26.11.2014 Views

Calculation of stress-strain dependence from tensile tests at ... - RMZ

Calculation of stress-strain dependence from tensile tests at ... - RMZ

Calculation of stress-strain dependence from tensile tests at ... - RMZ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>RMZ</strong> – M<strong>at</strong>erials and Geoenvironment, Vol. 59, No. 4, pp. 331–346, 2012<br />

331<br />

<strong>Calcul<strong>at</strong>ion</strong> <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong><br />

high temper<strong>at</strong>ures using final shapes <strong>of</strong> specimen’s contours<br />

Določitev odvisnosti napetost – deformacija z n<strong>at</strong>eznimi preizkusi<br />

v vročem in na osnovi končnih oblik n<strong>at</strong>eznih palic<br />

Goran Kugler 1 , Milan Terčelj 1 , Iztok Peruš 1,2 &Rado Turk 1,*<br />

1<br />

University <strong>of</strong> Ljubljana, Faculty <strong>of</strong> N<strong>at</strong>ural Sciences and Engineering, Aškerčeva 12,<br />

SI-1000 Ljubljana, Slovenia<br />

2<br />

University <strong>of</strong> Ljubljana, Faculty <strong>of</strong> Civil and Geodetic Engineering, Jamova 2,<br />

SI-1000 Ljubljana, Slovenia<br />

*Corresponding author. E-mail: Rado.Turk@ntf.uni-lj.si<br />

Received: October 26, 2012 Accepted: November 26, 2012<br />

Abstract: The new m<strong>at</strong>hem<strong>at</strong>ical model is proposed th<strong>at</strong> enable calcul<strong>at</strong>ion<br />

<strong>of</strong> true <strong>stress</strong> – true <strong>strain</strong> <strong>dependence</strong> <strong>from</strong> the results <strong>of</strong> <strong>tensile</strong> <strong>tests</strong><br />

also after appearing <strong>of</strong> necking. Based on this model the computer<br />

program was developed which <strong>from</strong> the measured final shapes <strong>of</strong> the<br />

<strong>tensile</strong> specimens and <strong>from</strong> <strong>tensile</strong> testing d<strong>at</strong>a autom<strong>at</strong>ically determine<br />

the time evolution <strong>of</strong> the specimen’s contour, <strong>strain</strong> r<strong>at</strong>e and<br />

<strong>stress</strong>-<strong>strain</strong> rel<strong>at</strong>ion. In order to <strong>tests</strong> and valid<strong>at</strong>e the model <strong>tensile</strong><br />

<strong>tests</strong> <strong>at</strong> different prescribed <strong>strain</strong> r<strong>at</strong>es and temper<strong>at</strong>ures on specimens<br />

made <strong>of</strong> nickel alloy Alloy201 were carried out on thermo-mechanical<br />

simul<strong>at</strong>or Gleeble 1500D. It was found th<strong>at</strong> after occurrence<br />

<strong>of</strong> neck the true <strong>strain</strong> r<strong>at</strong>e is constantly increasing throughout the<br />

test. Further it was found th<strong>at</strong> plastic part <strong>of</strong> the rod can be well approxim<strong>at</strong>ed<br />

with constant and with c<strong>at</strong>enary but Bridgman correction<br />

can be determined only if c<strong>at</strong>enary is used. Comparison <strong>of</strong> predicted<br />

evolution <strong>of</strong> minimal radius <strong>at</strong> the neck with measured one showed<br />

excellent agreement.<br />

Izvleček: V delu je opisan nov m<strong>at</strong>em<strong>at</strong>ični model, s k<strong>at</strong>erim je mogoče na<br />

podlagi rezult<strong>at</strong>ov n<strong>at</strong>eznih preizkusov tudi po pojavu skrčka določiti<br />

odvisnost prava napetost – prava deformacija. Na osnovi modela je bil<br />

narejen računalniški program, ki na podlagi izmerjenih končnih oblik<br />

Original scientific paper


332 Kugler, G., Terčelj, M., Peruš, I., Turk, R.<br />

n<strong>at</strong>eznih palic in pod<strong>at</strong>kov n<strong>at</strong>eznih preizkusov avtom<strong>at</strong>ično določi<br />

časovni razvoj kontur n<strong>at</strong>eznih vzorcev in izračuna hitrost deformacije<br />

ter zvezo med napetostjo in deformacijo. Model je bil preizkušen<br />

in preverjen z n<strong>at</strong>eznimi preizkusi, ki so bili za nikljevo zlitino<br />

Alloy201 pri različnih predpisanih konstantnih hitrostih deformacije<br />

in konstantnih temper<strong>at</strong>urah narejeni na simul<strong>at</strong>orju termomehanskih<br />

metalurških stanj Gleeble 1500D. Ugotovljeno je bilo, da prava hitrost<br />

deformacije po pojavu skračka začne narašč<strong>at</strong>i in narašča vse<br />

do konca preizkusa. Nadalje je pokazano, da lahko del palice, ki je<br />

v plastičnem stanju, zelo dobro aproksimiramo tako s konstanto kot<br />

tudi z verižnico, vendar pa je Bridgmanov popravek mogoče določiti<br />

le pri aproksimaciji z verižnico. Rezult<strong>at</strong>i razvoja minimalnega radija<br />

v skrčku, dobljeni s predlaganim modelom, se odlično ujemajo z meritvami.<br />

Key words: <strong>tensile</strong> test, necking, hot deform<strong>at</strong>ion, <strong>strain</strong>-<strong>stress</strong> curves.<br />

Ključne besede: n<strong>at</strong>ezni preizkus, skrček, deformacija v vročem, krivulje<br />

deformacija – napetost<br />

Introduction<br />

From the test for determin<strong>at</strong>ion <strong>of</strong> hot<br />

workability <strong>of</strong> metallic m<strong>at</strong>erials it is<br />

required to enable measurement <strong>of</strong><br />

force applied on sample as a function<br />

<strong>of</strong> its deform<strong>at</strong>ion <strong>at</strong> constant <strong>strain</strong><br />

r<strong>at</strong>e and constant temper<strong>at</strong>ure. There<br />

are three most important <strong>tests</strong>, i.e.<br />

compression test, torsion test and <strong>tensile</strong><br />

test. Each <strong>of</strong> the <strong>tests</strong> has its own<br />

problems, i.e. weaknesses, which impeded<br />

gaining <strong>of</strong> reliable d<strong>at</strong>a about<br />

<strong>stress</strong>, <strong>strain</strong>, <strong>strain</strong> r<strong>at</strong>e, deformability,<br />

etc. Compression test has seemingly<br />

the most advantages: geometry <strong>of</strong> cylindrical<br />

specimens is easy for machining<br />

and higher <strong>strain</strong>s as well as <strong>strain</strong><br />

r<strong>at</strong>es can be achieved in comparison<br />

to <strong>tensile</strong> test, but due to the presence<br />

<strong>of</strong> friction between compression anvil<br />

and specimen buckling can occur especially<br />

<strong>at</strong> slightly higher <strong>strain</strong>s. Thus<br />

uniaxial <strong>stress</strong> st<strong>at</strong>e in deformed specimen<br />

is present only up to the beginning<br />

<strong>of</strong> its buckling when also reliable<br />

value rel<strong>at</strong>ed to hot deform<strong>at</strong>ion can be<br />

obtained. In case <strong>of</strong> exceeding <strong>of</strong> mentioned<br />

compression <strong>strain</strong> additional<br />

s<strong>of</strong>tware is needed for gaining <strong>of</strong> more<br />

reliable d<strong>at</strong>a. Hot torsion testing takes<br />

place without presence <strong>of</strong> friction;<br />

moreover this test is very appropri<strong>at</strong>e<br />

for assessment <strong>of</strong> hot workability since<br />

higher <strong>strain</strong> can be achieved by this<br />

type <strong>of</strong> testing th<strong>at</strong> increase the reliability.<br />

