29.11.2014 Views

A Calculus of Number Based on Spatial Forms - University of ...

A Calculus of Number Based on Spatial Forms - University of ...

A Calculus of Number Based on Spatial Forms - University of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Number</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong>Spatial</strong> <strong>Forms</strong><br />

by<br />

Jerey M. James<br />

A thesis submitted in partial fulllment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the requirements for the degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Master <str<strong>on</strong>g>of</str<strong>on</strong>g> Science in Engineering<br />

<strong>University</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Washingt<strong>on</strong><br />

1993<br />

Approved by<br />

(Chairpers<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Supervisory Committee)<br />

Program Authorized<br />

to Oer Degree<br />

Date


In presenting this thesis in partial fulllment <str<strong>on</strong>g>of</str<strong>on</strong>g> the requirements for a Master's degree<br />

at the <strong>University</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Washingt<strong>on</strong>, I agree that the Library shall make its copies<br />

freely available for inspecti<strong>on</strong>. I further agree that extensive copying <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis is<br />

allowable <strong>on</strong>ly for scholarly purposes, c<strong>on</strong>sistent with \fair use" as prescribed in the<br />

U.S. Copyright Law. Any other reproducti<strong>on</strong> for any purposes or by any means shall<br />

not be allowed without my written permissi<strong>on</strong>.<br />

Signature<br />

Date


<strong>University</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Washingt<strong>on</strong><br />

Abstract<br />

A <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Number</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong>Spatial</strong> <strong>Forms</strong><br />

by Jerey M. James<br />

Chairpers<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Supervisory Committee:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Judith Ramey<br />

Technical Communicati<strong>on</strong><br />

A calculus for writing and transforming numbers is dened. The calculus is based<br />

<strong>on</strong> a representati<strong>on</strong>al and computati<strong>on</strong>al paradigm, called boundary mathematics, in<br />

which representati<strong>on</strong> c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> making distincti<strong>on</strong>s out <str<strong>on</strong>g>of</str<strong>on</strong>g> the void. The calculus<br />

uses three boundary objects to create numbers and covers complex numbers and basic<br />

transcendentals. These same objects compose into operati<strong>on</strong>s <strong>on</strong> these numbers.<br />

Expressi<strong>on</strong>s transform using three spatial match and substitute rules that work in<br />

parallel across expressi<strong>on</strong>s. From the calculus emerge generalized forms <str<strong>on</strong>g>of</str<strong>on</strong>g> cardinality<br />

and inverse that apply identically to additi<strong>on</strong> and multiplicati<strong>on</strong>. An imaginary<br />

form in the calculus expresses numbers in phase space, creating complex numbers.<br />

The calculus attempts to represent computati<strong>on</strong>al c<strong>on</strong>straints explictly, thereby improving<br />

our ability to design computati<strong>on</strong>al machinery and mathematical interfaces.<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus to computati<strong>on</strong>al and educati<strong>on</strong>al domains are discussed.


TABLE OF CONTENTS<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables<br />

v<br />

vi<br />

Chapter 1: Introducti<strong>on</strong> 1<br />

1.1 Minimalism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1<br />

1.2 The <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4<br />

1.3 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7<br />

Chapter 2: Prior Work 9<br />

2.1 Spencer-Brown <str<strong>on</strong>g>Number</str<strong>on</strong>g>s : : : : : : : : : : : : : : : : : : : : : : : : : 9<br />

2.2 Kauman <str<strong>on</strong>g>Number</str<strong>on</strong>g>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12<br />

2.3 Bricken <str<strong>on</strong>g>Number</str<strong>on</strong>g>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14<br />

2.4 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15<br />

Chapter 3: Boundary Mathematics 16<br />

3.1 Introducti<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16<br />

3.2 <strong>Forms</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16<br />

3.2.1 Void : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16<br />

3.2.2 Distincti<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17<br />

3.2.3 Multiple Boundaries : : : : : : : : : : : : : : : : : : : : : : : 18<br />

3.3 Transformati<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18<br />

3.3.1 Match and Substitute : : : : : : : : : : : : : : : : : : : : : : 19<br />

3.3.2 Properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19<br />

3.4 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19<br />

Chapter 4: Instance and Abstract 21<br />

4.1 Introducti<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21


4.2 The Two-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> : : : : : : : : : : : : : : : : : : : : : : : 22<br />

4.2.1 Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> : : : : : : : : : : : : : : : : : : : : : 22<br />

4.2.2 Equivalence Axioms : : : : : : : : : : : : : : : : : : : : : : : 23<br />

4.3 Natural <str<strong>on</strong>g>Number</str<strong>on</strong>g>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25<br />

4.3.1 Additi<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25<br />

4.3.2 Multiplicati<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : 26<br />

4.4 Cardinality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27<br />

4.4.1 Domini<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28<br />

4.4.2 Generalized Cardinality : : : : : : : : : : : : : : : : : : : : : 28<br />

4.5 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28<br />

Chapter 5: Inverse 30<br />

5.1 Introducti<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30<br />

5.2 The Three-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> : : : : : : : : : : : : : : : : : : : : : : 30<br />

5.2.1 Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> : : : : : : : : : : : : : : : : : : : : : 31<br />

5.2.2 Equivalence Axioms : : : : : : : : : : : : : : : : : : : : : : : 32<br />

5.3 The Additive Inverse : : : : : : : : : : : : : : : : : : : : : : : : : : : 32<br />

5.3.1 Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Additive Inverse : : : : : : : : : : : : : : : : 33<br />

5.3.2 Integers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34<br />

5.3.3 Calculati<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36<br />

5.4 Multiplicative Inverse : : : : : : : : : : : : : : : : : : : : : : : : : : : 37<br />

5.4.1 Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Multiplicative Inverse : : : : : : : : : : : : : 37<br />

5.4.2 Rati<strong>on</strong>als : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38<br />

5.4.3 Divisi<strong>on</strong> by Zero : : : : : : : : : : : : : : : : : : : : : : : : : 39<br />

5.4.4 Calculati<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39<br />

5.5 Inverse and Cardinality : : : : : : : : : : : : : : : : : : : : : : : : : : 40<br />

5.5.1 Negative Cardinality : : : : : : : : : : : : : : : : : : : : : : : 40<br />

5.5.2 Fracti<strong>on</strong>al Cardinality : : : : : : : : : : : : : : : : : : : : : : 40<br />

5.6 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41<br />

Chapter 6: Phase 43<br />

6.1 Introducti<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43<br />

ii


6.2 Phase : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43<br />

6.2.1 Phase Independence : : : : : : : : : : : : : : : : : : : : : : : 44<br />

6.2.2 Oscillati<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45<br />

6.2.3 Cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g>J : : : : : : : : : : : : : : : : : : : : : : : : : : 46<br />

6.3 Multiple Value : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46<br />

6.4 Exp<strong>on</strong>entials and Logarithms : : : : : : : : : : : : : : : : : : : : : : 47<br />

6.5 Transcendentals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48<br />

6.5.1 Euler's <str<strong>on</strong>g>Number</str<strong>on</strong>g>, e : : : : : : : : : : : : : : : : : : : : : : : : : 48<br />

6.5.2 Pi, : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48<br />

6.5.3 Trig<strong>on</strong>ometric Functi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : 49<br />

6.6 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50<br />

Chapter 7: Future Work 51<br />

7.1 Introducti<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51<br />

7.2 Coverage : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51<br />

7.3 Practical : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52<br />

7.4 Extensi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53<br />

7.5 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55<br />

Chapter 8: Applicati<strong>on</strong>s 56<br />

8.1 Introducti<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56<br />

8.2 Hardware : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57<br />

8.3 Computer Algebra : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58<br />

8.4 Mathematical Interface : : : : : : : : : : : : : : : : : : : : : : : : : : 59<br />

8.5 Educati<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60<br />

8.6 C<strong>on</strong>clusi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61<br />

Glossary 62<br />

Bibliography 65<br />

Appendix A: C<strong>on</strong>versi<strong>on</strong> 68<br />

A.1 <str<strong>on</strong>g>Number</str<strong>on</strong>g>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68<br />

iii


A.2 Functi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69<br />

A.3 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Formats : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69<br />

A.4 Standard Postulates : : : : : : : : : : : : : : : : : : : : : : : : : : : 70<br />

A.5 Formulas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71<br />

Appendix B: Examples 74<br />

B.1 Multiplicati<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74<br />

B.2 Square Root : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75<br />

B.3 Fracti<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75<br />

B.4 Algebraic Distributi<strong>on</strong> : : : : : : : : : : : : : : : : : : : : : : : : : : 75<br />

B.5 Quadratic Formula : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76<br />

iv


LIST OF FIGURES<br />

1.1 Stages <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematical Representati<strong>on</strong>. : : : : : : : : : : : : : : : : : 2<br />

3.1 The Void. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17<br />

3.2 A Distincti<strong>on</strong>. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17<br />

3.3 C<strong>on</strong>tent and C<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> a Distincti<strong>on</strong>. : : : : : : : : : : : : : : : : : : 18<br />

3.4 Two Choices for Further Distincti<strong>on</strong>. : : : : : : : : : : : : : : : : : : 18<br />

4.1 Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Involuti<strong>on</strong>. : : : : : : : : : : : : : : : : : : : : : : : : : 24<br />

4.2 Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Distributi<strong>on</strong>. : : : : : : : : : : : : : : : : : : : : : : : : 25<br />

5.1 Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Inversi<strong>on</strong>. : : : : : : : : : : : : : : : : : : : : : : : : : : 33<br />

8.1 Technology and Representati<strong>on</strong>. : : : : : : : : : : : : : : : : : : : : : 57<br />

8.2 Visual Interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Boundary <str<strong>on</strong>g>Number</str<strong>on</strong>g>s. : : : : : : : : : : : : : 60<br />

v


LIST OF TABLES<br />

1.1 Simple Calculati<strong>on</strong>s in Standard and Boundary <strong>Forms</strong>. : : : : : : : : 3<br />

1.2 Mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Number</str<strong>on</strong>g>s : : : : : : : : : : : : : : : : : : : : : : : : : : : 6<br />

1.3 Mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> Functi<strong>on</strong>s : : : : : : : : : : : : : : : : : : : : : : : : : : : 6<br />

1.4 Axioms <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>. : : : : : : : : : : : : : : : : : : : : : : : : : 7<br />

1.5 Theorems <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>. : : : : : : : : : : : : : : : : : : : : : : : : 7<br />

2.1 Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spencer-Brown <str<strong>on</strong>g>Number</str<strong>on</strong>g>s. : : : : : : : : : : : : : : : : : 10<br />

2.2 Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kauman <str<strong>on</strong>g>Number</str<strong>on</strong>g>s. : : : : : : : : : : : : : : : : : : : : 12<br />

2.3 Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bricken <str<strong>on</strong>g>Number</str<strong>on</strong>g>s. : : : : : : : : : : : : : : : : : : : : : 15<br />

4.1 The Two-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>. : : : : : : : : : : : : : : : : : : : : : : 29<br />

5.1 The Three-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g> : : : : : : : : : : : : : : : : : : : : : : 42<br />

6.1 Transcendentals in the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>. : : : : : : : : : : : : : : : : : : : : : 49<br />

7.1 Rules for Boundary Dierentiati<strong>on</strong>. : : : : : : : : : : : : : : : : : : : 54<br />

vi


PREFACE<br />

This work attempts to clarify mathematics, to make complex ideas accessible<br />

to those with less mathematical training. In this thesis, I have reduced number<br />

and operator representati<strong>on</strong> down to three forms, revealing a simplicity to<br />

numbers. I hope this work may aid those who have struggled to understand<br />

numbers and computati<strong>on</strong>, as well as elementary algebra, for I surely c<strong>on</strong>sider<br />

these topics in new light.<br />

I am not a mathematician, so writing a thesis about mathematics has been<br />

achallenge for me. For years, I have struggled to understand what research<br />

in mathematics is all about that I might c<strong>on</strong>tribute to its c<strong>on</strong>tinuing progress.<br />

Alas, essential c<strong>on</strong>cepts c<strong>on</strong>tinue to elude me and I remain uncertain about<br />

what mathematicians are actually doing. N<strong>on</strong>etheless, I believe mywork to<br />

have some relevance to them and have tried to describe it in a manner that<br />

would avail mathematical researchers to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> it, though my audience<br />

also includes the less mathematically inclined.<br />

Ihave benetted from many discussi<strong>on</strong>s with friends and colleagues during<br />

the development <str<strong>on</strong>g>of</str<strong>on</strong>g> this material. Most recognize some insight here, though I<br />

am not certain whether they liked the material itself or just the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> trying<br />

to make mathematics easier to understand.<br />

I thank William Bricken with my heart and soul. William introduced<br />

me to boundary mathematics and has served as my mentor throughout this<br />

research|his guidance and directi<strong>on</strong> has made it all happen.<br />

I thank the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> my thesis committee: Judith Ramey, William Winn,<br />

and Steven Tanimoto. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> them played unique roles in the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this material. I was privileged to have had such excellent support for my<br />

research.<br />

I credit my zest for research toPenelope Sanders<strong>on</strong>, with whom I studied<br />

vii


as an undergraduate at the <strong>University</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois. Penny challenged me with<br />

interesting research problems and gave me opportunities to presentmy ndings<br />

to receptive audiences. I am forever grateful to her.<br />

I thank the students and sta <str<strong>on</strong>g>of</str<strong>on</strong>g> the Human Interface Technology Laboratory<br />

and its director, Dr. Thomas A. Furness, for providing a stimulating<br />

envir<strong>on</strong>ment for developing these ideas. I thank Kimberley Osberg, Dav Li<strong>on</strong>,<br />

and Greg Woodward in particular for their pers<strong>on</strong>al support. I thank US West<br />

for funding part <str<strong>on</strong>g>of</str<strong>on</strong>g> this research and I thank all members <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>sortium<br />

for supporting the lab.<br />

Though I wrote this document at the HIT Lab in Seattle, I \polished the<br />

turd" at Interval Research inPalo Alto. I thank Dick Shoup, the Natural<br />

Computing group, and every<strong>on</strong>e at Interval for their support <str<strong>on</strong>g>of</str<strong>on</strong>g> my research.<br />

