22.11.2014 Views

INDICIAL NOTATION (Cartesian Tensor)

INDICIAL NOTATION (Cartesian Tensor)

INDICIAL NOTATION (Cartesian Tensor)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>INDICIAL</strong> <strong>NOTATION</strong> (<strong>Cartesian</strong> <strong>Tensor</strong>)<br />

Basic Rules<br />

i) A free index appears only once in each term of a tensor equation. The equation<br />

then holds for all possible values of that index.<br />

ii) Summation is implied on an index, which appears twice.<br />

iii) No index can appear more than twice in any term.<br />

Definition (<strong>Cartesian</strong> <strong>Tensor</strong>s)<br />

Consider a change of frame<br />

x = Q x ,<br />

*<br />

i<br />

ij<br />

j<br />

*<br />

x<br />

j<br />

= Qijx<br />

i<br />

, det Qij = ± 1, QijQ ik<br />

= δ<br />

jk<br />

, QijQ kj<br />

= δik<br />

The quantities T(<br />

x ) , v (x)<br />

, and t (x)<br />

are said to be a scalar, a vector, or a second order<br />

tensor if they transform according to the rules:<br />

T * *<br />

= T, v = Q ⋅ v ,<br />

or in component forms:<br />

τ<br />

*<br />

= Q ⋅ t ⋅Q<br />

T<br />

*<br />

*<br />

v<br />

i<br />

= Qijv<br />

j<br />

, t<br />

ij<br />

= QikQ<br />

jlt<br />

kl<br />

Similarly, a third order tensor λ transforms as:<br />

λ<br />

*<br />

ijk<br />

= Q Q Q λ<br />

im<br />

jn<br />

kl<br />

mnl<br />

<strong>Tensor</strong> Operations<br />

Gradient:<br />

∂ϕ<br />

( ∇ϕ)<br />

i<br />

= = ϕ<br />

∂x<br />

i<br />

∂v<br />

j<br />

( ∇v)<br />

ij<br />

= = v<br />

∂x<br />

ε<br />

,i<br />

j,i<br />

Divergence:<br />

∇ ⋅ v = v i,i<br />

∂τij<br />

( ∇ ⋅ τ )<br />

j<br />

= = τ<br />

∂x<br />

i<br />

ij,i<br />

ME637<br />

G. Ahmadi


Curl:<br />

∂U<br />

k<br />

( ∇ × U )<br />

i<br />

= εijk<br />

= εijk<br />

∂x<br />

j<br />

Here, ε<br />

ijk<br />

is the permutation symbol. The permutation symbol is used for<br />

evaluating the determinant. e.g.,<br />

det A = ε A A A ,<br />

ijk<br />

1i<br />

2 j<br />

3k<br />

U<br />

k, j<br />

The inner product of the permutation symbol satisfy the following identity:<br />

ε<br />

ijk<br />

ε<br />

imn<br />

= δ<br />

jm<br />

δ<br />

kn<br />

− δ<br />

jn<br />

δ<br />

km<br />

Laplacian:<br />

Isotropic <strong>Tensor</strong>s<br />

2<br />

2 ∂ ϕ<br />

∇ ϕ =<br />

∂x<br />

∂x<br />

i<br />

i<br />

= ϕ<br />

,ii<br />

Isotropic tensors are tensors, which are form invariant under all possible rotations<br />

of the frame of reference. The most general forms of the isotropic tensors are:<br />

Rank zero: All scalars isotropic<br />

Rank one: None<br />

Rank two: αδ<br />

ij<br />

, α a scalar and δ<br />

ij<br />

= Kronecker delta<br />

Rank three: αε<br />

ijk<br />

Rank four: αδ δ + β δ δ + δ δ ) + γ(<br />

δ δ − δ δ )<br />

ij<br />

kl<br />

(<br />

ik jl il jk ik jl il jk<br />

ME637<br />

G. Ahmadi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!