But its weakness is in control<br />

(maintenance) <strong>of</strong> constant temper<strong>at</strong>ure<br />

during test, inhomogeneity <strong>of</strong> deform<strong>at</strong>ion<br />

so along working length <strong>of</strong><br />

<strong>RMZ</strong>-M&G 2012, 59


<strong>Calcul<strong>at</strong>ion</strong> <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong> high temper<strong>at</strong>ures using ...<br />

333<br />

specimen as well as in radial direction.<br />

Especially due to the l<strong>at</strong>est weakness<br />

<strong>strain</strong> and <strong>strain</strong> r<strong>at</strong>e can be expressed<br />

as equivalent <strong>strain</strong> and <strong>strain</strong> r<strong>at</strong>e. At<br />

hot <strong>tensile</strong> testing also non-homogeneity<br />

<strong>of</strong> deform<strong>at</strong>ion occurs on specimen<br />

working length th<strong>at</strong> is expressed<br />

by its necking. It is well known, th<strong>at</strong><br />

for <strong>tensile</strong> test homogenous deform<strong>at</strong>ion<br />

takes place only untilappearance<br />

<strong>of</strong> necking which occurs <strong>at</strong> <strong>strain</strong>s <strong>of</strong><br />

approxim<strong>at</strong>ely between 0.2 and 0.3,<br />

depending on precision <strong>of</strong> manufacturing<br />

<strong>of</strong> the <strong>tensile</strong> samples, onm<strong>at</strong>erials<br />

inhomogeneity, on temper<strong>at</strong>ure gradient<br />

along the <strong>tensile</strong> axis, etc.<br />

When the neck appears, the <strong>stress</strong> st<strong>at</strong>e<br />

change <strong>from</strong> uniaxial to multi-axialmust<br />

be taken into account. The correction<br />

due to multi-axiality is usuallydone<br />

by Bridgman correction, which<br />

presumes th<strong>at</strong> portion <strong>of</strong> the contour<br />

inclose neighborhood <strong>of</strong> the minimal<br />

cross-section <strong>of</strong> the neck may be characterized<br />

by a single parameter, the<br />

radius <strong>of</strong> curv<strong>at</strong>ure <strong>of</strong> the circle oscul<strong>at</strong>ing<br />

the pr<strong>of</strong>ile <strong>at</strong> the neck. [1] But obtaining<br />

reliable d<strong>at</strong>a on <strong>stress</strong> – <strong>strain</strong><br />

rel<strong>at</strong>ion <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> after appearance<br />

<strong>of</strong> necking is very difficult<br />

task especially if testing is conducted<br />

<strong>at</strong> elev<strong>at</strong>ed temper<strong>at</strong>ures, which is exactly<br />

the case if one wants to study hot<br />

workability <strong>of</strong> metallic m<strong>at</strong>erials.<br />

The aims <strong>of</strong> this study are therefore to<br />

evalu<strong>at</strong>e the possibility <strong>of</strong> applicability<br />

<strong>of</strong> <strong>tensile</strong> test for determin<strong>at</strong>ion <strong>of</strong> hot<br />

working properties <strong>of</strong> metallicm<strong>at</strong>erials<br />

also after the appearance <strong>of</strong> necking<br />

and to introduce appropri<strong>at</strong>emodel for<br />

calcul<strong>at</strong>ion <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong><br />

<strong>from</strong> the final shapes <strong>of</strong>contours <strong>of</strong> <strong>tensile</strong><br />

loaded specimens.<br />

Experimental procedure<br />

A commercially produced Ni alloy<br />

Alloy201 was supplied by Thyssen-<br />

Krupp Gmbh as hot drowned rods with<br />

chemical composition given in Table<br />

1 and equiaxed grain structure with an<br />

average grain size <strong>of</strong> about 16 μm.<br />

Cylindrical specimens with dimensions<br />

<strong>of</strong> 25 mm <strong>of</strong> effective length and<br />

<strong>of</strong> 8 mm in diameter where machined<br />

<strong>from</strong> supplied rods for hot <strong>tensile</strong> <strong>tests</strong><br />

(see Figure 1 for specimen’s geometry<br />

and dimensions).<br />

Table 1. Chemical composition <strong>of</strong> the commercially pure Ni (Alloy201) tested in mass<br />

fractions w/%<br />

Mo Cr Si S Mg Co Cu P<br />

0.001 0.004 0.05 0.001 0.03 0.07 0.006 0.006<br />

Mn Ti Fe Sn C V Al Ni<br />

0.13 0.04 0.13 0.01 0.02 0.002 0.023 rest<br />

<strong>RMZ</strong>-M&G 2012, 59


334 Kugler, G., Terčelj, M., Peruš, I., Turk, R.<br />

Figure1. Dimension <strong>of</strong> specimen’s for <strong>tensile</strong> testing.<br />

(a)<br />

(b)<br />

Figure2. Schem<strong>at</strong>ic represent<strong>at</strong>ion <strong>of</strong> temper<strong>at</strong>ure control (left), and<br />

shaping <strong>of</strong> contour (right) during hot <strong>tensile</strong> testing <strong>of</strong> Alloy201.<br />

The hot <strong>tensile</strong> <strong>tests</strong> were carried out<br />

on Gleeble 1500D thermomechanical<br />

testing machine. The samples were deformed<br />

between 8 mm and 11 mm <strong>at</strong><br />

temper<strong>at</strong>ures <strong>from</strong> 800 °C to 1000 °C<br />

under prescribed constant <strong>strain</strong> r<strong>at</strong>es<br />

between 10 –3 s –1 and 10 –1 s –1 assuming<br />

th<strong>at</strong> deform<strong>at</strong>ion was homogeneous on<br />

entire working length. The temper<strong>at</strong>ure<br />

as a function <strong>of</strong> time during <strong>tensile</strong> <strong>tests</strong><br />

is shown on Figure 2a, and specimen<br />

during testing is shown on Figure 2b.<br />

Essentially the deformed shape-<strong>of</strong>the-rod<br />

after <strong>tensile</strong> testing represents<br />

the history <strong>of</strong> traveling <strong>of</strong> the crosssection<br />

th<strong>at</strong> separ<strong>at</strong>es the elastic and<br />

plastic st<strong>at</strong>e <strong>of</strong> m<strong>at</strong>erial. [3, 4] The portion<br />

<strong>of</strong> m<strong>at</strong>erial th<strong>at</strong> in a given moment<br />

left the plastic st<strong>at</strong>e preserves its shape<br />

until the end <strong>of</strong> the experiment.Based<br />

on this fact, in wh<strong>at</strong> follows, the new<br />

model for description <strong>of</strong> evolution <strong>of</strong><br />

specimen’s contours during <strong>tensile</strong><br />

testing will be introduced.<br />

Description <strong>of</strong> the m<strong>at</strong>hem<strong>at</strong>ical approach<br />

Model for description <strong>of</strong> contour <strong>of</strong><br />

<strong>tensile</strong> specimen<br />

A cylindrical rod <strong>of</strong> radius, r, maintains<br />

its rot<strong>at</strong>ional symmetry around<br />

the longitudinal axis, z, during a <strong>tensile</strong><br />

test, and thus its shape <strong>at</strong> given<br />

time, t, is determined by the rot<strong>at</strong>ional<br />

curve r = r(z, t), which forms its sur-<br />

<strong>RMZ</strong>-M&G 2012, 59


<strong>Calcul<strong>at</strong>ion</strong> <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong> high temper<strong>at</strong>ures using ...<br />