I extend my warmest appreciati<strong>on</strong> to Ann Miller, with whom I shared the<br />

joy <str<strong>on</strong>g>of</str<strong>on</strong>g> discovering many <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideas herein. Ann taught mehumility and<br />

compassi<strong>on</strong> and will always be in my heart.<br />

Finally, I thank Laura Grant, the love<str<strong>on</strong>g>of</str<strong>on</strong>g>my life. I could never have nished<br />

this thesis without her intellectual and emoti<strong>on</strong>al support. Though it took a<br />

while, I nally managed to \swallow the toad!"<br />

Jerey Mark James<br />

Human Interface Technology Laboratory<br />

October 14, 1993<br />

viii


To my very rst mathematics teacher, my father.<br />

ix


Chapter 1<br />

INTRODUCTION<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g>s are simpler than they appear. This thesis presents a calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number<br />

that dem<strong>on</strong>strates this simplicity.<br />

We comm<strong>on</strong>ly represent and manipulate numbers with a centuries-old notati<strong>on</strong><br />

comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabic digits, decimal point, plus sign, minus sign, times sign, fracti<strong>on</strong><br />

bar, a few other operators, and some c<strong>on</strong>stants. Typical numbers are 0, 1, 2, 10, ,1,<br />

3=7, 2:9, p 2, e 2 , i. The standard Arabic notati<strong>on</strong> represents ten numbers directly<br />

as digits and a few more as symbolic c<strong>on</strong>stants. All others are c<strong>on</strong>structed out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these using arithmetic operati<strong>on</strong>s. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the operati<strong>on</strong>s used to build numbers<br />

are implicit in the representati<strong>on</strong>, such as the magnitude gain in place value. Hiding<br />

informati<strong>on</strong> in this manner achieves c<strong>on</strong>ciseness but leaves the forms abstract and<br />

dissociated from their own behavior.<br />

These traditi<strong>on</strong>al representati<strong>on</strong>s are but <strong>on</strong>e embodiment <str<strong>on</strong>g>of</str<strong>on</strong>g>numbers. Formal<br />

alternatives exist but generally lack the scope and c<strong>on</strong>ciseness <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard form.<br />

Other representati<strong>on</strong>s are useful because they display interesting properties <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers.<br />

C<strong>on</strong>way <str<strong>on</strong>g>Number</str<strong>on</strong>g>s, for instance, build real numbers out <str<strong>on</strong>g>of</str<strong>on</strong>g> a single object, the<br />

bi-set [12]. This thesis presents a representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers, called boundary numbers,<br />

in which numbers and arithmetic operati<strong>on</strong>s are built out <str<strong>on</strong>g>of</str<strong>on</strong>g> three objects.<br />

1.1 Minimalism<br />

The calculus in this thesis progresses representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> number towards a minimal<br />

basis. It begins with the most fundamental acts <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong>. By starting from<br />

scratch, the calculus avoids the c<strong>on</strong>ceptual baggage that has been introduced into<br />

standard notati<strong>on</strong> throughout its development.<br />

The calculus is an attempt to minimize the implicit c<strong>on</strong>straints <strong>on</strong> form manipulati<strong>on</strong><br />

to just those necessary to dene the system <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics. Other c<strong>on</strong>straints<br />

should be explicit in the forms. Commutativity, for example, would be explicit<br />

if commutative functi<strong>on</strong>s displayed symmetry between their arguments and


2<br />

Soluti<strong>on</strong> Loop<br />

applicati<strong>on</strong><br />

6<br />

?<br />

c<strong>on</strong>ceptual objects<br />

6<br />

Activity<br />

problem representati<strong>on</strong><br />

translati<strong>on</strong> and c<strong>on</strong>trol<br />

?<br />

6<br />

computati<strong>on</strong>al objects<br />

calculati<strong>on</strong><br />

Figure 1.1: Stages <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematical Representati<strong>on</strong>.<br />

n<strong>on</strong>-commutative functi<strong>on</strong>s did not. By making c<strong>on</strong>straints explicit, much \knowledge"<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics can be embodied in the representati<strong>on</strong>.<br />

Standard notati<strong>on</strong> has abstracted away the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> its forms so that knowledge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their behavior has become implicit. For example, the notati<strong>on</strong> abstracts away<br />

magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> the digits, making 1 + 1 = 2 not altogether obvious but requiring<br />

memorizati<strong>on</strong>. A model <str<strong>on</strong>g>of</str<strong>on</strong>g> this disembodiment is shown in Figure 1.1. The standard<br />

notati<strong>on</strong> represents the c<strong>on</strong>ceptual objects <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers and functi<strong>on</strong>s but not the<br />

computati<strong>on</strong>al objects up<strong>on</strong> which c<strong>on</strong>straints are imposed.<br />

When using math, we work through the soluti<strong>on</strong> loop shown in Figure 1.1. We<br />

represent elements <str<strong>on</strong>g>of</str<strong>on</strong>g> a problem as c<strong>on</strong>ceptual objects in a mathematical notati<strong>on</strong>.<br />

We manipulate these objects according to calculati<strong>on</strong> rules, usually through separate<br />

computati<strong>on</strong>al objects. Guided by soluti<strong>on</strong> techniques, we manipulate the c<strong>on</strong>ceptual<br />

objects into forms that lend insights into the problem.<br />

Layers <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical objects are necessary because most mathematical forms<br />

cannot be \directly" manipulated with a c<strong>on</strong>cise set <str<strong>on</strong>g>of</str<strong>on</strong>g> rules. Comprehensively dened<br />

manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten requires intermediate forms. Moreover, these intermediate forms<br />

can be completely disparate from the original form, making the translati<strong>on</strong> itself<br />

complicated.<br />

For example, with digit magnitude implicit, numbers are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten added by use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

separate representati<strong>on</strong>s. Many computers use bits as computati<strong>on</strong>al objects because<br />

bits can be physically added by digital circuitry. Many people learn to add by using


3<br />

Table 1.1: Simple Calculati<strong>on</strong>s in Standard and Boundary <strong>Forms</strong>.<br />

Standard Boundary<br />

1+1=2 =<br />

21 + 11 = 32 ([b][])([b][])=([b][])<br />

2 3=6 ([][])=<br />

3 2 =33 (([[]][]))=([][])<br />

x +0=x x=x<br />

x1=x ([x][])=x<br />

x 0=0 ([x][])=<br />

x 1 = x (([[x]][]))=x<br />

x 0 =1 (([[x]][]))=<br />

1=x = x ,1 ()=(([[x]][]))<br />

x y x = x y+1 ([(([[x]][y]))][x])=(([[x]][y]))<br />

objects which carry the mathematical c<strong>on</strong>straints explicitly, such as counting blocks.<br />

The counting blocks serve as computati<strong>on</strong>al objects up<strong>on</strong> which calculati<strong>on</strong> can be<br />

directly performed. Because standard notati<strong>on</strong> does not embody the transformati<strong>on</strong><br />

c<strong>on</strong>straints, surrogate representati<strong>on</strong>s are necessary for machines and children, both<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which require explicit declarati<strong>on</strong>s.<br />

Standard notati<strong>on</strong> c<strong>on</strong>ceals mathematical behavior in ways besides hiding digit<br />

magnitudes. The equati<strong>on</strong>s <strong>on</strong> the left side <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 1.1 collectively reect mathematical<br />

knowledge which, when known, make the equalities obvious. Visually, they are<br />

not obvious: the features <str<strong>on</strong>g>of</str<strong>on</strong>g> the forms provide no clues as to their manipulative c<strong>on</strong>straints.<br />

The forms carry n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> this knowledge, a failure which places unnecessary<br />

demands <strong>on</strong> users <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics.<br />

The boundary calculus shifts the focus <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> from the c<strong>on</strong>ceptual<br />

objects <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers and functi<strong>on</strong>s to the computati<strong>on</strong>al objects where the dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the forms can be directly captured. It makes a clear separati<strong>on</strong> between the<br />

fundamental c<strong>on</strong>straints <strong>on</strong> number manipulati<strong>on</strong> and the c<strong>on</strong>cepts that direct this<br />

manipulati<strong>on</strong>. The equati<strong>on</strong>s <strong>on</strong> the right side <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 1.1 are the same equalities<br />

translated to the boundary calculus. Here, b represents the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the place-value system,<br />

i.e. b = : : The expressi<strong>on</strong>s are l<strong>on</strong>ger because they are c<strong>on</strong>structed


4<br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> very basic objects, built into structures that reveal informati<strong>on</strong> about their<br />

own transformati<strong>on</strong>al c<strong>on</strong>straints. The three axiomatic transformati<strong>on</strong>s given in the<br />

next secti<strong>on</strong> are all that is required to dem<strong>on</strong>strate the boundary equalities.<br />

The mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> number manipulati<strong>on</strong> are simple in the boundary calculus. More<br />

complicated c<strong>on</strong>cepts are not \built-in" but instead appear as directed use <str<strong>on</strong>g>of</str<strong>on</strong>g> it.<br />

Techniques for managing numbers, such as separating magnitude or naming small<br />

integers, exist independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the axioms <str<strong>on</strong>g>of</str<strong>on</strong>g> this system. The calculus provides a<br />

crisp mathematical substrate within which to c<strong>on</strong>struct and illustrate mathematical<br />

c<strong>on</strong>cepts that were previously interwoven with the symbolic rules themselves.<br />

1.2 The <str<strong>on</strong>g>Calculus</str<strong>on</strong>g><br />

This thesis denes a few mathematical forms and how they transform, i.e. it denes<br />

a calculus. These forms represent numbers, as opposed to logic or sets. And these<br />

forms are based <strong>on</strong> a representati<strong>on</strong>al paradigm that is spatial. In short, this thesis<br />

denes a calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number based <strong>on</strong> spatial forms.<br />

This material assumes a minimalist approach to representati<strong>on</strong> called boundary<br />

mathematics [3, 17]. The ideas were initiated by G. Spencer-Brown [11] and have<br />

been extended in the domain <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers by Spencer-Brown himself, as well as Louis<br />

Kauman [22, 24] and William Bricken [5, 9]. This work extends theirs byintroducing<br />

general forms for cardinality and inverse, and by dening phase. This work also<br />

gives a functi<strong>on</strong>al interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries not found elsewhere, treating them as<br />

logarithmic functi<strong>on</strong>s.<br />

In boundary mathematics, representati<strong>on</strong> begins with empty space, a complete<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> structure, void. Up<strong>on</strong> this void, distincti<strong>on</strong>s are made that impose structure<br />

and intenti<strong>on</strong>. Distincti<strong>on</strong> may be thought <str<strong>on</strong>g>of</str<strong>on</strong>g>asaboundary that delineates space.<br />

Boundaries may be nested and collected to form dierent c<strong>on</strong>gurati<strong>on</strong>s. A c<strong>on</strong>gurati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries represents a mathematical expressi<strong>on</strong> that can be transformed<br />

according to match and substitute rules, as dened for the mathematical system [11, 3].<br />

The boundary numbers described here use more than <strong>on</strong>e distincti<strong>on</strong>, a practical<br />

move which asyet has not been philosophically justied in the paradigm. Multiple<br />

boundaries force a distincti<strong>on</strong> that is not a cleaving <str<strong>on</strong>g>of</str<strong>on</strong>g> the space; instead, it is a differentiati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the boundaries. Here, this distincti<strong>on</strong> is accomplished with geometric<br />

characteristics: the boundaries are drawn round ; square 2; or pointy 4: To hold


5<br />

c<strong>on</strong>tents, they are also drawn as delimiters: (A); [A]; :<br />

These three boundaries are the fundamental forms <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number.<br />

Alphabetic characters are also used to denote unknown values and c<strong>on</strong>stants. Equality<br />

is expressed as usual, denoting c<strong>on</strong>gurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> equal numerical value.<br />

Natural numbers can be represented by collecting a single boundary, as in a tally<br />

system. Call this boundary instance and draw it round. Counting proceeds by<br />

accumulating empty instance boundaries, as ; ; ;:::and so <strong>on</strong>. These numbers<br />

add by collecting them in space, no computati<strong>on</strong> is necessary. A sec<strong>on</strong>d boundary|<br />

call it abstract and draw it square|enables formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplicati<strong>on</strong> and power<br />

functi<strong>on</strong>s. For example, the multiplicati<strong>on</strong> 2 3 appears in boundary notati<strong>on</strong> as<br />

([][]) and the cube <str<strong>on</strong>g>of</str<strong>on</strong>g> two, 2 3 , appears as (([[]][])):<br />

A third boundary|call it inverse|can be used to c<strong>on</strong>struct additive and multiplicative<br />

inverses, and other inverse structures such as roots. Inverse extends the<br />

calculus to the integers by serving as the additive inverse, to the rati<strong>on</strong>als by serving<br />

as the multiplicative inverse, and to algebraic irrati<strong>on</strong>als in other combinati<strong>on</strong>s. A<br />

full sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary numbers is shown in Table 1.2 and the boundary operati<strong>on</strong>s<br />

are shown in Table 1.3.<br />

Calculati<strong>on</strong> <strong>on</strong> these forms is completely dened by three axioms: involuti<strong>on</strong>, distributi<strong>on</strong>,<br />

and inversi<strong>on</strong>, shown in Table 1.4. Involuti<strong>on</strong> denes instance and abstract<br />

to be functi<strong>on</strong>ally opposite. Distributi<strong>on</strong> denes them to additi<strong>on</strong>ally have a distributive<br />

relati<strong>on</strong>ship. Inversi<strong>on</strong> denes the inverse boundary to behave asaninverse<br />

operator. The three axioms govern all transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary expressi<strong>on</strong>s.<br />

The calculus c<strong>on</strong>structs general forms that are not available in the standard notati<strong>on</strong>.<br />

Using involuti<strong>on</strong> and distributi<strong>on</strong>, a repeated form such asAAA can be transformed<br />

into an equivalent expressi<strong>on</strong> that requires <strong>on</strong>ly <strong>on</strong>e reference to that form,<br />

as ([A][]). This transformati<strong>on</strong> is called cardinality and is shown in Table 1.5.<br />

This means <str<strong>on</strong>g>of</str<strong>on</strong>g> counting applies to repeated additi<strong>on</strong> and to repeated multiplicati<strong>on</strong>;<br />

it is therefore c<strong>on</strong>sidered to be a generalized form <str<strong>on</strong>g>of</str<strong>on</strong>g> cardinality.<br />

The inverse boundary is also unparalleled in standard notati<strong>on</strong>. It is used to<br />

form the additive inverse as well as the multiplicative inverse (see Table 1.3). All<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> this generalized inverse apply to both <str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>texts. These<br />

properties include collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inverses, cancellati<strong>on</strong> with itself, and relocati<strong>on</strong>, all<br />

shown in Table 1.5.


