c (2t + τ) + φ)f Θ<br />

( φ<br />

2<br />

( ) φ + π<br />

= f Θ<br />

2<br />

for φ/2 in [0,π]. Equivalently, we need<br />

(<br />

f Θ (θ) = f Θ θ + π )<br />

2<br />

)<br />

dφ.<br />

for θ in [0,π/2].<br />

(iv) Combining the conditions from (ii) and (iii), we get<br />

(<br />

f Θ (θ) = f Θ θ + kπ )<br />

2<br />

(1)<br />

for θ in [0,π/2] and k = 1, 2, 3. Therefore, we can choose any arbitrary f Θ (θ) for<br />

θ in [0,π/2] such that<br />

∫ π<br />

2<br />

f Θ (θ)dθ = 1 4 .<br />

f Θ (θ) for θ in [π/2, 2π] can be set using (1).<br />

A sample pdf that fives a W.S.S. X t is shown in Figure 3.<br />

0<br />

3


f (θ)<br />

Θ<br />

2/3π<br />

1/3π<br />

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π<br />

θ<br />

Figure 3:<br />

3. a) E[Y t ] = E[X t cos (2πf c t + Θ)]. Since Θ and X t are independent, E[Y t ] = E[X t ]E[cos (2πf c t + Θ)<br />

m X E[cos (2πf c t + Θ)] = 0.<br />

Y t is W.S.S..<br />

R Y (t + τ,t) = E[X t X t+τ ]E[cos (2πf c t + Θ) cos (2πf c (t + τ) + Θ)]<br />

= 1 2 R X(τ)[cos 2πf c τ + E[cos 2πf c (2t + τ) + 2Θ]]<br />

= 1 2 R X(τ) cos 2πf c τ.<br />

b) E[Y t ] = E[X t ] cos 2πf c t = m X cos 2πf c t is a function of time. Y t is not W.S.S.<br />

4. E[X t ] = E[X 1 ] cos 2πf c t + E[X 2 ] sin 2πf c t. For the mean <strong>to</strong> be independent of t, we<br />

need<br />

E[X 1 ] = E[X 2 ] = 0.<br />

R X (t,t + τ) = E[(X 1 cos 2πf c (t + τ) + X 2 sin 2πf c (t + τ))(X 1 cos 2πf c t + X 2 sin 2πf c t)]<br />

=<br />

( E[X<br />

2<br />

1 ] + E[X2]<br />

2 )<br />

cos 2πf c τ<br />

2<br />

+ 2E[X 1 X 2 ] sin 2πf c (2t + τ)<br />

+<br />

( E[X<br />

2<br />

1 ] − E[X2]<br />

2 )<br />

cos 2πf c (2t + τ).<br />

2<br />

For R X (t,t + τ) <strong>to</strong> be independent of t, we need<br />

E[X 1 X 2 ] = 0 and E[X 2 1] = E[X 2 2].<br />

The conditions derived above are both necessary and sufficient.<br />

4


5.<br />

E [|X t+τ − X t | 2 ] = E [ X t+τ X ∗ t+τ]<br />

− E [Xt+τ X ∗ t ] − E [ X t X ∗ t+τ]<br />

+ E [Xt X ∗ t ]<br />

(Since X t is W. S. S.) = R X (0) − R X (τ) − R ∗ X(τ) + R X (0)<br />

= 2R X (0) − 2Re(R X (τ))<br />

(Since R X (0) is real)<br />

= 2Re(R X (0) − R X (τ)).<br />

6. (a)<br />

Adding the above equations, we get<br />

X 0 = 0<br />

ρ n−1 (X 1 = W 1 )<br />

ρ n−2 (X 2 = ρX 1 + W 2 )<br />

. .<br />

ρ 0 (X n = ρX n−1 + W n ).<br />

X n = W n + ρW n−1 + · · · + ρ n−1 W 1 .<br />

Therefore, E[X n ] = 0 and V ar(X n ) = 1 + ρ 2 + · · · + ρ 2n−2 .<br />

(b) E[X n X n+k ] = E[X n (ρX n+k−1 + W n+k )] = ρE[X n X n+k−1 ]. Therefore, we have<br />

E[X n X n+k ] = ρ k E[X 2 n] = ρ k (1 + ρ 2 + · · · + ρ 2n−2 ).<br />

(c) No. E[X n X n+k ] is dependent on n.<br />

7. Using Cauchy-Schwartz inequality and (geometric mean ≤ arithmetic mean), we have<br />

√<br />

|R XY (τ)| ≤ R X (0)R Y (0) ≤ 0.5[R X (0) + R Y (0)].<br />

8. R X (t+τ,t) = E[X t+τ X t ] = E[Y t+τ Z t+τ Y t Z t ]. Since Y t and Z t are independent random<br />

processes, R X (t + τ,t) = E[Y t+τ Y t ]E[Z t+τ Z t ] = R Y (τ)R Z (τ). X t is also W.S.S..<br />

9. a) The transfer function of the filter (whose input is X t and output is Y t ) is<br />