335<br />

= (, <br />

face after rot<strong>at</strong>ion around longitudinal elastic parts <strong>of</strong> the rod. These )<br />

two<br />

axis, z, <strong>of</strong> the rod. Before the test this points were moving along the () curve<br />

curve is a cylinder r(z, 0) = r 0<br />

, where r = r(z, t k<br />

), during <strong>tensile</strong> test. Thus,<br />

r 0<br />

is the initial radius <strong>of</strong> the rod. After the rod may be () <strong>at</strong> = any = time divided<br />

(, )<br />

= (, )<br />

the test is finished this curve must be into three parts<br />

<br />

carefully measured to obtain results () in<br />

()<br />

()<br />

()<br />

the form<br />

() = = (, )<br />

= ( (, ) + (, ) + <br />

= (, )<br />

<br />

(1)<br />

()<br />

()<br />

()<br />

where t k<br />

is the dur<strong>at</strong>ion <strong>of</strong> the experi-<br />

= = ( Initial (, volume (, ) ) + <strong>of</strong> the rod (, ) <strong>of</strong> + (, ))<br />

(3)<br />

( (), ) = ( (), )<br />

() = ment.<br />

length, l o<br />

, is V 0<br />

= πr 2 l 0<br />

. The <br />

volume is<br />

()<br />

()<br />

()<br />

0<br />

conserved during plastic deform<strong>at</strong>ion,<br />

= (, )<br />

and<br />

()<br />

thus volume ( for (), ()<br />

an arbitrary ) = ( time (), The ) first and last sections belong to<br />

, ) + can be expressed (, ) as + <br />

= (, )<br />

()<br />

(, ))<br />

the elastic part and the middle section<br />

()<br />

to the plastic part <strong>of</strong> the rod. The final<br />

()<br />

() ()<br />

( (), ) = ( (), ) = ( (), )<br />

= (, )shape <strong>of</strong> the rod represents the line<br />

( (2) <strong>of</strong> movements <strong>of</strong> the points which<br />

(),<br />

()<br />

) =<br />

(<br />

=<br />

(),<br />

<br />

) (, ) (, )<br />

separ<strong>at</strong>e plastic and elastic = (, st<strong>at</strong>e ()<br />

= (, )<br />

)<br />

<strong>of</strong> <br />

<br />

<br />

the m<strong>at</strong>erial. The portion () <br />

<strong>of</strong> the curve ()<br />

() ( (), ) = ( (), ) = ( (), ) ()<br />

()<br />

where l(t) is the length <strong>of</strong> the rod <strong>at</strong> r = r(z, t k<br />

), th<strong>at</strong> lies left <strong>of</strong> the minimal<br />

) cross-section is a monotonically = (, )<br />

= <br />

time t. By ()<br />

()<br />

(, )<br />

(, )<br />

( (, ) + comparison (, )between + final<br />

(, )<br />

(, )<br />

<br />

shape<br />

()<br />

<strong>of</strong> the rod and<br />

<br />

its shape<br />

= (, () = <br />

) = (, )<br />

<strong>at</strong> arbitrary<br />

moment after occurrence <strong>of</strong> neck, the right is a () monotonically increasing<br />

<br />

= (, <br />

decreasing function<br />

)<br />

and () the portion<br />

<br />

<br />

on ()<br />

<br />

() () () ()<br />

(), ) =<br />

but<br />

( before<br />

(), )<br />

the<br />

= (<br />

end (),<br />

<strong>of</strong><br />

<br />

the )<br />

( test, we ascertain<br />

th<strong>at</strong> both shapes differ only in <strong>of</strong> l l<br />

function. Thus for the prescribed value<br />

(), ) (, = ()<br />

(), )<br />

(t) the value <strong>of</strong> l d<br />

(t) can be calcul<strong>at</strong>ed<br />

()<br />

(, )<br />

the middle, = (, but = (, ()<br />

()<br />

()<br />

)<br />

() = (, ) = ( <br />

<br />

() the end () <br />

()<br />

<br />

= <br />

(, ) = <br />

+ <br />

(, (, )<br />

) + (, ))<br />

<br />

parts are the <strong>from</strong> the<br />

<br />

<br />

() condition () ()<br />

same. () Namely, the rod () <strong>at</strong> the intermedi<strong>at</strong>e<br />

= <br />

<br />

time is shorter (, )<br />

() ()<br />

()<br />

()<br />

and it has a smaller<br />

(4)<br />

(, )<br />

neck. = Thus, (, <br />

we () )<br />

can conclude th<strong>at</strong> the = <br />

<br />

( <br />

(, (, ) <br />

() = (), ) = ( (), )<br />

= ( (, (, ) ) + )<br />

parts () <strong>of</strong> the rod, which () have the same From those two <br />

+<br />

1 +<br />

<br />

<br />

)<br />

<br />

)<br />

<br />

() <br />

() () values the () volume <br />

( (),<br />

shape<br />

)<br />

as<br />

=<br />

it<br />

(<br />

is <br />

<strong>at</strong><br />

(),<br />

the<br />

)<br />

end<br />

= (<br />

<strong>of</strong> the (),<br />

test,<br />

)<br />

were which is <strong>at</strong> given time in plastic st<strong>at</strong>e<br />

<strong>at</strong> th<strong>at</strong><br />

()<br />

moment in an elastic st<strong>at</strong>e and can be calcul<strong>at</strong>ed<br />

(, )<br />

() = the part, <br />

which (, = ) is (, different, )<br />

(<br />

was in plastic<br />

<br />

) = <br />

= <br />

= (, )<br />

( <br />

(, ) (, ) (), ) = ( (), )<br />

()<br />

st<strong>at</strong>e. Consequently, 1 + <br />

() <br />

<br />

<br />

on deformed<br />

()<br />

()<br />

()<br />

( (<br />

(), ) = ( <br />

(), ) ) = ( (), ) <br />

rod there are always two points th<strong>at</strong> <strong>at</strong><br />

(5)<br />

(,<br />

given )<br />

moment = separ<strong>at</strong>e (, = (, )<br />

)<br />

the plastic and<br />

= ( (, ) + (, ))<br />

<br />

(, ) (, ) ( <br />

<br />

1 + () ) = (, ) <br />

<br />

()<br />

= (, ()<br />

)<br />

<br />

<br />

<br />

<strong>RMZ</strong>-M&G 2012, 59<br />

() ()<br />

( (), ) = ( (), ) = ( (), )<br />

<br />

() ( )<br />

= ( (, ) + (, )<br />

) (, () = )<br />

(, ))<br />

()<br />

<br />

()<br />

()