6<br />

Table 1.2: Mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

Standard<br />

0<br />

1 <br />

2 <br />

,1 <br />

,2 <br />

Boundary<br />

1=2 ()<br />

2 3 ([][])<br />

2=3 ([])<br />

4 1 2<br />

()<br />

3 2 (([[]][]))<br />

p<br />

3 (([[]]))<br />

243 ([b][([b][])])<br />

10 6 (([[b]][]))<br />

Table 1.3: Mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> Functi<strong>on</strong>s<br />

Standard Boundary<br />

a a<br />

,a <br />

1=a ()<br />

a + b ab<br />

a , b a<br />

a b ([a][b])<br />

a=b ([a])<br />

a b<br />

a ,b<br />

bp a<br />

(([[a]][b]))<br />

(([[a]][]))<br />

(([[a]]))


7<br />

Table 1.4: Axioms <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>.<br />

Involuti<strong>on</strong> ([A]) = : A = : [(A)]<br />

Distributi<strong>on</strong> (A[BC]) = : (A[B])(A[C])<br />

Inversi<strong>on</strong> A =<br />

:<br />

Table 1.5: Theorems <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>.<br />

Cardinality<br />

A:::A = ([A][:::])<br />

Domini<strong>on</strong> 2A = 2<br />

Inverse Collecti<strong>on</strong> = <br />

Inverse Cancellati<strong>on</strong> = A<br />

Inverse Promoti<strong>on</strong> = (A[])<br />

Phase Independence [] = A[]<br />

J Cancellati<strong>on</strong> [][] =<br />

Its forms can be interpreted so as to extend the calculus to complex and transcendental<br />

numbers. Taking cardinalities <str<strong>on</strong>g>of</str<strong>on</strong>g> the inverse produces radian values that can<br />

act as complex numbers when their manipulati<strong>on</strong> is further restricted. The instance<br />

and abstract boundaries act as exp<strong>on</strong>ential and logarithmic functi<strong>on</strong>s, respectively.<br />

By interpreting these to be <str<strong>on</strong>g>of</str<strong>on</strong>g> base e, basic transcendental values and trig<strong>on</strong>ometric<br />

functi<strong>on</strong>s can be formed. These interpretati<strong>on</strong>s are included in Tables 1.2 and 1.3.<br />

1.3 C<strong>on</strong>clusi<strong>on</strong>s<br />

The calculus represents many types <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers but it covers <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> number<br />

mathematics. It lacks larger structures for doing mathematics and requires much<br />

practical support to make it useful. There are many additi<strong>on</strong>s that can be made<br />

to the calculus and areas to which the c<strong>on</strong>tent can extend. Future work with the<br />

calculus will expand and enhance the ideas presented here.<br />

The calculus presents a new paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> number representati<strong>on</strong> that challenges<br />

how mathematics is currently d<strong>on</strong>e. This material may impact the way mathematics<br />

is d<strong>on</strong>e physically in hardware, logically in s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, and c<strong>on</strong>ceptually in an interface


8<br />

with mathematics. It may also impact how mathematics is taught, principally because<br />

it serves as an alternative to the standard notati<strong>on</strong>.<br />

Though the boundary forms are not immediately comprehensible, familiarity<br />

makes them legible. And since many <str<strong>on</strong>g>of</str<strong>on</strong>g> the transformati<strong>on</strong>s are easily visualized,<br />

the boundary forms eventually appear quite natural. Recall Table 1.1 in which calculati<strong>on</strong>s<br />

in standard notati<strong>on</strong> are paralleled in boundary notati<strong>on</strong>. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

boundary calculati<strong>on</strong>s are immediate, while others require <strong>on</strong>ly a few applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the axioms. Appendix A c<strong>on</strong>tains more comparis<strong>on</strong>s and Appendix B c<strong>on</strong>tains<br />

examples, including a derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quadratic formula. Overall the boundary calculati<strong>on</strong>s<br />

are much simpler, indicating that standard form makes computati<strong>on</strong>|and<br />

therefore understanding|unnecessarily complex.


Chapter 2<br />

PRIOR WORK<br />

Boundary mathematics was rst explored as a paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical representati<strong>on</strong><br />

in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> propositi<strong>on</strong>al logic. It has been applied extensively to logic<br />

[11, 3, 31, 1, 19, 32] as well as to other systems <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics, including imaginary<br />

logic [25, 34, 35, 33], algebra [13, 27], self-reference and recursi<strong>on</strong> [36, 20, 16, 25, 21],<br />

c<strong>on</strong>trol and deducti<strong>on</strong> in computer science [4, 7, 8, 6, 14], and numbers [5, 10, 24].<br />

The applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary mathematics to numbers are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called boundary<br />

numbers. G. Spencer-Brown, Louis Kauman, and William Bricken have each created<br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary numbers [5, 10, 24, 23, 22]. Their systems share the basic<br />

characteristics associated with boundary mathematics but dier in detail. In all<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> them, boundaries serve as the objects <str<strong>on</strong>g>of</str<strong>on</strong>g> the system and as operators <strong>on</strong> those<br />

objects. <str<strong>on</strong>g>Number</str<strong>on</strong>g>s are created out <str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries and boundaries build into arithmetic<br />

operati<strong>on</strong>s. This comm<strong>on</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> form allows calculati<strong>on</strong> directly <strong>on</strong> the forms,<br />

erasing and rearranging to transform an expressi<strong>on</strong>. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these systems are briey<br />

described using their creator's original notati<strong>on</strong>.<br />

2.1 Spencer-Brown <str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

The boundary paradigm began with Spencer-Brown's Laws <str<strong>on</strong>g>of</str<strong>on</strong>g> Form in which he<br />

reduced logic to a single distincti<strong>on</strong> [11]. He shows how two fundamental choices <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reducti<strong>on</strong>, calling and crossing, produce boolean arithmetic. In his work, Spencer-<br />

Brown draws a distincti<strong>on</strong> as a mark, , shown below in these rules.<br />

Calling<br />

Crossing<br />

:<br />

=<br />

:<br />

=<br />

His number system attempts to adapt calling and crossing to the number domain.<br />

He variously treats space as additi<strong>on</strong> and as multiplicati<strong>on</strong> but, for simplicity, <strong>on</strong>ly<br />

the former system will be c<strong>on</strong>sidered [10, 5].


10<br />

Table 2.1: Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spencer-Brown <str<strong>on</strong>g>Number</str<strong>on</strong>g>s.<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

0 !<br />

1 !<br />

2 !<br />

3 !<br />

Operators<br />

a + b ! ab<br />

ab! a b<br />

a b ! b :a<br />

Rules<br />

at bt :::<br />

:<br />

=<br />

:<br />

= a b ::: t<br />

a = a<br />

:a =<br />

With space as additi<strong>on</strong>, the natural numbers are easily formed. The void acts<br />

as zero and counting proceeds by accumulating marks: , , , ::: and<br />

so <strong>on</strong>. <str<strong>on</strong>g>Number</str<strong>on</strong>g>s are added by spatial collecti<strong>on</strong> whereas multiplicati<strong>on</strong> and power<br />

operati<strong>on</strong>s are composed using marks. Spencer-Brown's numbers are summarized in<br />

Table 2.1.<br />

He gives two axioms for calculating <strong>on</strong> these forms, universe and transfer. With<br />

these axioms he derives many theorems, including reexi<strong>on</strong> and null power. Universe<br />

and null power are his numerical versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> calling and crossing.<br />

Universe<br />

Transfer at bt :::<br />

Reexi<strong>on</strong> a = a<br />

Null Power :a =<br />

:<br />

=<br />

:<br />

= a b ::: t<br />

In additi<strong>on</strong> to the mark, he uses a vaguely dened col<strong>on</strong> to disambiguate c<strong>on</strong>icting<br />

results whichwould equate 0 1 ! : and 2 ! . This col<strong>on</strong> does not completely<br />

resolve the problems it was introduced for.<br />

These numbers add by spatial collecti<strong>on</strong>. For example, 3 + 2 = 5.<br />

3+2 Given<br />

+ <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Additi<strong>on</strong> Rewrite<br />

5 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g>s multiply by the form ab ! a b . The form reduces by transfer, which<br />

distributes the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e number throughout the units <str<strong>on</strong>g>of</str<strong>on</strong>g> the other. For example,<br />

3 2=6.


11<br />

3 2 Given<br />

<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Multiplicati<strong>on</strong> Rewrite<br />

Transfer, t =<br />

Reexi<strong>on</strong> (3x)<br />

Reexi<strong>on</strong><br />

6 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Powers are expressed as a b ! b a. This form creates a repeated multiplicati<strong>on</strong><br />

where the arity is determined by the exp<strong>on</strong>ent and the base is introduced as the<br />

arguments using transfer. For example, 3 2 =9.<br />

3 2 Given<br />

exp<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Power Rewrite<br />

Transfer, t =<br />

Transfer, t =<br />

Reexi<strong>on</strong> (3x)<br />

Reexi<strong>on</strong><br />

9 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Spencer-Brown's system has two major problems. First, transfer is not fully<br />

compatible with spatial match and substitute: it requires that the t match the entire<br />

c<strong>on</strong>text. For example, the previous problem produces a c<strong>on</strong>icting result if transfer<br />

matches <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>text.<br />

3 2 Given<br />

exp <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Power Rewrite<br />

Transfer, t =<br />

Reexi<strong>on</strong> (2x)<br />

3 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

The other problem with this system is its treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> zero. A multiplicati<strong>on</strong> by<br />

zero should reduce to zero, as x = = . Similarly, a zero exp<strong>on</strong>ent should


12<br />

Table 2.2: Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kauman <str<strong>on</strong>g>Number</str<strong>on</strong>g>s.<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

0 !<br />

1 !<br />

2!<br />

3!<br />

4!<br />

Operators<br />

a + b ! a b<br />

a b ! a i b<br />

,a ! a i <br />

Rules<br />

<br />

:<br />

= > = ><br />

< > = > = ><br />

= ><<br />

:<br />

=<br />

<br />

:<br />

= = w<br />

:<br />

= w<br />

= <br />

reduce to <strong>on</strong>e, as y = . Spencer-Brown performs both <str<strong>on</strong>g>of</str<strong>on</strong>g> these reducti<strong>on</strong>s using<br />

transfer into a mark with nothing inside, as t = .However, this rule undermines<br />

additi<strong>on</strong> space because adding <strong>on</strong>e provides an empty for obliterating the rest <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an expressi<strong>on</strong>. The col<strong>on</strong> was his attempt to disambiguate this paradox but its use<br />

was not thoroughly dened.<br />

Spencer-Brown's numbers represent the natural numbers and the system computes<br />

basic arithmetic operati<strong>on</strong>s <strong>on</strong> them except for those requiring an inverse. The system<br />

is simple and c<strong>on</strong>cise, using <strong>on</strong>ly a single distincti<strong>on</strong>, but it ultimately breaks down.<br />

2.2 Kauman <str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

Kauman's number system also represents the natural numbers using boundaries. It<br />

c<strong>on</strong>trasts from other boundary systems in that it transforms by string matching rules<br />

rather than by spatial matching rules.<br />

In his system, a boundary represents magnitude, a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tents.<br />

object represents a unit and the boundary denotes a magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>tents.<br />

Here, it is assumed to be a doubling, = : . Counting proceeds in Kauman<br />

numbers as ; ; ;::: and so <strong>on</strong>, as a base-2 system. These numbers add by<br />

c<strong>on</strong>catenati<strong>on</strong>. They multiply by replacing the units <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e number with the entirety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the other, denoted by the inserti<strong>on</strong> AiB. Kauman numbers are summarized in<br />

Table 2.2.<br />

Kauman uses an overbar to represent the additiveinverse, making the negative<br />

: :<br />

unit. A positive unit and a negative unit cancel out, as = = . Many<br />

transformati<strong>on</strong> rules involve both the inverse and the doubling boundary. Because<br />

The


13<br />

this system uses string rewrite rules, ordering is signicant. The rules <strong>on</strong> the left<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Table 2.2 are for doubling and inverse, whereas the rules <strong>on</strong> the right handle<br />

sequencing.<br />

In this system, numbers add by c<strong>on</strong>catenati<strong>on</strong>, i.e. spatial collecti<strong>on</strong> in <strong>on</strong>e dimensi<strong>on</strong>.<br />

For example, 3+2 = 5. The result is transformed to a can<strong>on</strong>ical form using<br />

the string rewrite rules.<br />

3+2 Given<br />

+ <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Additi<strong>on</strong> Rewrite<br />

w = w<br />

>< =<br />

= <br />

5 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Multiplicati<strong>on</strong> is performed by replacing <strong>on</strong>e expressi<strong>on</strong> for the units in the other.<br />

For example, 3 2=6.<br />

32 Given<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

i Multiplicati<strong>on</strong> Rewrite<br />

Multiplicati<strong>on</strong> Substituti<strong>on</strong><br />

>< =<br />

6 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Subtracti<strong>on</strong> is performed by multiplying by the negative unit and then adding.<br />

The result is reduced using the rewrite rules with the negative unit. For example,<br />

8 , 1=7.