H(f) = 1 − e −j2πfT = 1 − cos 2πfT + j sin 2πfT.<br />

S Y (f) = S X (f)|H(f)| 2<br />

= S X (f) [(1 − cos 2πfT) 2 + (sin 2πfT) 2 ]<br />

= 2S X (f)[1 − cos 2πfT)] = 4S X (f)(sinπfT) 2<br />

b) If f ≪ 1/T such that πfT is very small, then sinπfT is approximately equal <strong>to</strong><br />

πfT. Therefore, S Y (f) = 4π 2 f 2 T 2 S X (f). A scaled version of the same power spectral<br />

density would be obtained if Y t is obtained from X t using a differentia<strong>to</strong>r, i.e., we will<br />

get S Y (f) = 4π 2 f 2 S X (f).<br />

5


10. a) E[Z t ] = E[X t ] + E[Y t ] = m X + m Y .<br />

Z t is W.S.S..<br />

R Z (t,s) = E[(X t + Y t )(X s + Y s )]<br />

= R X (t,s) + R XY (t,s) + R Y X (t,s) + R Y (t,s)<br />

(using τ = t − s) = R X (τ) + R XY (τ) + R Y X (τ) + R Y (τ)<br />

b) S Z (f) = S X (f) + S XY (f) + S Y X (f) + S Y (f).<br />

c) If X t and Y t are uncorrelated and zero-mean, then S Z (f) = S X (f) + S Y (f). If they<br />

are non-zero mean random processes and uncorrelated, then S Z (f) = S X (f)+S Y (f)+<br />

2m X m Y δ(f).<br />

11. (a) R S (t,s) = E[S t S s ] = E[(X t + Y t )(X s + Y s )] = R X (t,s) + R XY (t,s) + R Y X (t,s) +<br />

R Y (t,s). Since, X t and Y t are jointly W. S. S., we have<br />

Similarly, we can show<br />

R S (τ) = R X (τ) + R XY (τ) + R XY (−τ) + R Y (τ).<br />

R D (τ) = R X (τ) − R XY (τ) − R XY (−τ) + R Y (τ).<br />

12.<br />

(b) R XS (t,s) = E[X t (X s +Y s )] = R X (t,s)+R XY (t,s). Therefore, we have R XS (τ) =<br />

R X (τ) + R XY (τ).<br />

(c) R SD (t,s) = E[(X t + Y t )(X s − Y s )] = R X (t,s) − R XY (t,s) + R Y X (t,s) − R Y (t,s).<br />

Therefore, we have R SD (τ) = R X (τ) − R XY (τ) + R XY (−τ) − R Y (τ).<br />

R ZW (t,s) = E[Z t W s ]<br />

[∫ ∞<br />

∫ ∞<br />

]<br />

= E h 1 (τ 1 )X t−τ1 dτ 1 h 2 (τ 2 )Y s−τ2 dτ 2<br />

−∞<br />

−∞<br />

=<br />

=<br />

=<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

h 1 (τ 1 )h 2 (τ 2 )E[X t−τ1 Y s−τ2 ]dτ 1 dτ 2<br />

h 1 (τ 1 )h 2 (τ 2 )R XY (t − s − τ 1 + τ 2 )dτ 1 dτ 2<br />

[∫ ∞<br />

h 1 (τ 1 ) h 2 (τ 2 )R XY (t − s − τ 1 + τ 2 )dτ 2<br />

]dτ 1<br />

−∞<br />

From the above result, we see that R ZW (t,s) is a function of τ = t − s and is the<br />

convolution of R XY (τ), h 1 (τ) and h 2 (−τ). Therefore, we have<br />

S ZW (f) = S XY (f)H 1 (f)H ∗ 2(f).<br />

6


13. (a) Y n = X n + X n−1 + X n−2 .<br />

∞∑ e −λ λ k<br />

φ Xn (s) = E[e sXn ] = e sk = e −λ ∑ ∞<br />

k=0<br />

k!<br />

k=0<br />

λe s<br />

k!<br />

= e −λ e λes = e −λ(1−es) .<br />

Since X n , X n−1 , and X n−2 are independent and identically distributed, we have<br />

φ Yn (s) = E[e sYn ] = E[e sXn ]E[e sX n−1<br />

]E[e sX n−2<br />

] = E[e sXn ] 3 = e −3λ(1−es) .<br />

Therefore, Y n is a Poisson random variable with parameter 3λ, i. e.,<br />

P[Y n = k] = e −3λ(3λ)k<br />

k!<br />

∀k ≥ 0.<br />

(b)<br />

φ Yn (s) = E[e sYn ] = E[e sXn ]E[e sX n−1<br />

]E[e sX n−2<br />

] = e −(λn+λ n−1+λ n−2 )(1−e s) .<br />

Therefore, Y n is a Poisson random variable with parameter λ n + λ n−1 + λ n−2 , i.<br />

e.,<br />

P[Y n = k] = e −(λn+λ n−1+λ n−2 ) (λ n + λ n−1 + λ n−2 ) k<br />

∀k ≥ 0.<br />

k!<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!