= ( (, ) + = (, ()<br />

(, ) + )<br />

(, ))<br />

() ()<br />

<br />

336() = ()<br />

()<br />

= ()<br />

()<br />

()<br />

(, )<br />

Kugler, G., Terčelj, M., Peruš, I., Turk, R.<br />

<br />

()<br />

( (), ) = ( (), )<br />

= ( (, ) + (, ) + (, ))<br />

<br />

() ( <br />

= (), (, <br />

= ) = ) ( (), (, ) )<br />

()<br />

()<br />

()<br />

()<br />

The idea for<br />

()<br />

reconstruction <strong>of</strong><br />

()<br />

the step the system <strong>of</strong> linear or non-linear<br />

( intermedi<strong>at</strong>e ()<br />

<br />

(, ) + shapes <strong>of</strong> the rod (<br />

(, ) + is<br />

<br />

equ<strong>at</strong>ions must = <br />

be solved depending (), <br />

(, ) = (<br />

))<br />

(), ) (, )<br />

on<br />

() () now = to find ()<br />

the approxim<strong>at</strong>e ()<br />

= (, ) func-<br />

(, f(z,t) ) + ≈ r(z,t), ()<br />

for (, which ) + <br />

selected function. The simplest<br />

()<br />

choice<br />

<br />

()<br />

()<br />

( tion for ()<br />

<br />

(, ) the ) selection <strong>of</strong> function is certainly<br />

the constant, which upon rot<strong>at</strong>ion<br />

( (), () ) = ( (), ) ()<br />

( (), ) = ( (), ) = ( (), )<br />

= (, )<br />

()<br />

<br />

( (), ) = ()<br />

()<br />

( (), ) = ( (), ) (6) around its axes forms cylinder. Unfortun<strong>at</strong>ely<br />

the conditions (7) and (8) can-<br />

(, )( + ()<br />

(), <br />

) (, =<br />

where (, l)<br />

c<br />

(t) is the length <strong>from</strong> the beginning<br />

<strong>of</strong> = ()<br />

not be fulfilled for approxim<strong>at</strong>ion with<br />

= (, ( ) (), + <br />

)<br />

()<br />

(, )<br />

(, ))<br />

= (, )<br />

<br />

)<br />

<br />

<br />

<br />

<br />

the<br />

<br />

rod<br />

()<br />

to the ( <br />

(, )<br />

()<br />

() ()<br />

(), ) = ( (), ) = ( (), )<br />

() end <strong>of</strong><br />

<br />

the<br />

()<br />

plastic cylinder. Besides th<strong>at</strong>, the radius <strong>of</strong><br />

part. Since the<br />

()<br />

( (), contour <strong>of</strong> deformed rod curv<strong>at</strong>ure <strong>of</strong> the contour <strong>at</strong> the minimal<br />

<br />

is (, smooth, = ) = ( <br />

) it immedi<strong>at</strong>ely follows for cross-section is needed for calcul<strong>at</strong>ion<br />

the left end side= (, (), (, ) ) (, ) (, )<br />

= (, )<br />

= (, )<br />

)<br />

<br />

<br />

<br />

<br />

<br />

( (), ) = ( (), ) = ( (), )<br />

() <br />

()<br />

()<br />

() ()<br />

<strong>of</strong> the Bridgman <strong>stress</strong> correction, [1] ()<br />

but<br />

() ()<br />

for the approxim<strong>at</strong>ion by cylinder this<br />

( (, = (, <br />

(), = ) = ( ()<br />

(), (, )<br />

= ) (<br />

(,<br />

(), <br />

)<br />

)<br />

() (7) radius = (, )<br />

is infinite. On the other hand, for<br />

<br />

()<br />

() <br />

() = <br />

an arbitrary function this radius, R,can<br />

() = ()<br />

(, )<br />

= (, ) () ()<br />

(, )<br />

)<br />

<br />

be calcul<strong>at</strong>ed <strong>from</strong><br />

()<br />

( (, and for ) the right ()<br />

= end (, one <br />

(), ) = (<br />

(), ) = (<br />

() (),<br />

) <br />

)<br />

()<br />

()<br />

<br />

() <br />

(,<br />

<br />

(8)<br />

= <br />

()<br />

(, )<br />

<br />

(, <br />

)<br />

) = (, = (, )<br />

(, )<br />

) <br />

= <br />

<br />

<br />

(, (, ) <br />

() = )<br />

<br />

<br />

() 1 + () <br />

1 + <br />

()<br />

<br />

() () <br />

<br />

()<br />

(10) ( <br />

(, ) () = (, ) ( )<br />

<br />

Due to the constancy ()<br />

= (, )<br />

= <strong>of</strong> the volume<br />

() <br />

<br />

<br />

(, ) (, ) <br />

( ) = <br />

during () plastic = ( <br />

deform<strong>at</strong>ion, ) = () <br />

(, ) it also 1 + <br />

<br />

() follows<br />

<br />

)<br />

(<br />

<br />

<br />

<br />

where r min<br />

is the minimal radius <strong>at</strong> time t.<br />

= <br />

<br />

<br />

(, ) () () (, ) <br />

(9)<br />

= 1 + ( = ( (, ) + ) = <br />

(, ))<br />

( (, ) + <br />

<br />

(, ))<br />

( <strong>Calcul<strong>at</strong>ion</strong> )<br />

= <br />

() = (, ) <br />

(, ) (, ) <br />

<br />

<br />

<strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong><br />

<br />

<br />

()<br />

<br />

1 + <br />

<br />

<br />

<br />

<br />

The value <strong>of</strong> (l c<br />

(t) ) = which <br />

<br />

must be gre<strong>at</strong>er ( After ) hot <strong>tensile</strong> testing the measurements<br />

<strong>of</strong> deformed rods were carried<br />

<br />

= ( (, ) + (, ))<br />

<br />

(,<br />

than<br />

)<br />

the length<br />

(,<br />

<strong>of</strong> cylinder<br />

) <br />

() = (, ))<br />

<strong>of</strong> the same<br />

() <br />

= <br />

volume and <br />

<br />

<br />

1 + <br />

( (, ))<br />

radius )<br />

<br />

<br />

= <br />

r = r(l l<br />

, t k<br />

) on one out by the measurement microscope,<br />

<br />

hand = ( and must (, ) be smaller + <br />

than (,<br />

(<br />

) l d<br />

(t) ) on<br />

)<br />

which autom<strong>at</strong>ically save the ( measured<br />

)<br />

<br />

<br />

the other hand, is determined<br />

(<br />

( iter<strong>at</strong>ively.<br />

For the function model th<strong>at</strong> fulfils d<strong>at</strong>a only those N points for which r i<br />

<br />

() ) = = <br />

<br />

table <strong>of</strong> d<strong>at</strong>a (, ))<br />

r i<br />

= r i<br />

(z i<br />

). From measured<br />

<br />

)<br />

≤<br />

(( ))[1 = the + (( conditions 2((<br />

)(, = )) ) <br />

(6), (7), ((<br />

+ (8) ))<br />

<br />

(, ))<br />

(( ))[1 + 2(( )) (( ))] ln(1 + <br />

<br />

<br />

] ln(1<br />

and<br />

+<br />

(9),<br />

the<br />

(( r<br />

)) <br />

o<br />

, where<br />

2((<br />

r )))<br />

<br />

o<br />

is radius <strong>of</strong> non-deformed<br />

<br />

<br />

<br />

polynomial () = or any other suitable function<br />

could<br />

rod, are taken into account. Additionally<br />

be<br />

ln( ( ) = ln( (( )))<br />

( (, ))<br />

used. <br />

= ( ) =<br />

(, ) + In (( any (, case ))[1 ) ) due + ) 2(( to the<br />

)) two (( points )) ] ln(1<br />

which<br />

+<br />

are the nearest<br />

mentioned () = conditions in <br />

(, every )iter<strong>at</strong>ion<br />

) to the interval <strong>of</strong> N<br />

<br />

points<br />

= <br />

(( )) 2(( )))<br />

are also con-<br />

= <br />

(<br />

) <br />

<br />

= ln( (( )))<br />

<br />

(( ))[1 + 2(( )) (( ))] ln(1 + (( )) 2(( )))<br />

() = (<br />

<br />

1 (, )<br />

) )<br />

= <br />

= 1 = <br />

<br />

<br />

<br />

<br />

<strong>RMZ</strong>-M&G 2012, 59<br />

<br />

<br />

+ <br />

=


() = (, )<br />

()<br />

()<br />

()<br />

<strong>Calcul<strong>at</strong>ion</strong> () = <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong> high temper<strong>at</strong>ures using ... 337<br />