14<br />

8 , 1 Given<br />

, <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

+ Subtracti<strong>on</strong> Replacement<br />

Additi<strong>on</strong> Rewrite<br />

> = ><br />

> = ><br />

> = ><br />

=<br />

=<br />

7 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Though this system is limited to the integers, Kauman has dened another<br />

boundary as the opposite <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnitude boundary, such that () = : = : A:<br />

The string rewrite rules for this system are quite extensive due to the many permutati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the characters and are not included here.<br />

Alternatively, the extended Kauman numbers can be dened spatially with three<br />

rules. The deniti<strong>on</strong> below uses his delimiter form <str<strong>on</strong>g>of</str<strong>on</strong>g> the inverse rather than the<br />

overbar form shown above [24].<br />

Double AA = : <br />

Inverse A[A] =<br />

:<br />

Half () = : = : A<br />

Kauman numbers represent the integers and the system computes basic arithmetic<br />

operati<strong>on</strong>s except divisi<strong>on</strong> and powers. Additi<strong>on</strong> by collecti<strong>on</strong> is immediate, as<br />

is multiplicati<strong>on</strong> by substituti<strong>on</strong>. Reducti<strong>on</strong> is d<strong>on</strong>e locally by string rewrite rules.<br />

2.3 Bricken <str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

Kauman's work was given a dierent twist by William Bricken, who interpreted his<br />

basic forms as networks [5]. The network form provides singular references and a clear<br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the structures being manipulated. Of particular benet, singular<br />

reference allows multiplicati<strong>on</strong> by stacking, providing an algebraic form. Bricken<br />

numbers are summarized in Table 2.3.<br />

Bricken numbers are networks whose value is determined by their c<strong>on</strong>nectivity.<br />

The network includes a c<strong>on</strong>text and ground, shown as lines above and below the


15<br />

Table 2.3: Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bricken <str<strong>on</strong>g>Number</str<strong>on</strong>g>s.<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

0 !<br />

e<br />

1 !<br />

2 !<br />

3 !<br />

e<br />

4 !<br />

e<br />

Operators<br />

a + b ! a b<br />

a<br />

a b ! b<br />

Rules<br />

ee<br />

:<br />

e<br />

=<br />

: =<br />

network. Calculati<strong>on</strong> changes this c<strong>on</strong>nectivity to a can<strong>on</strong>ical form.<br />

Bricken deviates from Kauman's forms by implementing inverses as gradients<br />

in the c<strong>on</strong>necti<strong>on</strong>s. He extends the system with algebraic variables and can<strong>on</strong>ical<br />

equati<strong>on</strong>s and uses these extensi<strong>on</strong>s to derive algebraic soluti<strong>on</strong>s.<br />

As with Kauman numbers, Bricken's do not support any exp<strong>on</strong>ential form. The<br />

great advantage to Bricken numbers is that they clearly dene calculati<strong>on</strong> as changes<br />

in c<strong>on</strong>nectivity.<br />

2.4 C<strong>on</strong>clusi<strong>on</strong>s<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> the systems described uses distincti<strong>on</strong> to build numbers. The representati<strong>on</strong>s<br />

compute in-place by the transformati<strong>on</strong> rules <str<strong>on</strong>g>of</str<strong>on</strong>g> each system. Each operates in<br />

parallel, allowing computati<strong>on</strong> to occur locally within a vast c<strong>on</strong>gurati<strong>on</strong>.<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these three systems cover additi<strong>on</strong> and multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural numbers.<br />

Spencer-Brown's system also has exp<strong>on</strong>entiati<strong>on</strong>, Kauman's system also has<br />

the additive inverse, and Bricken's system has additive and multiplicative inverses.<br />

However, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these are clearly extensible bey<strong>on</strong>d their current scope <str<strong>on</strong>g>of</str<strong>on</strong>g> coverage.<br />

The limited scope <str<strong>on</strong>g>of</str<strong>on</strong>g> these systems restricts their usefulness as computati<strong>on</strong>al foundati<strong>on</strong>s.<br />

Collectively they suggest that it is possible to c<strong>on</strong>struct a boundary system<br />

for numbers with broader scope.


Chapter 3<br />

BOUNDARY MATHEMATICS<br />

3.1 Introducti<strong>on</strong><br />

This chapter describes the principles <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary mathematics, up<strong>on</strong> which this thesis<br />

builds the calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number.<br />

Boundary mathematics is a representati<strong>on</strong>al and computati<strong>on</strong>al paradigm for<br />

mathematics, based <strong>on</strong> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> distincti<strong>on</strong>. The paradigm was initially described<br />

by Spencer-Brown [11] but the term comes from Bricken's interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

his work in which a distincti<strong>on</strong> is drawn as a topologically closed boundary 1 [3]. The<br />

boundary mathematics paradigm prescribes forms <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> as well as their<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong>.<br />

3.2 <strong>Forms</strong><br />

Boundary mathematics is based <strong>on</strong> spatial forms. Representati<strong>on</strong> begins with complete<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> form and structure: empty space or void. Structure is added to this<br />

void by cleaving the space, by drawing a distincti<strong>on</strong>. Each distincti<strong>on</strong> adds structure,<br />

cleaving new spaces where further distincti<strong>on</strong>s can be made.<br />

Drawing a distincti<strong>on</strong> is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the space. For the purposes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong>, <strong>on</strong>e dimensi<strong>on</strong>al distincti<strong>on</strong>s are typographical delimiters,<br />

two dimensi<strong>on</strong>al distincti<strong>on</strong>s are closed loops <strong>on</strong> a page, and three dimensi<strong>on</strong>al distincti<strong>on</strong>s<br />

are solid objects.<br />

3.2.1 Void<br />

All forms stand in c<strong>on</strong>trast to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> form, void. See Figure 3.1. To begin with anything<br />

but the void would assume too much about representati<strong>on</strong>. The void imposes<br />

1 While Spencer-Brown equates the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> distincti<strong>on</strong> and boundary, his notati<strong>on</strong> fails to<br />

exploit this. Drawn as a boundary, distincti<strong>on</strong> appears more complete than Spencer-Brown's<br />

mark, , and can be interpreted in linear form as paired delimiters.


17<br />

Figure 3.1: The Void.<br />

<br />

<br />

Figure 3.2: A Distincti<strong>on</strong>.<br />

no structure or intenti<strong>on</strong> <strong>on</strong> forms which are made. In c<strong>on</strong>trast, linear, token-based<br />

representati<strong>on</strong>s impose a great deal <str<strong>on</strong>g>of</str<strong>on</strong>g> structure.<br />

The void plays a vital role in boundary mathematics. It is anywhere and everywhere;<br />

it is where all distincti<strong>on</strong>s are made. The void does not go away: it permeates<br />

all boundary representati<strong>on</strong>s [3].<br />

Equivalences with the void can be easily mistaken for typographical errors when<br />

written linearly. The equivalence form A = B puts no explicit boundary around the<br />

expressi<strong>on</strong>s being equated so a void equivalence such asA=may at rst appear<br />

err<strong>on</strong>eous. Since void expressi<strong>on</strong>s are legitimate in boundary mathematics, these<br />

expressi<strong>on</strong>s should be recognized as valid.<br />

3.2.2 Distincti<strong>on</strong><br />

Distincti<strong>on</strong> is the primary form <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary mathematics. A distincti<strong>on</strong> cleaves<br />

space, imposing structure and intenti<strong>on</strong> up<strong>on</strong> it. Distincti<strong>on</strong>s serve both a syntactic<br />

and semantic role. The meaning lies in making the separati<strong>on</strong>.<br />

Figure 3.2 shows a distincti<strong>on</strong> in the two-dimensi<strong>on</strong>al space <str<strong>on</strong>g>of</str<strong>on</strong>g> this page. The<br />

shape and scale <str<strong>on</strong>g>of</str<strong>on</strong>g> this distincti<strong>on</strong> are irrelevant. The distincti<strong>on</strong> serves <strong>on</strong>ly to<br />

separate the c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the distincti<strong>on</strong> from the c<strong>on</strong>text in which itwas made. The<br />

c<strong>on</strong>tent and c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> a distincti<strong>on</strong> are labeled in Figure 3.3.<br />

Additi<strong>on</strong>al distincti<strong>on</strong>s are made with respect to the rst distincti<strong>on</strong>. Distincti<strong>on</strong><br />

is an acti<strong>on</strong>; the result <str<strong>on</strong>g>of</str<strong>on</strong>g> distincti<strong>on</strong> is an object for further acti<strong>on</strong>. There are two<br />

ways to make a sec<strong>on</strong>d distincti<strong>on</strong>: in the c<strong>on</strong>tent or c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> the rst distincti<strong>on</strong>.


18<br />

c<strong>on</strong>text<br />

'$<br />

&%<br />

c<strong>on</strong>tent<br />

Figure 3.3: C<strong>on</strong>tent and C<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> a Distincti<strong>on</strong>.<br />

<br />

<br />

or<br />

<br />

<br />

<br />

Figure 3.4: Two Choices for Further Distincti<strong>on</strong>.<br />

These choices are shown in Figure 3.4.<br />

Distincti<strong>on</strong>s are drawn in the gures as boundaries. Here, they are written textually<br />

as paired delimiters, (). Nested distincti<strong>on</strong>s appear as (()) and collected<br />

distincti<strong>on</strong>s appear as ()():<br />

3.2.3 Multiple Boundaries<br />

Boundary mathematics uses a single distincti<strong>on</strong> to represent logic [11, 3], but the<br />

mathematics in this thesis uses three boundaries. Having dierent boundaries requires<br />

drawing a separate distincti<strong>on</strong> between the boundaries aside from the cleaving <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space. The separate distincti<strong>on</strong> between the boundary types is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venience, to<br />

advance boundary numbers and no philosophical justicati<strong>on</strong> will be attempted. In<br />

this thesis, a distincti<strong>on</strong> and a boundary are not syn<strong>on</strong>ymous since (:::); [:::]; and<br />

all represent spatial distincti<strong>on</strong>s but a separate orthog<strong>on</strong>al distincti<strong>on</strong> is made<br />

between them that is not a cleaving <str<strong>on</strong>g>of</str<strong>on</strong>g> space.<br />

3.3 Transformati<strong>on</strong><br />

The dynamic element <str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary mathematics is how to manipulate<br />

forms, how totransform boundary expressi<strong>on</strong>s. A boundary expressi<strong>on</strong> is essentially a<br />

network. The c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the network determines its value. Equivalences between


19<br />

c<strong>on</strong>nectivities denes the system <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics.<br />

3.3.1 Match and Substitute<br />

Equivalences are described by equivalence rules which transform by algebraic match<br />

and substitute. The rules given to dene a system are its equivalence axioms.<br />

An equivalence rule c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two or more boundary templates which include<br />

template variables. To apply a rule to a target expressi<strong>on</strong>, replace each template<br />

variable with an expressi<strong>on</strong> so that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the lled templates matches some part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the target expressi<strong>on</strong>. Another lled template from the rule can then substitute for<br />

the matched template in the target expressi<strong>on</strong>.<br />

For example, the rule ((A)) = A includes two templates which use the template<br />

variable, A. The target expressi<strong>on</strong> ((())) can be matched by the left template by<br />

replacing the A with to produce (())=. Substituting the right template for<br />

the left template in the target expressi<strong>on</strong> transforms it into (), essentially erasing<br />

two boundaries.<br />

3.3.2 Properties<br />

Transformati<strong>on</strong>s in boundary mathematics have some special properties. Match and<br />

substitute can operate in parallel and at all levels <str<strong>on</strong>g>of</str<strong>on</strong>g> granularity in an expressi<strong>on</strong>.<br />

For example, the rule ((A)) = A applies to the form (( (()) () )) twice; both<br />

applicati<strong>on</strong>s can occur simultaneously without c<strong>on</strong>ict to reduce it to ().<br />

In these boundary numbers, the equivalence rules are bi-directi<strong>on</strong>al. The rule<br />

itself states no directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> preference, though <strong>on</strong>e may be imposed for reducti<strong>on</strong><br />

purposes. Therefore, a reduced expressi<strong>on</strong> is mathematically equivalent to many more<br />

complicated forms. Because functi<strong>on</strong>s are c<strong>on</strong>structed with the same boundaries as<br />

are numbers, the specicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a calculati<strong>on</strong> is equivalent to a reduced result. The<br />

specicati<strong>on</strong> is the result|transformati<strong>on</strong> just changes the form that it is in.<br />

3.4 C<strong>on</strong>clusi<strong>on</strong>s<br />

Boundary mathematics is a representati<strong>on</strong>al and computati<strong>on</strong>al paradigm based <strong>on</strong><br />

spatial forms. Boundary notati<strong>on</strong> looks and acts dierently than standard notati<strong>on</strong>,<br />

using spatial c<strong>on</strong>straints and spatial properties rather than rote rules.


20<br />

<strong>Spatial</strong> forms dier fundamentally from standard forms. Space does not impose<br />

ordering c<strong>on</strong>straints; associativity and commutativity are not necessary as no order<br />

or arity has been imposed in the rst place. N<strong>on</strong>-representati<strong>on</strong> has meaning and<br />

c<strong>on</strong>tributes to computati<strong>on</strong> in ways unparalleled in standard systems. The void acts<br />

as a built-in identity that is always available. <strong>Spatial</strong> match and substitute operates<br />

at all parts <str<strong>on</strong>g>of</str<strong>on</strong>g> an expressi<strong>on</strong> simultaneously, an inherently parallel computati<strong>on</strong><br />

mechanism. These properties make boundary mathematics a unique and worthwhile<br />

paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> and computati<strong>on</strong>.<br />

Many c<strong>on</strong>cepts generally attributed to standard mathematics are notably absent<br />

from boundary mathematics and vice-versa. Boundary notati<strong>on</strong> makes no distincti<strong>on</strong><br />

between objects and operati<strong>on</strong>s up<strong>on</strong> them, as both are built out <str<strong>on</strong>g>of</str<strong>on</strong>g> the same forms.<br />

Standard mathematics does not allow void substituti<strong>on</strong> but boundary mathematics<br />

does. Boundary rules tend to embody symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong> whereas standard mathematics<br />

addresses identity elements and rearrangement properties. The tradeos are<br />

many.<br />

Boundary mathematics is exotic enough to seem obscure and <str<strong>on</strong>g>of</str<strong>on</strong>g> unclear advantage.<br />

This thesis will dem<strong>on</strong>strate the advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundary mathematics paradigm<br />

by dening in it a calculus that simplies number representati<strong>on</strong> and calculati<strong>on</strong>.


