26.11.2014 Views

The Biot-Savart Law with Applications.

The Biot-Savart Law with Applications.

The Biot-Savart Law with Applications.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

wire<br />

I<br />

dB<br />

r<br />

θ<br />

ds<br />

r<br />

P<br />

<strong>The</strong> objective is to find the magnetic field at<br />

a point P created by the current in the blue<br />

wire. We must first find the magnetic field<br />

dB produced by the current in a differential<br />

length ds.<br />

ds - a differential length vector tangent to wire in the direction of the current flow<br />

r a unit vector pointing from ds towards “P”<br />

r - distance from ds to point “P”<br />

θ - angle between r and ds<br />

dB – differential field at P<br />

1


wire<br />

I<br />

dB<br />

r<br />

r<br />

θ<br />

ds<br />

P<br />

<strong>The</strong> differential field and its magnitude are:<br />

r<br />

d B =<br />

r<br />

µ<br />

4π<br />

r<br />

0 Id s × rˆ<br />

2<br />

µ 0 I sin θ ds<br />

dB =<br />

4π<br />

2<br />

r<br />

dB is perpendicular to both r and ds<br />

<strong>The</strong> field created by the complete wire would be obtained by<br />

integration of dB over the whole wire.<br />

µ 0 = 4π x 10 -7 T.m A<br />

Y<br />

wire<br />

ds<br />

Step 1: Field dB due to current in ds:<br />

r<br />

r<br />

µ 0 Id s × rˆ<br />

d B =<br />

4π<br />

2<br />

r<br />

dθ<br />

θ<br />

r<br />

r<br />

I<br />

X<br />

<strong>The</strong> magnitude of ds is rdθ. <strong>The</strong> direction of<br />

the vector cross product is found from the<br />

RHR.<br />

dB<br />

^<br />

<strong>The</strong> direction is out of page in the +k direction:<br />

)<br />

ds<br />

× rˆ = krdθ ˆ<br />

r Id<br />

d B kˆ µ 0 θ<br />

=<br />

4π<br />

r<br />

2


Y<br />

θ = π/2<br />

ds<br />

Step 2: Integrate to find the total field. <strong>The</strong><br />

integration limits are zero to π/2.<br />

dθ<br />

r<br />

r<br />

I<br />

θ<br />

X<br />

B θ = 0<br />

B is out of the page<br />

r<br />

B<br />

π<br />

r kˆ<br />

2<br />

µ I kˆ<br />

0 µ I<br />

π<br />

0 2<br />

= ∫ dB = dθ<br />

= [ θ ]<br />

0<br />

4πr<br />

∫<br />

4πr<br />

0<br />

I<br />

kˆ<br />

µ 0<br />

=<br />

8r<br />

constants<br />

P<br />

wire<br />

r^<br />

ds<br />

I<br />

<strong>The</strong> field at P created by the current in the small length ds of<br />

the current carrying wire is zero since:<br />

ds<br />

r × rˆ = dssin 180 =<br />

( ) 0<br />

<strong>The</strong> total field created by the complete straight line segment is zero.<br />

3


Field of a Straight Wire at an Off-Axis Point<br />

P<br />

Y<br />

a<br />

wire<br />

L 1<br />

I L 2<br />

X<br />

We want to find the magnetic field at the location P (0,a)<br />

created by the current in a straight wire located along the X<br />

axis from L 1 to L 2 .<br />

P<br />

a<br />

Y<br />

r = (x 2 + a 2 ) 1/2<br />

r^<br />

180-θ θ ds X<br />

L<br />

x<br />

1<br />

L 2<br />

Step 1: We find the field caused by the<br />

current in ds. Using the RHR:<br />

r<br />

d s × rˆ<br />

= kˆ<br />

( dssinθ<br />

)<br />

We replace ds by dx and sinθ by:<br />

sin<br />

( θ ) = sin( 180−θ)<br />

=<br />

a<br />

r<br />

r<br />

dB =<br />

µ 0<br />

4π<br />

v<br />

Ids × rˆ<br />

r<br />

2<br />

ˆ µ 0Idx<br />

⎛ a<br />

= k<br />

2<br />

⎜<br />

4πr<br />

⎝ r<br />

⎞<br />

⎟<br />

⎠<br />

ˆ µ 0Iadx<br />

= k<br />

3<br />

4πr<br />

= kˆ<br />

4π<br />

µ<br />

Iadx<br />

0<br />

3<br />

2 2<br />

( x + a )2<br />

4


B<br />

We integrate dB over the limits x = L 1 to x = L 2 :<br />

L<br />

r<br />

2<br />

ˆ µ 0Ia<br />

= ∫ dB = k<br />

4π<br />

∫<br />

L<br />

r ⎡<br />

= ˆ µ 0I<br />

B k ⎢<br />

4πa<br />

⎢<br />

⎣<br />

1<br />

dx<br />

ˆ µ 0Ia<br />

⎡<br />

= k ⎢<br />

( ) 3 4π<br />

2 2<br />

⎢ 2 2 2<br />

x + a 2 ⎣a<br />

( x + a )<br />

L<br />

−<br />

2<br />

( + ) 1<br />

( + ) 1<br />

⎥⎥ 2 2 2 2<br />

L a L1<br />

a ⎦<br />

2<br />

2<br />

2<br />

Usually it is more convenient to obtain the magnitude of this field from the<br />

following equation and obtain the correct direction from a new right hand rule<br />

shown on the next slide.<br />

L<br />

1<br />

⎤<br />

x<br />

1<br />

2<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

L<br />

L<br />

2<br />

1<br />

µ 0I<br />

B =<br />

4 π a<br />

L<br />

1<br />

2<br />

( ) 1<br />

2 2 2<br />

L + a ( L + a ) 2<br />

2<br />

2<br />

2<br />

−<br />

1<br />

L<br />

1<br />

B<br />

B<br />

<strong>The</strong>se diagrams shown end views of two straight wires.<br />

<strong>The</strong> top wire has a current directed out of the page while the<br />

bottom wire has a current into the page. <strong>The</strong> magnetic field<br />

is circular about each wire. <strong>The</strong> direction is easily obtained<br />

from a new RHR of convenience.<br />

X<br />

Imagine grasping the wire <strong>with</strong> your right hand<br />

<strong>with</strong> your thumb extended in the current direction.<br />

Your fingers will wrap around the wire in the<br />

direction of the circular magnetic field.<br />

5


L 1<br />

= -L<br />

P<br />

a<br />

L>>a<br />

L 2<br />

= L<br />

µ 0 I<br />

B =<br />

4 π a<br />

1<br />

2 2<br />

( ) 1<br />

2 2 2<br />

L + a ( L + a ) 2<br />

2<br />

L<br />

2<br />

−<br />

1<br />

L<br />

1<br />

µ<br />

0I<br />

B =<br />

4πa<br />

L<br />

−<br />

− L<br />

µ<br />

≈<br />

L<br />

L<br />

− L<br />

−<br />

2 2<br />

( L + a ) 1<br />

2 2 2<br />

( L + a ) 1<br />

2<br />

4πa<br />

L<br />

0<br />

I<br />

µ 0I<br />

B =<br />

2πa<br />

As long as we are not too close to either end.<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!