= = (, )<br />

(, )<br />

()<br />

= <br />

<br />

<br />

<br />

(, ) (, ) <br />

sidered. For reconstruction <strong>of</strong> contour ing 1 + <br />

()<br />

()<br />

()<br />

is true V p<br />

= V o<br />

–V e<br />

. For the part <strong>of</strong><br />

(), ) = the (continuous (), ) = ( function (), is ) needed and the rod which is in the plastic st<strong>at</strong>e ( two )<br />

= ( (, ) + (, ) + (, ))<br />

thus, cubic splines were applied for additional conditions are valid, namely<br />

(, ) <br />

interpol<strong>at</strong>ion = (, ()<br />

<br />

which )<br />

()<br />

yields continuous<br />

() function r r(z). ()<br />

it cannot (<br />

<br />

be ) longer = than s 1<br />

V p<br />

⁄πr 2 (l l<br />

)<br />

<br />

(<br />

The next step is and cannot be shorter than s 2<br />

= l d<br />

–l l<br />

,<br />

(), ) = ( (), )<br />

<br />

<br />

now the calcul<strong>at</strong>ion <strong>of</strong> the volume <strong>of</strong> respectively.<br />

(, ) the rod which undergoes plastic deform<strong>at</strong>ion.<br />

() Here the Simpson () integr<strong>at</strong>ion Let construct the function <br />

= (, )<br />

= ( (, ) + ()<br />

(, ))<br />

<br />

<br />

<br />

method [2] = <br />

was employed (, )<br />

for numerical<br />

integr<strong>at</strong>ion () ()<br />

<br />

<strong>of</strong> equ<strong>at</strong>ion (2). In the<br />

<br />

present work two different functional<br />

(13)<br />

() = () = <br />

(, )<br />

(, ))<br />

(<br />

models (), )<br />

were<br />

= (<br />

chosen, (), ) =<br />

namely<br />

( (),<br />

c<strong>at</strong>enary<br />

)<br />

<br />

<br />

and constant. ()<br />

On deformed part <strong>of</strong> the<br />

(, )<br />

rod K equidistant points separ<strong>at</strong>ed for which on the interval s 1<br />

≤ s ≤ s 2<br />

has the<br />

<br />

<br />

<br />

<br />

= (, )<br />

<br />

(, ) Δz, were (, selected ) (<br />

and ) =<br />

<br />

( )<br />

() <strong>from</strong> th<strong>at</strong> () for the root, which is found by bisection. Further,<br />

the parameters <strong>of</strong> the functional<br />

<br />

final<br />

1 +<br />

length<br />

<br />

<strong>of</strong> deformed<br />

(( ))[1 + 2(( )) (( ))] ln(1 + (( )) 2<br />

rod, l(t k<br />

), we<br />

find (, )<br />

( )<br />

= (, )<br />

<br />

model = ln( which <br />

fulfil (( <br />

the )))<br />

conditions<br />

() () (6)–(8) must be determined in every<br />

( ) = <br />

(11) bisection step. We have the system <strong>of</strong><br />

<br />

linear equ<strong>at</strong>ions = <br />

()<br />

for the polynomial<br />

<br />

After a number <br />

<strong>of</strong> trials we found th<strong>at</strong> model (constant in the present work)<br />

() = (, )<br />

( the (, value ) + <strong>of</strong> Δz = (, 0.5 ) mm ) is most suit-<br />

able. In order to meet the condition (4), for the c<strong>at</strong>enary; where the last one is<br />

and the system <strong>of</strong> non-liner equ<strong>at</strong>ions<br />

<br />

<br />

= <br />

= 1 <br />

<br />

+ <br />

= <br />

<br />

<br />

()<br />

we find for each value <strong>of</strong> l l<br />

= iΔz corresponding<br />

value <strong>of</strong> l d<br />

solved by the Newton method [2]. The<br />

in every step iter<strong>at</strong>ion is interrupted when g(s) < ε,<br />

= <br />

<br />

<br />

(, ) (, ) <br />

() = i∈[1, 1 + <br />

K] by (, bisection. ))<br />

For those two where ε is prescribed accuracy. First<br />

values which are <strong>at</strong> th<strong>at</strong> particular ( ) we determine r min<br />

and then <strong>from</strong> (10)<br />

<br />

moment in elastic st<strong>at</strong>e we calcul<strong>at</strong>ed the radius <strong>of</strong> curv<strong>at</strong>ure <strong>of</strong> the contour<br />

volume <strong>of</strong> ( the ( ) rod, ) = V e<br />

, as<br />

<strong>at</strong> the minimal cross-section, R. Both<br />

+ 2((<br />

<strong>of</strong> them are combined into the vector.<br />

)) <br />

(( ))] ln(1 + (( )) 2(( )))<br />

<br />

Described procedure is iter<strong>at</strong>ed until<br />

<br />

(12) V p<br />

> ε 1<br />

or l l<br />

+ l d<br />

+ s


338 Kugler, G., Terčelj, M., Peruš, I., Turk, R.<br />

Figure 3. Schem<strong>at</strong>ic <strong>of</strong> the algorithm th<strong>at</strong> <strong>from</strong> measured final contours <strong>of</strong> deformed<br />

rods and <strong>from</strong> force-displacement d<strong>at</strong>a enables calcul<strong>at</strong>ions <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong>,<br />

time evolution <strong>of</strong> contours and <strong>strain</strong> r<strong>at</strong>es.<br />

<strong>RMZ</strong>-M&G 2012, 59


, ) (, )<br />

(, ) 1 () + = <br />

(, )<br />

= (, )<br />

<br />

<br />

<br />

<strong>Calcul<strong>at</strong>ion</strong> <strong>of</strong> ()<br />

<strong>stress</strong>-<strong>strain</strong> ( <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong> high temper<strong>at</strong>ures using ...<br />

()<br />

() )<br />

<br />

( ) = <br />

)<br />

<br />

(, ) ()<br />

(, )<br />

terpol<strong>at</strong>ion function for any = ( l are calcul<strong>at</strong>ed.Finally,<br />

= (, <strong>from</strong> )<br />

(, ) Results + and (, Discussion ))<br />

1 + <br />

<br />

()<br />

<br />

the experimental <br />

<br />

results <strong>of</strong> the <strong>tensile</strong> test, which was Technical curves and contour<br />

( <br />

( )<br />

()<br />

(,<br />

conducted<br />

) + <br />

<strong>at</strong><br />

constant<br />

(, ))<br />

<br />

temper<strong>at</strong>ure, the shapes <strong>of</strong> deformed rods<br />

(<br />

true <strong>stress</strong> <br />

is determined, th<strong>at</strong> () is further = Tensile <br />

) = <br />

<br />

<br />

<br />

(, ) (, ) <br />

(, <strong>tests</strong> ) were ) carried out by uniaxial<br />

tension <strong>at</strong> prescribed displacements<br />

corrected by Bridgman formula[1].<br />

1 + <br />

<br />

<br />

Thus, we have<br />

r<strong>at</strong>es <strong>of</strong> anvils and <strong>at</strong> constant temper<strong>at</strong>ures,<br />