Chapter 4<br />

INSTANCE AND ABSTRACT<br />

4.1 Introducti<strong>on</strong><br />

This chapter introduces boundary numbers by dening a two-boundary calculus. The<br />

two-boundary calculus maps to natural numbers, complete with additi<strong>on</strong>, multiplicati<strong>on</strong>,<br />

and power functi<strong>on</strong>s. The calculus also builds a structure without parallel in<br />

standard notati<strong>on</strong>: a generalized cardinality form that applies to both additi<strong>on</strong> and<br />

multiplicati<strong>on</strong>.<br />

In this calculus, space is treated as additi<strong>on</strong>. A single distincti<strong>on</strong> represents natural<br />

numbers by repeating the distincti<strong>on</strong> for the value. This distincti<strong>on</strong> shall be<br />

called instance and drawn as a circular boundary when empty \" or as parentheses<br />

otherwise \(A):" An empty instance forms the natural number <strong>on</strong>e; it is the<br />

unit for counting. Nestings <str<strong>on</strong>g>of</str<strong>on</strong>g> instance are not natural numbers; these forms will be<br />

characterized in Chapter 6.<br />

A sec<strong>on</strong>d distincti<strong>on</strong> builds with the rst to make multiplicati<strong>on</strong> and power functi<strong>on</strong>s.<br />

This distincti<strong>on</strong> shall be called the abstract and drawn as a square boundary<br />

when empty \2" or as square brackets otherwise \[A]:" An empty abstract forms a<br />

n<strong>on</strong>-real number called a black hole. Nestings <str<strong>on</strong>g>of</str<strong>on</strong>g> abstract produce numerical values<br />

bey<strong>on</strong>d the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this thesis and will not be discussed here.<br />

Two axioms dene the relati<strong>on</strong>ship between instance and abstract. The involuti<strong>on</strong><br />

axiom denes them as functi<strong>on</strong>al inverses. When either boundary is immediately<br />

nested within the other, where nothing lies between them, both boundaries can be<br />

erased. The distributi<strong>on</strong> axiom denes a further relati<strong>on</strong>ship between them: when<br />

an abstract boundary lies within an instance boundary, the instance boundary and<br />

abstract boundary and the c<strong>on</strong>tentbetween them can be threaded across the c<strong>on</strong>tents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the abstract boundary. The visual forms in Secti<strong>on</strong> 4.2.2 make these rules visually<br />

apparent. The two axioms dene the calculati<strong>on</strong>s necessary to reduce multiplicati<strong>on</strong><br />

and power expressi<strong>on</strong>s to the can<strong>on</strong>ical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> natural numbers.<br />

The two boundaries also c<strong>on</strong>struct a generalized form <str<strong>on</strong>g>of</str<strong>on</strong>g> cardinality. Cardinality


22<br />

rewrites a repeated reference using a single reference combined with a count <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

repetiti<strong>on</strong>. In standard notati<strong>on</strong>, a repeated sum is rewritten as a product with the<br />

count, e.g. x + :::+x = nx, and a repeated product is rewritten as an exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the count, e.g. x :::x= x n . In the boundary calculus, cardinality takes the same<br />

form in additi<strong>on</strong> and in multiplicati<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this dual use, the boundary form<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cardinality is c<strong>on</strong>sidered to be a generalized form <str<strong>on</strong>g>of</str<strong>on</strong>g> cardinality.<br />

This chapter begins by formally dening the two-boundary calculus.<br />

4.2 The Two-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g><br />

The two-boundary calculus is introduced by dening the set <str<strong>on</strong>g>of</str<strong>on</strong>g> possible c<strong>on</strong>structi<strong>on</strong>s,<br />

the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus, and by dening axioms to state their equivalences.<br />

4.2.1 Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g><br />

Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus are c<strong>on</strong>structed out <str<strong>on</strong>g>of</str<strong>on</strong>g> the void using two boundary distincti<strong>on</strong>s:<br />

instance and abstract.<br />

Deniti<strong>on</strong>.<br />

Let B denote the collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all well-formed boundary expressi<strong>on</strong>s<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> two boundaries, denoted as(:::) and [:::]: B is dened recursively by<br />

three rules:<br />

1. The void bel<strong>on</strong>gs to B.<br />

2. If a bel<strong>on</strong>gs to B, then (a) and [a] each bel<strong>on</strong>g to B.<br />

3. If b 1 ;b 2 ;:::;b n (n 1) bel<strong>on</strong>g to B, then the unordered collecti<strong>on</strong> b 1 b 2 :::b n<br />

bel<strong>on</strong>gs to B.<br />

The rst rule establishes the void as the foundati<strong>on</strong>al element in the recursive<br />

c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B. Thus, B c<strong>on</strong>tains the void.<br />

The sec<strong>on</strong>d rule creates elements <str<strong>on</strong>g>of</str<strong>on</strong>g> B by nesting other elements inside the two<br />

boundaries. The rst two elements introduced by this rule are the boundaries with<br />

no c<strong>on</strong>tent: and 2: Further distincti<strong>on</strong> introduces the following elements into B:<br />

();(2);[];[2];(());((2));([]);([2]);[()];[(2)];[[]];[[2]]:


23<br />

The third rule creates new elements <str<strong>on</strong>g>of</str<strong>on</strong>g> B by collecting previous elements. These<br />

collecti<strong>on</strong>s are unordered so permutati<strong>on</strong>s are irrelevant. This lack <str<strong>on</strong>g>of</str<strong>on</strong>g> order means<br />

that the form 2 is c<strong>on</strong>sidered identical to 2: Collecti<strong>on</strong> introduces the following<br />

elements into B:<br />

; 2; 22; (); 2(); ()(); ; 2; 22; 222:<br />

Between the three rules, deep and wide expressi<strong>on</strong>s are introduced into B, including<br />

the forms: ([][]); (([[]][])):<br />

4.2.2 Equivalence Axioms<br />

Elements in the two-boundary calculus are related by two equivalence axioms: involuti<strong>on</strong><br />

and distributi<strong>on</strong>. The involuti<strong>on</strong> axiom denes a symmetric relati<strong>on</strong>ship<br />

between the two boundaries.<br />

Axiom 1 (Involuti<strong>on</strong>) Instance and abstract are functi<strong>on</strong>al inverses:<br />

([A]) =A : =[(A)]:<br />

:<br />

Involuti<strong>on</strong> allows the removal or introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> instance-abstract pairs, including<br />

void equivalents when A is void, (2)=[]= . Involuti<strong>on</strong> does not apply to a pair<br />

with something lying between the boundaries; it can neither introduce or remove a<br />

c<strong>on</strong>gurati<strong>on</strong> such as([]); where lies outside <str<strong>on</strong>g>of</str<strong>on</strong>g> the abstract and more than<br />

<strong>on</strong>e instance lies within it. Acceptable examples <str<strong>on</strong>g>of</str<strong>on</strong>g> involuti<strong>on</strong> are shown in Figure<br />

4.1.<br />

The distributi<strong>on</strong> axiom denes an asymmetric relati<strong>on</strong>ship between the two boundaries.<br />

Axiom 2 (Distributi<strong>on</strong>) An instance around abstract distributes over the c<strong>on</strong>tents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the abstract:<br />

(A[BC]) =(A[B])(A[C]):<br />

:<br />

Distributi<strong>on</strong> manipulates the modier form, (A[:::]); composed <str<strong>on</strong>g>of</str<strong>on</strong>g> instance, the<br />

template variable A, and abstract. It threads the modier form over the c<strong>on</strong>tents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its inner abstract boundary. Distributi<strong>on</strong> states that the form can modify these<br />

c<strong>on</strong>tents collectively or separately. Unlike involuti<strong>on</strong>, distributi<strong>on</strong> matches a pattern<br />

lying between the two boundaries. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> are shown in Figure 4.2.<br />

These two axioms dene the transformati<strong>on</strong>al basis <str<strong>on</strong>g>of</str<strong>on</strong>g> two-boundary expressi<strong>on</strong>s.


24<br />

Involuti<strong>on</strong>: ([A]) =A : =[(A)]<br />

:<br />

Equivalent Expressi<strong>on</strong>s Template Replacement<br />

([])<br />

<br />

A = <br />

( ([][]) )<br />

(([([][])]))<br />

A = ([][])<br />

[ ()([() ()])]<br />

[ () () () ] A = ()()<br />

[([() ()])() ] A = ()()<br />

( [][([] [])])<br />

( [] [] [] ) A = [][]<br />

([([] [])][] ) A = [][]<br />

([] )<br />

([][]) A =<br />

(([[()]][]))<br />

(([ ][])) A = <br />

(( [])) A =<br />

( ) A = <br />

Figure 4.1: Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Involuti<strong>on</strong>.


25<br />

Distributi<strong>on</strong>: (A[BC]) : =(A[B])(A[C])<br />

Equivalent Expressi<strong>on</strong>s Template Replacement<br />

([][])([][])<br />

([][ ]) A = [];B = ;C = <br />

(([[]][]))<br />

(([[]][])([[]][])) A = [[]];B = ;C =<br />

([][ ])<br />

([][])([][]) A = [];B = ;C = <br />

([ ][]) A = [];B = ;C = <br />

Figure 4.2: Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Distributi<strong>on</strong>.<br />

4.3 Natural <str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

The elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the two-boundary calculus map to natural numbers, complete with<br />

arithmetic operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>, multiplicati<strong>on</strong>, and exp<strong>on</strong>entiati<strong>on</strong>.<br />

Space is treated as additi<strong>on</strong> so that collecting elements adds them. Natural numbers<br />

are c<strong>on</strong>structed simply by accumulating the unit formed by the empty instance<br />

boundary, : The elements ; ; ;::: form the set <str<strong>on</strong>g>of</str<strong>on</strong>g> natural numbers, N, within<br />

the boundary calculus. The successor functi<strong>on</strong>, S(A) ! A, inductively builds N<br />

from the element :<br />

4.3.1 Additi<strong>on</strong><br />

Elements a; b 2 N add by collecti<strong>on</strong>, ab: The set N is closed under additi<strong>on</strong> because<br />

collecting elements can <strong>on</strong>ly form an element <str<strong>on</strong>g>of</str<strong>on</strong>g> equal or greater cardinality, which<br />

still an element <str<strong>on</strong>g>of</str<strong>on</strong>g>N<br />

Additi<strong>on</strong> is commutative because spatial collecti<strong>on</strong> is unordered.<br />

Additi<strong>on</strong> is<br />

associative because spatial collecti<strong>on</strong> makes no grouping distincti<strong>on</strong>s for multiple<br />

additi<strong>on</strong>s.<br />

The additive identity is the void: an element remains uneected when<br />

collected with the void.<br />

When adding these natural numbers, no calculati<strong>on</strong> is necessary. They are initially


26<br />

phrased in their can<strong>on</strong>ical form. For example, 3 + 2 rewrites as :<br />

4.3.2 Multiplicati<strong>on</strong><br />

Elements a; b 2 N multiply by the form ([a][b]): The set N is closed under the<br />

multiplicati<strong>on</strong>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

The product <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2 N and initial element, , reduces to a by involuti<strong>on</strong>,<br />

([a][])=([a])=a: If the product <str<strong>on</strong>g>of</str<strong>on</strong>g> a and b, ([a][b]), isintheN, the product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a and the successor <str<strong>on</strong>g>of</str<strong>on</strong>g> b is also in the set,<br />

([a][b])=([a][b])([a][])=([a][b])a:<br />

Because additi<strong>on</strong> is closed, this result is in N. Therefore, by inducti<strong>on</strong> all products<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a; b 2 N are in N.<br />

Multiplicati<strong>on</strong> is commutative because [a] and [b] are unordered within the<br />

outer instance. Associativity <str<strong>on</strong>g>of</str<strong>on</strong>g> binary multiplicati<strong>on</strong> is shown by two applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

involuti<strong>on</strong>:<br />

([([a][b])][c])=([a][b][c])=([a][([b][c])]):<br />

The multiplicative identity is the unit, : An element multiplied by the unit reduces<br />

to itself by involuti<strong>on</strong>,<br />

([a][])=([a])=a:<br />

In the boundary calculus, the void represents zero. Accordingly, multiplicati<strong>on</strong><br />

by the void is void, ([a][])= :<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

By distributi<strong>on</strong>, a product with the void is equal to two copies <str<strong>on</strong>g>of</str<strong>on</strong>g> the same,<br />

([a][ ])([a][ ])=([a][ ]):<br />

The equati<strong>on</strong> ee = e is true when e is void or when collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> e is idempotent.<br />

Since collecti<strong>on</strong> is assumed additive, ee 6= e unless e is void. Therefore, ([a][ ])= :


27<br />

Multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural numbers requires some calculati<strong>on</strong> to return values to<br />

the can<strong>on</strong>ical form <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> units. This reducti<strong>on</strong> uses distributi<strong>on</strong> to strip<br />

away units <strong>on</strong>e at a time, al<strong>on</strong>g with involuti<strong>on</strong> to remove unit multiplicati<strong>on</strong>s.<br />

3 2 Given<br />

2<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

([][])<br />

Multiplicati<strong>on</strong> Rewrite<br />

([][])([][]) Distributi<strong>on</strong><br />

([] )([] ) Involuti<strong>on</strong><br />

<br />

Involuti<strong>on</strong><br />

4.4 Cardinality<br />

In the boundary calculus, repeated references to the same element can be rewritten<br />

as a cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g> that element.<br />

Theorem 1 (Cardinality) Multiple references in the same c<strong>on</strong>text may be reduced<br />

to a single reference with multiple units signifying its quantity, as<br />

A:::A=([A][:::]):<br />

Cardinality diers from multiplicati<strong>on</strong> in that this transformati<strong>on</strong> is not semantically<br />

tied to its c<strong>on</strong>text, as it is in multiplicati<strong>on</strong>. Cardinality applies at any depth.<br />

Everything has a count <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e, shown directly by involuti<strong>on</strong>:<br />

A=([A])=([A][]):<br />

Here, the l<strong>on</strong>e denotes the single cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g>a: Greater cardinalities can be<br />

formed by collecting many units in this space using distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> separate single<br />

cardinalities. For example, two references can be distributed into a cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two:<br />

AA=([A][])([A][])=([A][]):<br />

The inducti<strong>on</strong> step to all natural numbers is,<br />

A:::AA=([A][:::])([A][])=([A][:::]):


28<br />

4.4.1 Domini<strong>on</strong><br />

A zero cardinality, ([A]2), reduces to the void as a void multiplicati<strong>on</strong>. In this<br />

form, the empty abstract, 2, dominates its c<strong>on</strong>text. This element is called a black<br />

hole because <str<strong>on</strong>g>of</str<strong>on</strong>g> this collapsing property. A general form <str<strong>on</strong>g>of</str<strong>on</strong>g> this collapsing derives<br />

from void multiplicati<strong>on</strong>.<br />

Theorem 2 (Domini<strong>on</strong>) Elements collected with a black hole are irrelevant, as<br />

2A=2:<br />

Domini<strong>on</strong> is proven from void multiplicati<strong>on</strong> with an involuti<strong>on</strong>:<br />