( where ) the tension force and dis-<br />

) = ( (, ) (, ) + ) (<br />

(, ))<br />

)<br />

( ) =<br />

<br />

<br />

<br />

( placement were continually recorded.<br />

(( ) = ))[1 + 2(( )) (( ))] ln(1 + (( )) 2(( )))<br />

After the test the contours for every deformed<br />

(( rod )) were ) carefully measured by<br />

( ) <br />

<br />

<br />

= ln( <br />

((() )) = (( ))<br />

] ln(1 (, + ) )(( )) 2((microscope. )))<br />

The number <strong>of</strong> measured<br />

= ( (, ) + (, ))<br />

<br />

points on each section <strong>of</strong> the contour<br />

<br />

(14) = <br />

= ln( (( )) <br />

( )<br />

)) 2(( )))<br />

<br />

<br />

<strong>of</strong> deformed <br />

rod depended on its local<br />

curv<strong>at</strong>ure, but it always exceeded 100<br />

and for the corresponding <strong>strain</strong> points. Obtained technical curves for<br />

= <br />

= 1 <br />

<br />

temper<strong>at</strong>ures + <br />

= = ( )<br />

<br />

<br />

))[1 + 2(( )) (( ))] ln(1 + (( )) 2(( )))<br />

() = (800, 900, <br />

<br />

<br />

(, ))<br />

1000) °C, and<br />

(15) <strong>strain</strong> r<strong>at</strong>es <strong>of</strong> (0.001, 0.01, and 0.1) s –1<br />

<br />

with corresponding final shapes <strong>of</strong> rods<br />

= 1 = ln(<br />

<br />

<br />

Since + <br />

<br />

the <strong>dependence</strong> = (( )))<br />

<br />

<strong>of</strong> <br />

<strong>strain</strong> on time are shown in Figure 4.<br />

= (<br />

) <br />

1 + 2(( is known,<br />

)) the (( <strong>dependence</strong> )) <br />

] ln(1 + <strong>of</strong> <strong>strain</strong> ((r<strong>at</strong>e<br />

)) 2(( )))<br />

on time during the test can be easily After the transition <strong>of</strong> the m<strong>at</strong>erial<br />

= = determined as<br />

<strong>from</strong> elastic to plastic st<strong>at</strong>e the <strong>stress</strong><br />

= ln( 1 <br />

<br />

<br />

+ (( )))<br />

= remains uniaxial, but the <strong>strain</strong> is<br />

= <br />

(16) three-axial; namely the elong<strong>at</strong>ion is<br />

<br />

uniform <strong>at</strong> uniformly decreasing <strong>of</strong> diameter.<br />

Uni-axiality <strong>of</strong> the <strong>stress</strong> is pre-<br />

The computer program which takes as<br />

<br />

an input the final shape <strong>of</strong> the contour served until the occurrence <strong>of</strong> the neck.<br />

= 1 <br />

<br />

<strong>of</strong><br />

<br />

<strong>tensile</strong><br />

+ <br />

rod<br />

= and d<strong>at</strong>a<br />

<strong>from</strong> <strong>tensile</strong> During the test the measured force is<br />

test, i.e. force and length <strong>of</strong> the rod as initially increasing until it reaches the<br />

a function <strong>of</strong> time and which executes maximum, and afterwards decreasing<br />

all the above described steps and enable<br />

determin<strong>at</strong>ion <strong>of</strong> true <strong>stress</strong> – true <strong>strain</strong> where the force is <strong>at</strong> maximum<br />

up to the end <strong>of</strong> the test. The amount <strong>of</strong><br />

<strong>strain</strong> curves and time evolution <strong>of</strong> true depends on m<strong>at</strong>erial and on constitutive<br />

rel<strong>at</strong>ion σ = σ(ε, ε, T, ...) as well as<br />

.<br />

<strong>strain</strong> r<strong>at</strong>e was written in programming<br />

language C++. The schem<strong>at</strong>ic <strong>of</strong> this on changing <strong>of</strong> cross-section <strong>of</strong> specimen.<br />

Technical curve reaches the max-<br />

program and algorithm is given on Figure<br />

3.<br />

imum when dF/dl = 0, where F stands<br />

<strong>RMZ</strong>-M&G 2012, 59<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

( ) = <br />

<br />

( )<br />

339


( )<br />

<br />

(( ))[1 + 2(( )) (( ))] ln(1 + (( )) 2(( )))<br />

( )<br />

= ln( (( )))<br />

(( ))] ln(1 + (( )) 2(( )))<br />

340 Kugler, G., Terčelj, M., Peruš, I., Turk, R.<br />

for force and l is elong<strong>at</strong>ion. From F = ing area <strong>of</strong> the rod. Since some plastic<br />

deform<strong>at</strong>ion occurs always also<br />

= <br />

(( )))<br />

σS, it follows th<strong>at</strong> <br />

<br />

outside <strong>of</strong> the working area, this contributes<br />

to error. Namely, the slope<br />

<br />

= <br />

= 1 <br />

<br />

+ <br />

= <br />

<strong>of</strong> the contour <strong>at</strong> boundary between<br />

(17) outside and inside area is very high.<br />

<br />

= <br />

Therefore the calcul<strong>at</strong>ed lengths <strong>of</strong><br />

rods <strong>at</strong> initial steps <strong>of</strong> deform<strong>at</strong>ion<br />

where the constancy <strong>of</strong> the volume has are too long, and cross-sections are<br />

been taken into account. Therefore the even smaller than those obtained<br />

force is maximal when dσ/dε = σ. <strong>at</strong> the end <strong>of</strong> deform<strong>at</strong>ion. Moving<br />

along the deformed contour results<br />

Form<strong>at</strong>ion <strong>of</strong> contours during in shortening <strong>of</strong> calcul<strong>at</strong>ed length<br />

<strong>strain</strong>ing<br />

as well as in increasing the minimal<br />

cross-section. According to the<br />

The key parameters th<strong>at</strong> for the selected<br />

functional model determine how present model the length <strong>of</strong> the rod<br />

accur<strong>at</strong>e the shape <strong>of</strong> contour can be initially increases with <strong>strain</strong>, which<br />

determined are the volume V o<br />

, which is nonsense. To avoid this inconsistency<br />

the contour was calcul<strong>at</strong>ed with<br />

undergo plastic deform<strong>at</strong>ion, and the<br />

local slopes <strong>of</strong> the final contour. Of our model only after the calcul<strong>at</strong>ed<br />

course, the last condition is not valid length begins to increase with <strong>strain</strong>,<br />

for the simplest i.e. cylindrical model, before th<strong>at</strong> the contour was calcul<strong>at</strong>ed<br />

assuming homogeneous defor-<br />

since the boundary conditions (7) and<br />

(8) cannot be fulfilled. Consequently, m<strong>at</strong>ion. The examples <strong>of</strong> calcul<strong>at</strong>ion<br />

the shapes <strong>of</strong> contours calcul<strong>at</strong>ed by <strong>of</strong> the rod shapes evolution during<br />

cylindrical model are unrealistic (see deform<strong>at</strong>ion for cylinder and for c<strong>at</strong>enary<br />

<strong>at</strong> temper<strong>at</strong>ures 1000 °C and<br />

Figures. 5a and c), but nevertheless, as<br />

it will be demonstr<strong>at</strong>ed l<strong>at</strong>er, this model<br />

gives surprisingly good prediction 0.1 s –1 are shown on Figure 5. If one<br />

900 °C, and prescribed <strong>strain</strong> r<strong>at</strong>e <strong>of</strong><br />

<strong>of</strong> the evolution <strong>of</strong> the minimal radius wants to calcul<strong>at</strong>e the <strong>dependence</strong><br />

<strong>of</strong> the rod within the neck during entire <strong>of</strong> true <strong>stress</strong> on <strong>strain</strong>, the minimal<br />

<strong>tensile</strong> test.<br />

cross-section, which is obtained <strong>from</strong><br />

reconstruction <strong>of</strong> contour <strong>of</strong> the rod,<br />

As we mentioned earlier the volume, must be given for every <strong>strain</strong>. The<br />

V o<br />

, is obtained by integr<strong>at</strong>ion <strong>of</strong> the <strong>dependence</strong> <strong>of</strong> minimal radius on<br />

final contour <strong>of</strong> the rod along the z- elong<strong>at</strong>ion for two temper<strong>at</strong>ures calcul<strong>at</strong>ed<br />

by c<strong>at</strong>enary model is given<br />

axis considering condition r(z) ≤ r o<br />

,<br />

where r o<br />

is initial radius <strong>of</strong> the work-<br />

on Figures 6a and 6b.<br />

<strong>RMZ</strong>-M&G 2012, 59


<strong>Calcul<strong>at</strong>ion</strong> <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong> high temper<strong>at</strong>ures using ...<br />

341<br />

Figure 4. Technical curves force-elong<strong>at</strong>ion obtained wit <strong>tensile</strong> <strong>tests</strong> for <strong>strain</strong> r<strong>at</strong>es<br />

<strong>of</strong> (0.001, 0.01 and 0.1) s –1 <strong>at</strong> temper<strong>at</strong>ures <strong>of</strong> 800 °C (a), 900 °C (b), and 1000 °C (c)<br />

together with corresponding measured final shapes <strong>of</strong> deformed rods (d)–(f).<br />

Figure 5. The calcul<strong>at</strong>ed shapes <strong>of</strong> <strong>tensile</strong> rods for various stages <strong>of</strong> deform<strong>at</strong>ions <strong>at</strong><br />

temper<strong>at</strong>ure <strong>of</strong> 1000 °C and <strong>strain</strong> r<strong>at</strong>e <strong>of</strong> 0.1 s –1 for cylindrical (a) and for c<strong>at</strong>enary<br />

model (b). <strong>Calcul<strong>at</strong>ion</strong> for cylindrical (c) and c<strong>at</strong>enary (d) models <strong>at</strong> T = 900 °C and<br />

<strong>strain</strong> r<strong>at</strong>e <strong>of</strong> 0.1 s –1 .<br />

<strong>RMZ</strong>-M&G 2012, 59


342 Kugler, G., Terčelj, M., Peruš, I., Turk, R.<br />

Figure 6. Comparison <strong>of</strong> <strong>dependence</strong> <strong>of</strong> minimal radius <strong>of</strong> deformed rod on elong<strong>at</strong>ion<br />

calcul<strong>at</strong>ed by models for c<strong>at</strong>enary, cylinder, and for assumption <strong>of</strong> homogeneous deform<strong>at</strong>ion<br />

for ε = 0.1 s –1 <strong>at</strong> T = 1000 °C (a), and T = 900 °C (b). Evolution <strong>of</strong> the radius <strong>of</strong><br />

.<br />

the circle oscul<strong>at</strong>ing the pr<strong>of</strong>ile <strong>at</strong> the neck, R B<br />

, and corresponding <strong>dependence</strong> <strong>of</strong> Bridgman<br />

correction coefficient, k B<br />

, on elong<strong>at</strong>ion calcul<strong>at</strong>ed by c<strong>at</strong>enary model <strong>at</strong> T = 1000<br />

°C (c), and T = 900 °C (d).<br />

Figure 7. Comparison <strong>of</strong> <strong>dependence</strong> <strong>of</strong> minimal radiuses on elong<strong>at</strong>ion between measurements<br />

conducted by digital camera and calcul<strong>at</strong>ed by studied models (c<strong>at</strong>enary, cylinder,<br />

homogeneous deform<strong>at</strong>ion) for ε = 0.1 s –1 <strong>at</strong> T = 950 °C (a), and <strong>at</strong> T = 900 °C (b).<br />

.<br />

<strong>RMZ</strong>-M&G 2012, 59


<strong>Calcul<strong>at</strong>ion</strong> <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong> high temper<strong>at</strong>ures using ...<br />

343<br />

For comparison the minimal radiuses<br />

calcul<strong>at</strong>ed by cylindrical model and by<br />

assumption <strong>of</strong> homogeneous deform<strong>at</strong>ion<br />

are also given. It can be seen th<strong>at</strong><br />

the radius obtained by cylindrical model<br />

is very close to one obtained by c<strong>at</strong>enary,<br />

whereas as expected the radius<br />

according to homogenous deform<strong>at</strong>ion<br />

model after occurrence <strong>of</strong> necking start<br />

do devi<strong>at</strong>e <strong>from</strong> values predicted by our<br />

models. Deform<strong>at</strong>ion is homogeneous<br />

approxim<strong>at</strong>ely up to elong<strong>at</strong>ion <strong>of</strong> 2<br />

mm th<strong>at</strong> corresponds to <strong>strain</strong> ≈0.2. As<br />

it was already mentioned, the transition<br />

<strong>from</strong> homogeneous to nonhomogeneous<br />

deform<strong>at</strong>ion leads to transition <strong>of</strong><br />

uniaxial to three-axial <strong>stress</strong> st<strong>at</strong>e. For<br />

calcul<strong>at</strong>ion <strong>of</strong> Bridgman correction, k B<br />

,<br />

the radius <strong>of</strong> the circle oscul<strong>at</strong>ing the<br />

pr<strong>of</strong>ile <strong>at</strong> the neck, R B<br />

, is needed. The<br />

R B<br />

is calcul<strong>at</strong>ed by equ<strong>at</strong>ion (10) <strong>from</strong><br />

reconstructed contours. The evolution<br />

<strong>of</strong> R B<br />

and k B<br />

are given on Figure 6c,<br />

and 6d, respectively. When the contours<br />

are calcul<strong>at</strong>ed by the homogeneous<br />

deform<strong>at</strong>ion model, we set k B<br />

≡ 1,<br />

consequently the <strong>dependence</strong> <strong>of</strong> k B<br />

(Δl)<br />

is discontinued <strong>at</strong> transition between<br />

both areas, with negligible error.<br />

Calcul<strong>at</strong>ed values <strong>of</strong> the time evolution<br />

<strong>of</strong> the minimal radius <strong>of</strong> the <strong>tensile</strong><br />

specimens were compared with<br />

the values obtained <strong>from</strong> analysis <strong>of</strong><br />

the pictures which were recorded by<br />

a digital camera, and we obtained reasonable<br />

agreement. These results are<br />

shown on Figure 7, were the maximal<br />

estim<strong>at</strong>ed errors for minimal radius<br />

measured with camera are denoted.<br />

Due to intensive radi<strong>at</strong>ion <strong>from</strong> hot<br />

samples, the sharp boundary between<br />

the rod and surrounding was indistinct,<br />

thus the determin<strong>at</strong>ion <strong>of</strong> real minimal<br />

radius was hindered.<br />

True <strong>stress</strong>–true <strong>strain</strong> curves<br />

From technical force-elong<strong>at</strong>ion<br />

curves the true <strong>stress</strong>–true <strong>strain</strong> curves<br />

were determined by employing all the<br />

procedures explained in previous sections.<br />

They are shown on Figures 8a–c,<br />

whereas Figures 8d–e show the actual<br />

vari<strong>at</strong>ion <strong>of</strong> <strong>strain</strong> r<strong>at</strong>es during the <strong>tests</strong>.<br />

For higher temper<strong>at</strong>ures and/or lower<br />

<strong>strain</strong> r<strong>at</strong>es the flow <strong>stress</strong> initially<br />

raises until a maximum is reached<br />

when hardening and s<strong>of</strong>tening are in<br />

balance. With increasing deform<strong>at</strong>ion,<br />

s<strong>of</strong>tening prevails over hardening and<br />

flow <strong>stress</strong> decreases. At <strong>strain</strong>s ε ><br />

0.2 flow <strong>stress</strong> starts to increase and<br />

increases until the end <strong>of</strong> the experiment.<br />

This kind <strong>of</strong> behaviour in the<br />

l<strong>at</strong>er stages <strong>of</strong> deform<strong>at</strong>ion is a consequence<br />