2A=[(2A)]=2:<br />

4.4.2 Generalized Cardinality<br />

The cardinality form is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>text and can be applied to repetiti<strong>on</strong><br />

in both additi<strong>on</strong> and multiplicati<strong>on</strong>. Cardinality applies to all repetiti<strong>on</strong> in the same<br />

c<strong>on</strong>text, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the form repeated or the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>text. Any collecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> identical elements can be counted this way.<br />

Cardinality applies to additi<strong>on</strong> directly. It applies to multiplicati<strong>on</strong> by counting<br />

abstracted elements inside the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> a surrounding instance boundary. For<br />

example, ([a][a])=(([[a]][])). Cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g>multiplicati<strong>on</strong> translates to exp<strong>on</strong>entiati<strong>on</strong>.<br />

Cardinality appears in standard and boundary numbers as:<br />

x + :::+x= nx versus x:::x=([x][:::])<br />

x :::x= x n versus ([x]:::[x])=(([[x]][:::]))<br />

4.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

Though a single boundary represents natural numbers, a sec<strong>on</strong>d boundary provides<br />

c<strong>on</strong>venient forms for algebraic multiplicati<strong>on</strong> and exp<strong>on</strong>entiati<strong>on</strong>. The involuti<strong>on</strong> and<br />

distributi<strong>on</strong> axioms completely dene computati<strong>on</strong> <strong>on</strong> the natural numbers for these<br />

functi<strong>on</strong>s. The two-boundary calculus is summarized in Table 4.1.<br />

The two-boundary calculus c<strong>on</strong>structs a generalized form <str<strong>on</strong>g>of</str<strong>on</strong>g> cardinality. This<br />

form applies to all situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated reference in space, including additi<strong>on</strong> and


29<br />

Table 4.1: The Two-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

0 !<br />

1 !<br />

2!<br />

3! <br />

Operators<br />

x + y ! xy<br />

x y ! ([x][y])<br />

x y ! (([[x]][y]))<br />

Rules<br />

([A]) = : A = : [(A)]<br />

(A[BC]) = : (A[B])(A[C])<br />

multiplicati<strong>on</strong>. It provides a form that is unavailable in standard notati<strong>on</strong>. Though<br />

cardinality is an important c<strong>on</strong>cept, standard notati<strong>on</strong> does not have a form for it<br />

that is independent <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>text. Cardinality provides a substrate for building a base<br />

system and thus a route to remove the representati<strong>on</strong>al inc<strong>on</strong>venience <str<strong>on</strong>g>of</str<strong>on</strong>g> the unary<br />

notati<strong>on</strong> for numbers in Table 4.1.<br />

The two-boundary calculus is similar to Spencer-Brown's numbers, except that it<br />

uses two boundaries where Spencer-Brown uses just <strong>on</strong>e [10]. The additi<strong>on</strong>al boundary<br />

disambiguates the situati<strong>on</strong>s that his system had diculty with. It still includes<br />

remnants <str<strong>on</strong>g>of</str<strong>on</strong>g> his logical arithmetic with involuti<strong>on</strong> and domini<strong>on</strong>. Ideally, this calculus<br />

would be dened as a numerical arithmetic, from rules such asinvoluti<strong>on</strong> and<br />

domini<strong>on</strong>, and generalized to algebraic axioms.


Chapter 5<br />

INVERSE<br />

5.1 Introducti<strong>on</strong><br />

This chapter extends boundary numbers to integers, rati<strong>on</strong>als, and algebraic irrati<strong>on</strong>als<br />

by introducing a third boundary to serve as a generalized inverse.<br />

The rst two boundaries, instance and abstract, remain exactly as dened in<br />

Chapter 4. The rst two axioms, involuti<strong>on</strong> and distributi<strong>on</strong>, are also the same.<br />

The third boundary extends this system with a generalized inverse. This boundary<br />

shall be called the inverse boundary and be written as a triangle when empty, \4,"<br />

or as angled brackets otherwise, \:" Aninverse boundary with no c<strong>on</strong>tent is<br />

equivalent tovoid. The inverse boundary is its own functi<strong>on</strong>al inverse, so nesting<br />

inverse inside <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse cancels out.<br />

The characteristic property <str<strong>on</strong>g>of</str<strong>on</strong>g> the inverse boundary is dened by the inversi<strong>on</strong><br />

axiom. An element and its inverse cancel to the void. Similarly, an element and its<br />

inverse can be introduced from the void. All elements have aninverse except for the<br />

black hole.<br />

Inverse serves directly as the additive inverse (i.e. ,x) and, in a c<strong>on</strong>structi<strong>on</strong><br />

with instance and abstract, as the multiplicative inverse (i.e. 1=x). Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both inverses is handled by the inversi<strong>on</strong> axiom, cancelling a form collected with its<br />

inverse. The c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> this cancellati<strong>on</strong> unambiguously determines the semantics<br />

as the subtracti<strong>on</strong> (i.e. x , x = 0) or divisi<strong>on</strong> (i.e. x=x = 1). Because the inverse<br />

boundary serves both additi<strong>on</strong> and multiplicati<strong>on</strong>, it is c<strong>on</strong>sidered to be a generalized<br />

inverse.<br />

This chapter begins by redening the calculus with three boundaries.<br />

5.2 The Three-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g><br />

The two-boundary calculus from Chapter 4 is extended with a third boundary by<br />

redening the set <str<strong>on</strong>g>of</str<strong>on</strong>g> elements to include it and by adding a third axiom to dene its


31<br />

transformati<strong>on</strong>s.<br />

5.2.1 Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g><br />

Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus are c<strong>on</strong>structed out <str<strong>on</strong>g>of</str<strong>on</strong>g> the void using three boundary distincti<strong>on</strong>s:<br />

instance, abstract, and inverse.<br />

Deniti<strong>on</strong>.<br />

Let B denote the collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all well-formed boundary expressi<strong>on</strong>s<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> three boundaries, denoted as (); []; and : B is dened recursively by<br />

four rules:<br />

1. The void bel<strong>on</strong>gs to B.<br />

2. If a bel<strong>on</strong>gs to B, then (a) and [a] each bel<strong>on</strong>g to B.<br />

3. If b bel<strong>on</strong>gs to B and b6=2; then bel<strong>on</strong>gs to B.<br />

4. If c 1 ;c 2 ;:::;c n (n 1) bel<strong>on</strong>g to B, then the unordered collecti<strong>on</strong> c 1 c 2 :::c n<br />

bel<strong>on</strong>gs to B.<br />

Rules 1, 2 and 4 are identical to those in Chapter 4. The rst rule establishes the<br />

void as the foundati<strong>on</strong>al element inB. The sec<strong>on</strong>d rule creates elements by nesting<br />

elements in the instance and abstract boundaries. The fourth rule creates elements<br />

by collecting other elements.<br />

The new, third rule creates elements by nesting other elements in the inverse<br />

boundary. It works identically to the sec<strong>on</strong>d rule, except that the black hole is<br />

excluded. In other words, is undened. The rst elementintroduced by this rule<br />

is the inverse boundary with no c<strong>on</strong>tent: 4: The distincti<strong>on</strong> rules (2 and 3) introduce<br />

the following elements into B from the void:<br />

(4);[4];;;();[];;;;;:<br />

Between the four rules, deep and wide expressi<strong>on</strong>s are introduced into B, including<br />

the forms: ; (([[]])):


32<br />

5.2.2 Equivalence Axioms<br />

Elements in the three-boundary calculus are related by three equivalence axioms:<br />

involuti<strong>on</strong>, distributi<strong>on</strong>, and inversi<strong>on</strong>. The involuti<strong>on</strong> and distributi<strong>on</strong> axioms are<br />

dened as before.<br />

Axiom 1 (Involuti<strong>on</strong>) Instance and abstract are functi<strong>on</strong>al inverses:<br />

([A]) : =A : =[(A)]:<br />

Axiom 2 (Distributi<strong>on</strong>) An instance around abstract distributes over the c<strong>on</strong>tents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the abstract:<br />

(A[BC]) : =(A[B])(A[C]):<br />

The new axiom <str<strong>on</strong>g>of</str<strong>on</strong>g> inversi<strong>on</strong> denes transformati<strong>on</strong>s with the inverse boundary.<br />

Axiom 3 (Inversi<strong>on</strong>) An element and its inverse are equivalent to void:<br />

A : =<br />

Inversi<strong>on</strong> matches if the complete c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> an inverse boundary are found in<br />

the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> that boundary. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> inversi<strong>on</strong> are given in Figure 5.1.<br />

Inversi<strong>on</strong> uses void substituti<strong>on</strong>. An element and its inverse can be introduced<br />

anywhere in a boundary expressi<strong>on</strong>, so l<strong>on</strong>g as both elements are put into the c<strong>on</strong>text.<br />

Likewise, an element and its inverse can be removed from a boundary expressi<strong>on</strong>, so<br />

l<strong>on</strong>g as both reside in the same c<strong>on</strong>text.<br />

These three axioms dene all <str<strong>on</strong>g>of</str<strong>on</strong>g> the transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus.<br />

5.3 The Additive Inverse<br />

The inverse boundary serves directly as the additive inverse. The additive inverse<br />

extends the natural numbers built in Chapter 4 to the integers.<br />

Adding an element to its additiveinverse reduces to the additive identity, the void.<br />

For example, 3 , 3 = 0 translates to = : The additive inverse appears<br />

generally in standard and boundary numbers as:<br />

x +(,x)=0 versus x= :


33<br />

Inversi<strong>on</strong>: A =<br />

:<br />

Equivalent Expressi<strong>on</strong>s Template Replacement<br />

<br />

<br />

A = <br />

([])<br />

([][])<br />

A = []<br />

<br />

()<br />

()<br />

A = ()<br />

A = <br />

Figure 5.1: Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Inversi<strong>on</strong>.<br />

5.3.1 Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Additive Inverse<br />

The inverse boundary can be manipulated in ways analogous the the additive inverse.<br />

The basic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the inverse are outlined by three theorems: inverse<br />

collecti<strong>on</strong>, inverse cancellati<strong>on</strong>, and inverse promoti<strong>on</strong>. The theorem <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse collecti<strong>on</strong><br />

transforms collected inversi<strong>on</strong>s into a single inversi<strong>on</strong> and the theorem <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inverse cancellati<strong>on</strong> removes pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> nested inverses.<br />

Theorem 1 (Inverse Collecti<strong>on</strong>) Acollecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inverted elements equals an inversi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the collecti<strong>on</strong>, as<br />

=:<br />

A pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse collecti<strong>on</strong> follows from inversi<strong>on</strong>:<br />

=AB=:<br />

Theorem 2 (Inverse Cancellati<strong>on</strong>) The inverse boundary is its own functi<strong>on</strong>al<br />

inverse, as<br />

=A:


34<br />

A pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse cancellati<strong>on</strong> also follows from inversi<strong>on</strong>:<br />

=A=A:<br />

Besides collecting and cancelling, the inverse operati<strong>on</strong> can be \promoted" over<br />

the modier form, (A[:::]):The theorem <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse promoti<strong>on</strong> derives this property.<br />

Theorem 3 (Inverse Promoti<strong>on</strong>) An inverse boundary can be promoted over the<br />

composite boundary, (A[:::]):<br />

=(A[]):<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For all A; B; C 2 B;B 6= 2;<br />

<br />

Given<br />

(A[ ]) Void Multiplicati<strong>on</strong><br />

(A[B]) Inversi<strong>on</strong><br />

(A[B])(A[]) Distributi<strong>on</strong><br />

(A[]) Inverse<br />

These three theorems appear in standard and boundary numbers as:<br />

(,x)+(,y)=,(x+y) versus =<br />

,(,x) =x versus =x<br />

,(xy) =x(,y) versus =(x[])<br />

5.3.2 Integers<br />

Since the boundary calculus now includes the additive inverse, natural numbers can<br />

be extended to the integers. The instance boundary serves as a unit for the natural<br />

numbers and the inverse boundary inverts that unit. The negative unit is given by<br />

: These numbers add by spatial collecti<strong>on</strong> and multiply by the form using the<br />

abstract boundary.<br />

The void and elements ;;;;;;::: compose the set I <str<strong>on</strong>g>of</str<strong>on</strong>g> integers<br />

within the boundary calculus. The successor functi<strong>on</strong> is S(A) ! A and the predecessor<br />

functi<strong>on</strong> is P (A) ! A: From the void, successors to the void take the form<br />

::: and predecessors to the void take the form : The predecessor functi<strong>on</strong><br />

gives ; which equals byinverse collecti<strong>on</strong>.


35<br />

Boundary integers add by collecti<strong>on</strong>, as ab; and are closed under additi<strong>on</strong>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Elements a; b 2 I assume <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> three forms: the void, a positive integer,<br />

or a negative integer.<br />

1. If either is the void, the sum reduces to the other value, which isinI.<br />

2. If both are positive integers, the sum is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> all units, which isinI.<br />

3. If both are negativeintegers, the sum is <str<strong>on</strong>g>of</str<strong>on</strong>g> the form which equals<br />

byinverse collecti<strong>on</strong>. This form is in I.<br />

4. If a and b are <str<strong>on</strong>g>of</str<strong>on</strong>g> opposite sign and the positive number has fewer units, the<br />

negative number can be split by inverse collecti<strong>on</strong> and that part cancelled out,<br />

e.g. :::=:::=: This result is in I.<br />

5. Otherwise, if a and b must be <str<strong>on</strong>g>of</str<strong>on</strong>g> opposite sign with the positive number having<br />

more units. In this case, the negative number cancels directly with part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

positive value, e.g. ::::::=:::: This result is in I.<br />

Additi<strong>on</strong> is commutative because spatial collecti<strong>on</strong> is unordered. Additi<strong>on</strong> is<br />

associative because spatial collecti<strong>on</strong> makes no grouping distincti<strong>on</strong>s for multiple<br />

additi<strong>on</strong>s. The additive identity is still void.<br />

Every element inIhas an additive inverse.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

The inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> the void is the void, = ; derived directly by inversi<strong>on</strong>.<br />

All successors to the void, the natural numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the form :::; have as additive<br />

inverses the same value wrapped by inverse, : All predecessors to the void,<br />

the natural numbers wrapped by the inverse boundary as ; have as additive<br />

inverses the same value wrapped again by the inverse ; which reduces to<br />

the uninverted natural number <str<strong>on</strong>g>of</str<strong>on</strong>g> the form ::: byinverse cancellati<strong>on</strong>.<br />

Integers a; b 2 I multiply with the same form used for natural numbers, ([a][b]):<br />

The integers are closed under multiplicati<strong>on</strong>.