<strong>of</strong> the continuously increasing<br />

<strong>strain</strong> r<strong>at</strong>e after the appearance<br />

<strong>of</strong> necking. For the same reason flow<br />

curves for low temper<strong>at</strong>ures and/or<br />

higher <strong>strain</strong> r<strong>at</strong>es do not reach a maximum.<br />

Thus, we can conclude th<strong>at</strong><br />

after necking, the <strong>stress</strong>-<strong>strain</strong> curves<br />

are not flow curves as by definition<br />

flow curves are <strong>stress</strong>-<strong>strain</strong> curves <strong>at</strong><br />

constant temper<strong>at</strong>ure and <strong>strain</strong> r<strong>at</strong>e.<br />

<strong>RMZ</strong>-M&G 2012, 59


344 Kugler, G., Terčelj, M., Peruš, I., Turk, R.<br />

Figure 8. True <strong>stress</strong>-true <strong>strain</strong> curves, obtained by <strong>tensile</strong> <strong>tests</strong> for prescribed <strong>strain</strong><br />

r<strong>at</strong>es <strong>of</strong> (0.001, 0.01) s –1 , and 0.1 s –1 <strong>at</strong> temper<strong>at</strong>ures <strong>of</strong> 800 °C (a), 900 °C (b), and 1000<br />

°C (c) and corresponding vari<strong>at</strong>ion <strong>of</strong> actual <strong>strain</strong> r<strong>at</strong>e during the <strong>tests</strong> (d)–(f).<br />

But in the future a series <strong>of</strong> carefully<br />

chosen testing conditions is planed<br />

with the aim to examine the possibility<br />

<strong>of</strong> finding the model th<strong>at</strong> would the<br />

movements <strong>of</strong> jaws during the <strong>tests</strong> in<br />

such a way th<strong>at</strong> constant true <strong>strain</strong> r<strong>at</strong>e<br />

would be maintained during the entire<br />

test. Then it would be possible to determine<br />

flow curves with <strong>tensile</strong> testing to<br />

<strong>strain</strong>s th<strong>at</strong> are comparable with <strong>strain</strong>s<br />

th<strong>at</strong> can be obtained with compression<br />

testing.<br />

Conclusions<br />

In this work a new m<strong>at</strong>hem<strong>at</strong>ical model<br />

for calcul<strong>at</strong>ion <strong>of</strong> true <strong>stress</strong> – true<br />

<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> the results <strong>of</strong><br />

<strong>tensile</strong> <strong>tests</strong>, which can be used also<br />

after appearing <strong>of</strong> necking, was proposed.<br />

Furthermore the model was implemented<br />

into the computer program<br />

th<strong>at</strong> enables determin<strong>at</strong>ion <strong>of</strong> <strong>stress</strong><strong>strain</strong><br />

curves <strong>from</strong> measurement <strong>of</strong><br />

contours <strong>of</strong> deformed rods. The model<br />

and the computer program were valid<strong>at</strong>ed<br />

by employing <strong>tensile</strong> <strong>tests</strong> for<br />

combin<strong>at</strong>ions <strong>of</strong> three different <strong>strain</strong><br />

r<strong>at</strong>es and temper<strong>at</strong>ures on Gleeble<br />

1500D testing machine for Ni alloy Alloy201.<br />

The main findings can be summarized<br />

as follows:<br />

1. It was found th<strong>at</strong>, if the jaws <strong>of</strong> testing<br />

device are controlled in such a<br />

way th<strong>at</strong> constant <strong>strain</strong> r<strong>at</strong>e is obtained<br />

if homogeneous deform<strong>at</strong>ion<br />

is assumed, after appearance<br />

<strong>of</strong> necking the true <strong>strain</strong> r<strong>at</strong>e is no<br />

longer constant, but it is increasing.<br />

Thus, <strong>stress</strong>-<strong>strain</strong> curves obtained<br />

in this way are not true flow<br />

<strong>RMZ</strong>-M&G 2012, 59


<strong>Calcul<strong>at</strong>ion</strong> <strong>of</strong> <strong>stress</strong>-<strong>strain</strong> <strong>dependence</strong> <strong>from</strong> <strong>tensile</strong> <strong>tests</strong> <strong>at</strong> high temper<strong>at</strong>ures using ...<br />

345<br />

curves, as by definition flow curves<br />

are <strong>stress</strong>-<strong>strain</strong> curves <strong>at</strong> a constant<br />

<strong>strain</strong> r<strong>at</strong>e.<br />

2. In the present work two functions<br />

for description <strong>of</strong> evolution <strong>of</strong> the<br />

part <strong>of</strong> the contour which is in given<br />

moment in the plastic st<strong>at</strong>e, were<br />

tested, i.e. constant (approxim<strong>at</strong>ion<br />

with cylinder) and c<strong>at</strong>enary. Based<br />

on the comparison <strong>of</strong> the predicted<br />

evolution <strong>of</strong> contour and contours<br />

obtained by measurements with<br />

film camera it was found th<strong>at</strong> both<br />

functions are capable <strong>of</strong> description<br />

<strong>of</strong> evolution <strong>of</strong> minimal radius<br />

<strong>of</strong> the rod in the neck with accuracy<br />

within the measurement error.<br />

3. The main problem <strong>of</strong> applying the<br />

simplest function, i.e. the constant,<br />

is th<strong>at</strong> it is not possible to determine<br />

the evolution <strong>of</strong> radius <strong>of</strong> curv<strong>at</strong>ure<br />

<strong>of</strong> the couture <strong>at</strong> the minimal<br />

cross-section and consequently<br />

Bridgman <strong>stress</strong> correction due to<br />

three-axiality <strong>of</strong> the <strong>stress</strong> cannot<br />

be applied since for constant this<br />

curv<strong>at</strong>ure is infinite. On the other<br />

hand using c<strong>at</strong>enary this problem is<br />

avoided and true <strong>stress</strong> – true <strong>strain</strong><br />

curves including Bridgman correction<br />

can be determined.<br />

4. It could be possible to predetermine<br />

the movements <strong>of</strong> jaws during the<br />

<strong>tests</strong> in such a way th<strong>at</strong> constant true<br />

<strong>strain</strong> r<strong>at</strong>e would be maintained during<br />

the entire test or <strong>at</strong> least up to<br />

the true <strong>strain</strong>s up to the value <strong>of</strong> 1.0,<br />

but this will require many more <strong>tests</strong><br />

for different m<strong>at</strong>erials and <strong>at</strong> different<br />

thermo-mechanical conditions.<br />

References<br />

[1]<br />

Bridgman, P. W. (1952): Studies in<br />

Large Plastic Flow and Fracture,<br />

McGraw-Hill, NY.<br />

[2]<br />

Press, W. H. et. al. (1988): Numerical<br />

recipes in C, Cambridge Univrsity<br />

Press, Cambridge.<br />

[3]<br />

Kugler, G. (2004): Prediction <strong>of</strong> hot<br />

workability <strong>of</strong> metals by use <strong>of</strong>cellular<br />

autom<strong>at</strong>a, Univrsity <strong>of</strong> Ljubljana,<br />

NTF, Ljubljana.<br />

[4]<br />

Turk, R. (1982):Postavitev modela za<br />

oceno tople preoblikovalnosti kovin,<br />

Univerza v Ljubljani, FNT, Ljubljana.<br />

<strong>RMZ</strong>-M&G 2012, 59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!