36<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Elements a; b 2 I each assume <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> three forms: the void, a positive<br />

integer, or a negative integer. Let c; d 2 N be the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> a; b respectively.<br />

1. When either is the void, the product reduces to the void by void multiplicati<strong>on</strong>,<br />

which isinI.<br />

2. When both are positive, the product is in I because natural numbers are closed<br />

under multiplicati<strong>on</strong>.<br />

3. When <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them is negative, as ([c][]); the product is the inverse <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the product <str<strong>on</strong>g>of</str<strong>on</strong>g> their magnitudes, ; by inverse promoti<strong>on</strong>. Since the<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> two natural numbers is a natural number and the inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> a natural<br />

number is an integer, this result is an integer.<br />

4. When both numbers are negative, as ([][]); the product is the inverseinverse<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the product <str<strong>on</strong>g>of</str<strong>on</strong>g> their magnitudes, ; by inverse promoti<strong>on</strong><br />

applied twice. This reduces to ([c][d]); the product <str<strong>on</strong>g>of</str<strong>on</strong>g> two natural numbers,<br />

which is a natural number.<br />

Multiplicati<strong>on</strong> is commutative because [a] and [b] are unordered within the outer<br />

instance. Multiplicati<strong>on</strong> is associative bytwo applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> involuti<strong>on</strong>:<br />

([([a][b])][c])=([a][b][c])=([a][([b][c])]):<br />

5.3.3 Calculati<strong>on</strong><br />

Calculati<strong>on</strong> with the additiveinverse is straightforward, seeking to eliminate abstract<br />

and multiple inverses. Subtracti<strong>on</strong> requires matching <str<strong>on</strong>g>of</str<strong>on</strong>g> positive and negative quantities:<br />

3 , 5 Given<br />

, <str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

Subtracti<strong>on</strong> Rewrite<br />

Inverse Collecti<strong>on</strong><br />

Inversi<strong>on</strong>


37<br />

Multiplicati<strong>on</strong> requires management <str<strong>on</strong>g>of</str<strong>on</strong>g> the inverse.<br />

,3 ,2 Given<br />

<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

([][]) Multiplicati<strong>on</strong> Rewrite<br />

Inverse Promoti<strong>on</strong><br />

Inverse Promoti<strong>on</strong><br />

([ ][ ]) Inverse Cancellati<strong>on</strong><br />

([][])([][]) Distributi<strong>on</strong><br />

Cardinality<br />

5.4 Multiplicative Inverse<br />

The inverse serves as the multiplicative inverse when set between the instance and<br />

abstract boundaries, as ():<br />

Multiplying something against its additive inverse reduces to the multiplicative<br />

identity, the unit. For example, 3=3 = 1 translates to ([])=(): The<br />

multiplicative inverse appears in standard and boundary numbers as:<br />

x=x =1 versus ([x])=()<br />

5.4.1 Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Multiplicative Inverse<br />

The theorems for the additive inverse also apply to the multiplicative inverse. For<br />

simplicity in this discussi<strong>on</strong>, some involuti<strong>on</strong> steps are assumed. For example, when<br />

multiplying by amultiplicative inverse, involuti<strong>on</strong> immediately applies:<br />

([a][()])=([a]):<br />

Inverse collecti<strong>on</strong> states that the product <str<strong>on</strong>g>of</str<strong>on</strong>g> two inverted numbers equals an inversi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their product. Inverse cancellati<strong>on</strong> states that multiplicative inverse cancels<br />

itself out. These two theorems for multiplicati<strong>on</strong> appear in standard and boundary<br />

numbers as:<br />

1=x 1=y =1=xy versus ()=()<br />

1=(1=x) =x versus ()=x:


38<br />

Inverse promoti<strong>on</strong> carries the inverse over the modier form, as =(a[]):<br />

This theorem translates to standard numbers as the c<strong>on</strong>versi<strong>on</strong> between the multiplicativeinverse<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a value and the additiveinverse <str<strong>on</strong>g>of</str<strong>on</strong>g> its exp<strong>on</strong>ent. Inverse promoti<strong>on</strong><br />

for multiplicati<strong>on</strong> appears in standard and boundary numbers as:<br />

1=x y = x ,y versus ()=(([[x]][]))<br />

5.4.2 Rati<strong>on</strong>als<br />

Because the boundary calculus now includes the multiplicative inverse, integers can<br />

be extended to rati<strong>on</strong>als. The multiplicative inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> a is simply (): For<br />

n; d 2 I with d 6= , the element ([n]) is in Q, the set <str<strong>on</strong>g>of</str<strong>on</strong>g> rati<strong>on</strong>als.<br />

The rati<strong>on</strong>als, a; b 2 Q add by collecti<strong>on</strong> ab and are closed under additi<strong>on</strong>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Rati<strong>on</strong>al numbers a; b 2 Q take the form a=([i]) and b=([k]);<br />

where i; k; j; l 2 I with j; l 6= . The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> these rati<strong>on</strong>als is ab=([i])([k]);<br />

which reduces to rati<strong>on</strong>al c=([m]); where m=([i][l])([k][j]) and n=([j][l]);<br />

by the following derivati<strong>on</strong>.<br />

( [i] )( [k] ) Given<br />

( [i][l] )( [k][j] < [j]>) Inversi<strong>on</strong><br />

( [i][l] )( [k][j] < [j] [l] >) Inverse Collecti<strong>on</strong><br />

([([i][l])])([([k][j])]) Involuti<strong>on</strong><br />

([([i][l]) ([k][j])]) Distributi<strong>on</strong><br />

([ m ]) Rewrite<br />

Since the product <str<strong>on</strong>g>of</str<strong>on</strong>g> two integers in I is an integer, n is an integer. Because j and<br />

l are n<strong>on</strong>-void, their product is n<strong>on</strong>-void. Products ([i][l]) and ([k][j]) are also<br />

integers. Since the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> two integers is an integer, m=([i][l])([k][j]) is also an<br />

integer. Therefore, c is rati<strong>on</strong>al, c 2 Q, and additi<strong>on</strong> is closed under the rati<strong>on</strong>als.<br />

Every elementinQhas an additiveinverse, found simply by wrapping the inverse<br />

boundary around it.<br />

Rati<strong>on</strong>als, a; b 2 Q multiply by the same form used for natural numbers, ([a][b]):<br />

The rati<strong>on</strong>als are closed under multiplicati<strong>on</strong>.


39<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Rati<strong>on</strong>al numbers a; b 2 Q take the form a=([i]) and b=([k]);<br />

where i; k; j; l 2 I with j; l 6= . The product <str<strong>on</strong>g>of</str<strong>on</strong>g> these rati<strong>on</strong>als is also in Q because<br />

the product <str<strong>on</strong>g>of</str<strong>on</strong>g> a and b reduces to the rati<strong>on</strong>al ([m]); where m=([i][k]) and<br />

n=([j][l]):<br />

([ a ][ b ]) Given<br />

([([i])][([k])]) Replacement<br />

( [i] [k] ) Involuti<strong>on</strong><br />

( [i] [k] ) Inverse collecti<strong>on</strong><br />

([([i] [k])]) Involuti<strong>on</strong><br />

([ m ]) Replacement<br />

Since the product <str<strong>on</strong>g>of</str<strong>on</strong>g> two integers is an integer, both m and n are integers. Because<br />

j and l are n<strong>on</strong>-void, n is also n<strong>on</strong>-void. Therefore, ([m]) is rati<strong>on</strong>al and so<br />

the product <str<strong>on</strong>g>of</str<strong>on</strong>g> a and b is rati<strong>on</strong>al.<br />

Every element inQ, except for the void, has a multiplicative inverse.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Rati<strong>on</strong>al number a 2 Q takes the form a=([i]); where i; k 2 I with<br />

j 6= . Since a is n<strong>on</strong>-void, the numerator is also n<strong>on</strong>-void, i 6= . The multiplicative<br />

inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> a, given by (); is rati<strong>on</strong>al by the following reducti<strong>on</strong> back to the<br />

rati<strong>on</strong>al form.<br />

()=()=()=([j])<br />

5.4.3 Divisi<strong>on</strong> by Zero<br />

Domini<strong>on</strong>, a2=2, loses informati<strong>on</strong> and necessitates excluding from the calculus.<br />

This restricti<strong>on</strong> prevents formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> divisi<strong>on</strong> by zero, (): This restricti<strong>on</strong><br />

appears in standard and boundary numbers as:<br />

1=0 undened versus undened.<br />

5.4.4 Calculati<strong>on</strong><br />

Computing a divisi<strong>on</strong> requires a matching <str<strong>on</strong>g>of</str<strong>on</strong>g> quantities. When quantities cannot be<br />

matched, the fracti<strong>on</strong> does not reduce. Thus, the calculus c<strong>on</strong>strains this calculati<strong>on</strong><br />

but does not guide the reducti<strong>on</strong>.


40<br />

6=2 Given<br />

([]) Rewrite<br />

([([][])]) Cardinality<br />

( [][] ) Involuti<strong>on</strong><br />

( [] ) Inversi<strong>on</strong><br />

<br />

Involuti<strong>on</strong><br />

5.5 Inverse and Cardinality<br />

The inverse applied to the cardinality form gives negative and fracti<strong>on</strong>al cardinalities.<br />

5.5.1 Negative Cardinality<br />

A negative cardinality is <strong>on</strong>e which cancels out with a positive cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g> equal<br />

magnitude. A negative cardinality is indicated by the inverse boundary around the<br />

units. For instance, a cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g> negative two cancels with a cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g>two.<br />

([a][])([a][])=([a][])=([a][])=<br />

An inverted multiplicative form is changed to a negative cardinality by the theorem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inverse promoti<strong>on</strong>.<br />

=([a][])<br />

For additi<strong>on</strong>, this negative cardinality translates to multiplicati<strong>on</strong> by a negative<br />

integer. For multiplicati<strong>on</strong>, this negative cardinality translates to exp<strong>on</strong>entiati<strong>on</strong> by<br />

a negative integer. These forms appear in standard and boundary numbers as:<br />

,(nx) =(,n)x versus =([x][])<br />

1=x n = x ,n versus ()=(([[x]][]))<br />

5.5.2 Fracti<strong>on</strong>al Cardinality<br />

The multiplicative inverse diers from the additive inverse by placing the inverse<br />

boundary outside <str<strong>on</strong>g>of</str<strong>on</strong>g> an abstract boundary, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> inside <str<strong>on</strong>g>of</str<strong>on</strong>g> it. Doing the same to<br />

the cardinality c<strong>on</strong>structi<strong>on</strong> makes fracti<strong>on</strong>al cardinalities.


41<br />

For example, a half-cardinality is given by ([a]): Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

reduces to a:<br />

([a])([a]) Given<br />

([([a])][]) Cardinality<br />

([a][]) Involuti<strong>on</strong><br />

([a])<br />

Inversi<strong>on</strong><br />

a<br />

Involuti<strong>on</strong><br />

Applied to additi<strong>on</strong> combinati<strong>on</strong>s, fracti<strong>on</strong>al cardinality builds fracti<strong>on</strong>s. The<br />

form ([a]) translates to a=2. In the above pro<str<strong>on</strong>g>of</str<strong>on</strong>g> this fracti<strong>on</strong> is doubled, as<br />

a=2+a=2 =2(a=2) = a(2=2) = a:<br />

Applied to multiplicative combinati<strong>on</strong>s, fracti<strong>on</strong>al cardinalities build roots. The<br />

form (([[b]])) translates to b 1=2 . In a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> similar to the above but with<br />

a=[b], this root is squared to double the cardinality, as<br />

b 1=2 b 1=2 =(b 1=2 ) 2 =b 2=2 =b:<br />

Since fracti<strong>on</strong>al cardinalities form roots, they allow c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the algebraic<br />

irrati<strong>on</strong>als.<br />

5.6 C<strong>on</strong>clusi<strong>on</strong>s<br />

Though the two-boundary calculus <strong>on</strong>ly represents natural numbers, simply adding an<br />

inverse boundary extends the boundary numbers through the algebraic irrati<strong>on</strong>als.<br />

The three axioms completely dene computati<strong>on</strong> <strong>on</strong> these numbers and functi<strong>on</strong>s.<br />

The three-boundary calculus is summarized in Table 5.1.<br />

The inverse boundary serves manyinverse functi<strong>on</strong>s due to the structures provided<br />

by the instance and abstract boundaries. It is dened in the most fundamental way<br />

that an inverse can be dened, utilizing the void to cancel inverses to nothing. The<br />

spatial formalism makes this inverse deniti<strong>on</strong> possible and powerful. Kauman<br />

dened an inverse boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> this sort but did not have the other structures to<br />

utilize it in a general form.<br />

The inverse is powerful but it introduces problems, such as divisi<strong>on</strong> by zero.<br />

Though the two-boundary calculus was solid, the three-boundary calculus has a single<br />

excepti<strong>on</strong>, preventing rules from applying to all c<strong>on</strong>gurati<strong>on</strong>s. When performing


42<br />

Table 5.1: The Three-Boundary <str<strong>on</strong>g>Calculus</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

0 !<br />

1 !<br />

2!<br />

,1!<br />

,2!<br />

1=2 ! ()<br />

2=3 ! ([])<br />

p<br />

3 ! (([[]]))<br />

3p<br />

2 ! (([[]]))<br />

Operators<br />

x ! x<br />

,x ! <br />

1=x ! ()<br />

x + y ! xy<br />

x , y ! x<br />

x y ! ([x][y])<br />

x=y ! ([x])<br />

x y ! (([[x]][y]))<br />

x ,y ! (([[x]][]))<br />

yp x ! (([[x]]))<br />

Rules<br />

([A]) = : A = : [(A)]<br />

(A[BC]) = : (A[B])(A[C])<br />

A =<br />

:<br />

a computati<strong>on</strong>, c<strong>on</strong>straints <strong>on</strong> variables must be propagated through to avoid paradoxes.


Chapter 6<br />

PHASE<br />

6.1 Introducti<strong>on</strong><br />

This chapter extends the boundary calculus to complex numbers and basic transcendentals<br />

by interpreting boundaries functi<strong>on</strong>ally and by adding some manipulative<br />

c<strong>on</strong>straints.<br />

The inverse boundary can be put into an arithmetic form to which cardinality can<br />

be applied (the boundary itself cannot be counted). This form is called the phase<br />

element, orJ, and it translates to the radian value i in standard numbers. Fracti<strong>on</strong>al<br />

cardinalities <str<strong>on</strong>g>of</str<strong>on</strong>g> J build into the complex roots <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e, just as fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> i determine<br />

a radian angle in the complex plane. This property <str<strong>on</strong>g>of</str<strong>on</strong>g> J undermines additive space<br />

because it has indeterminate sign and ambiguous magnitude, a complicati<strong>on</strong> similar<br />

to using radian numbers to represent complex numbers. This issue is addressed in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> cardinality and inverse.<br />

The instance and abstract boundaries act as exp<strong>on</strong>ential and logarithmic functi<strong>on</strong>s,<br />

respectively. Interpreting these as the natural exp<strong>on</strong>ent, e x ! (x); and the<br />

natural logarithm, ln x ! [x]; introduces these transcendental functi<strong>on</strong>s into the<br />

calculus. With these functi<strong>on</strong>s, basic transcendentals such aseand can be c<strong>on</strong>structed.<br />

6.2 Phase<br />

When manipulating boundary expressi<strong>on</strong>s, the inverse boundary falls into an arithmetical<br />

form that cardinality can apply to.<br />

Recall the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> negative cardinality, =([a][]); written as ,a =<br />

a ,1 in standard notati<strong>on</strong>. In the boundary form, the inverse boundary has been<br />

separated from what it previously c<strong>on</strong>tained, into the encapsulated form []: This<br />

form shall be called J:<br />

J =[]:<br />

:


44<br />

J has a stability unparalleled in the calculus: it uses all three boundaries exactly<br />

<strong>on</strong>ce. All other legal c<strong>on</strong>gurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> three dierent boundaries reduce to void because<br />

the abstract and instance boundaries cancel out. (The sixth case, (); is<br />

undened.)<br />

[()];([]);;:<br />

6.2.1 Phase Independence<br />

The c<strong>on</strong>gurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three boundaries also serves as phase operator, given as []:<br />

This operator possesses a curious property <str<strong>on</strong>g>of</str<strong>on</strong>g> independence from its c<strong>on</strong>tents.<br />

Theorem 1 (Phase Independence) In a nesting <str<strong>on</strong>g>of</str<strong>on</strong>g> abstract, inverse, and instance<br />

boundaries, the c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> the instance can be moved to the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>gurati<strong>on</strong>.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For all A 2 B,<br />

[]<br />

Given<br />

[ ( [ ])] Involuti<strong>on</strong><br />

[ (A [ ])] Domini<strong>on</strong><br />

[ (A [() ])] Inversi<strong>on</strong><br />

[ (A [()])(A [])] Distributi<strong>on</strong><br />

[ (A )(A [])] Involuti<strong>on</strong><br />

[ (A [])] Inversi<strong>on</strong><br />

A [] Involuti<strong>on</strong><br />

Phase independence simplies manipulati<strong>on</strong>s with the inverse. In particular, it<br />

simplies the derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> negative cardinality, as<br />

=([])=([A][]):<br />

Phase independence also gives a dierent pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse promoti<strong>on</strong>. Rather<br />

than generate, distribute, and cancel (as in the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> in Secti<strong>on</strong> 5.3.1), with phase<br />

independence, the inverse is wrapped into the phase operator and moved.<br />

=([])=(A[])=(A[]):


45<br />

Using J, two c<strong>on</strong>cise and useful forms <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse promoti<strong>on</strong> become possible: the<br />

inverse jumping inside <str<strong>on</strong>g>of</str<strong>on</strong>g> the instance boundary and the inverse jumping outside <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the abstract boundary:<br />

=([])=(A[])=(AJ);<br />

[]=[]=[A][]=[A]J:<br />

6.2.2 Oscillati<strong>on</strong><br />

The phase element has the property <str<strong>on</strong>g>of</str<strong>on</strong>g> being its own inverse. Only zero exhibits this<br />

property in rati<strong>on</strong>al numbers.<br />

Theorem 2 (J Cancellati<strong>on</strong>) Jcancels with itself.<br />

[][]=[]=[]=[]=<br />

That J is its own inverse should be <str<strong>on</strong>g>of</str<strong>on</strong>g> no surprise, since the inverse boundary is<br />

its own functi<strong>on</strong>al inverse and J embodies the inverse.<br />

In light <str<strong>on</strong>g>of</str<strong>on</strong>g> this, J can be built into an oscillati<strong>on</strong> functi<strong>on</strong>, osc(A) ! AJ. Every<br />

sec<strong>on</strong>d applicati<strong>on</strong> causes the Js to cancel out, producing the sequence:<br />

!J! !J! !J!:::<br />

Wrapping the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> this sequence with the instance boundary produces a<br />

more familiar sequence. Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> starting with void, this sequence starts with and<br />

uses the oscillati<strong>on</strong> functi<strong>on</strong> osc(A) ! ([A]J); producing this sequence:<br />

!(J)!!(J)!!(J)!:::<br />

Since (J)=; the functi<strong>on</strong> is just a multiplicati<strong>on</strong> by negative <strong>on</strong>e. The sequence<br />

translates to:<br />

1!,1!1!,1!1!,1!:::


46<br />

6.2.3 Cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g> J<br />

The periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> this oscillati<strong>on</strong> can be changed by applying cardinality toJ.For<br />

example, the half-cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g>Jproduces a four-step oscillati<strong>on</strong> with the functi<strong>on</strong><br />

osc(A) ! A([J]):<br />

!([J])!J!J([J])! !([J])!:::<br />

Wrapping the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> this sequence with the instance boundary again produces<br />

a more familiar sequence. The oscillatory functi<strong>on</strong> this time is osc(A) !<br />

([A]([J])):<br />

!(([J]))!(J)!(J([J]))!!(([J]))!:::<br />

Interpreting (([J])) as i reveals the oscillati<strong>on</strong> functi<strong>on</strong> to be a multiplicati<strong>on</strong><br />

by i, producing oscillati<strong>on</strong> between 1 and ,1, this time in four-steps:<br />

1!i!,1!,i!1!i!:::<br />

The oscillati<strong>on</strong> functi<strong>on</strong>, osc(A) ! ([A]([J])); is a half-inverse operati<strong>on</strong>.<br />

Similarly, other cardinalities <str<strong>on</strong>g>of</str<strong>on</strong>g> J can be taken to produce other periodicities,<br />

forming the roots <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

6.3 Multiple Value<br />

A half-inverse operati<strong>on</strong> would be a powerful additi<strong>on</strong> to the boundary calculus,<br />

except that cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g> J is syntactically unstable. In particular, J has ambiguous<br />

sign and ambiguous (multi-valued) cardinality.<br />

Ambiguous sign<br />

Ambiguous cardinality<br />

J=<br />

=JJ=JJJJ=JJJJJJJJ=:::<br />

The sec<strong>on</strong>d property follows directly from J-cancellati<strong>on</strong>. The rst property follows<br />

from inversi<strong>on</strong> and J-cancellati<strong>on</strong>.<br />

J=J=J=J=:


47<br />

The ambiguous sign makes the cardinalities <str<strong>on</strong>g>of</str<strong>on</strong>g> J have ambiguous signs also, disrupting<br />

the oscillati<strong>on</strong> points. For example,<br />

([ J ]) Given<br />

([]) Ambiguous Sign<br />

Inverse Promoti<strong>on</strong><br />

The ambiguous cardinality <str<strong>on</strong>g>of</str<strong>on</strong>g> J occurs at all values.<br />

([ J ]) Given<br />

([JJJ])<br />

J Cancellati<strong>on</strong><br />

([ J ])([JJ]) Distributi<strong>on</strong><br />

([ J ])([J][]) Cardinality<br />

([ J ])([J]) Inversi<strong>on</strong><br />

([ J ])J Involuti<strong>on</strong><br />

J undermines the calculus because <str<strong>on</strong>g>of</str<strong>on</strong>g> these ambiguities. Cardinalities <str<strong>on</strong>g>of</str<strong>on</strong>g> J are useful<br />

as they provide complex numbers. Resolving this ambiguity restores the integrity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus and extends it to complex numbers. Two steps accomplish this:<br />

1. C<strong>on</strong>vert inverse boundaries to Js. Whenever the inverse boundary is wrapped<br />

by the abstract boundary, as[], pull the inverse out, as [A]J.<br />

2. Limit J cancellati<strong>on</strong>. Allow Js to cancel <strong>on</strong>ly within an instance boundary and<br />

after applying other reducti<strong>on</strong>s.<br />

These c<strong>on</strong>straints are not exhaustive but they do approximate the c<strong>on</strong>straints <strong>on</strong><br />

collapsing complex numbers to radian values within complex exp<strong>on</strong>entials.<br />

6.4 Exp<strong>on</strong>entials and Logarithms<br />

The instance and abstract boundaries can be functi<strong>on</strong>ally interpreted as an exp<strong>on</strong>ential<br />

operati<strong>on</strong> and a logarithm operati<strong>on</strong>, respectively. The base <str<strong>on</strong>g>of</str<strong>on</strong>g> these operati<strong>on</strong>s is<br />

not c<strong>on</strong>strained by the calculus. Though it is not mandatory to specify, some choices<br />

are nevertheless c<strong>on</strong>venient. For example, using base two or base ten directly provides<br />

logarithms and exp<strong>on</strong>ents to that magnitude.<br />

Obviously the \natural" choice is to use base e, creating the interpretati<strong>on</strong>s e x !<br />

(x) and ln x ! [x]: With these functi<strong>on</strong>s, the calculus can c<strong>on</strong>struct basic transcendental<br />

values and the trig<strong>on</strong>ometry functi<strong>on</strong>s.


48<br />

Multiplicati<strong>on</strong> in the calculus can be seen as an adding <str<strong>on</strong>g>of</str<strong>on</strong>g> logarithms:<br />

xy = e ln(xy) = e ln x+ln y ! ([x][y])<br />

Exp<strong>on</strong>entiati<strong>on</strong> in the calculus can be seen as a multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a logarithm:<br />

x y = e ln xy = e y ln x = e eln(y ln x) = e eln y+ln ln x ! (([[x]][y]))<br />

The logarithmic formulas c<strong>on</strong>nect multiplicative operati<strong>on</strong>s with additive operati<strong>on</strong>s.<br />

Because the forms <str<strong>on</strong>g>of</str<strong>on</strong>g> calculus can be interpreted as logarithms, these transformati<strong>on</strong>s<br />

are trivial.<br />

ln(xy) =lnx+lny versus [([x][y])]=[x][y]<br />

ln x=y =lnx,ln y versus [([x])]=[x]<br />

ln x y = y ln x versus [(([[x]][y]))]=([[x]][y])<br />

6.5 Transcendentals<br />

Transcendental numbers, such as Euler's number and an algebraic , can be represented<br />

in the calculus as can basic trig<strong>on</strong>ometric functi<strong>on</strong>s.<br />

6.5.1 Euler's <str<strong>on</strong>g>Number</str<strong>on</strong>g>, e<br />

The instance boundary acts as an exp<strong>on</strong>ential. A double nesting <str<strong>on</strong>g>of</str<strong>on</strong>g> instance equals<br />

its base, e e0 = e ! (): Setting the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the functi<strong>on</strong> to Euler's number makes this<br />

boundary form represent Euler's number. This nesting does not reduce to any other<br />

boundary form, making the transcendental value incommensurable with previously<br />

dened numbers.<br />

6.5.2 Pi, <br />

Interpreting the abstract boundary as the natural logarithm makes J =ln,1=i.<br />

This interpretati<strong>on</strong> fullls Euler's formula translated to J wrapped by instance:<br />

1+e i =0 versus ([])=


49<br />

Table 6.1: Transcendentals in the <str<strong>on</strong>g>Calculus</str<strong>on</strong>g>.<br />

Transcendental Standard Boundary<br />

J i []<br />

p<br />

i<br />

,1 (([J]))<br />

3:1415 ::: (J[J]([J]))<br />

e 2:7183 ::: ()<br />

From J and i, a radian interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> can be algebraically c<strong>on</strong>structed.<br />

= ,1 i i<br />

= ([][(([J]))][J])<br />

= (J[J]([J]))<br />

This c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treats it not as a real number but as the radian unit. Its<br />

semantic value comes out <str<strong>on</strong>g>of</str<strong>on</strong>g> this algebraic c<strong>on</strong>structi<strong>on</strong> and has no relati<strong>on</strong> to its<br />

numerical value <str<strong>on</strong>g>of</str<strong>on</strong>g> =3:14159 :::.<br />

The numerical values <str<strong>on</strong>g>of</str<strong>on</strong>g> e and in standard mathematics are based <strong>on</strong> criteria<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the manipulati<strong>on</strong>s used here (e.g. geometry) and are not essential<br />

to the algebraic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the transcendentals. In the calculus, they are devoid <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

numerical value and remain incommensurable with other quantities. The boundary<br />

representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these basic transcendental values are given in Table 6.1.<br />

6.5.3 Trig<strong>on</strong>ometric Functi<strong>on</strong>s<br />

In the calculus, trig<strong>on</strong>ometric functi<strong>on</strong>s can be computed symbolically using the three<br />

boundary rules. The functi<strong>on</strong> for cosine in standard and boundary forms appears as:<br />

cos x = eix + e ,ix<br />

2<br />

versus<br />

cosx=([(([x]([J])))(([]([J])))])<br />

The cosine functi<strong>on</strong> behaves as expected, reducing to real results. For instance,<br />

cos = ,1. Although the derivati<strong>on</strong> can be lengthy and complicated, it is based<br />

entirely <strong>on</strong> the three axioms and the theorems that follow from them. Accordingly,<br />

trig<strong>on</strong>ometric formulas can be derived from these axioms.


50<br />

6.6 C<strong>on</strong>clusi<strong>on</strong>s<br />

The three-boundary calculus supports forms which act algebraically as complex numbers<br />

and basic transcendentals.<br />

Surprisingly, the simple forms <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus extend to the more advanced mathematics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> trig<strong>on</strong>ometry and complex exp<strong>on</strong>entials, which dem<strong>on</strong>strate the basic c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> manipulating the inverse.<br />

Some simple observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> transcendental numbers arise in this discussi<strong>on</strong>. The<br />

phase behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> complex exp<strong>on</strong>entials is in no way tied to the numeric values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

e and . Assigning them numeric values serves altogether dierent purposes (e.g.<br />

derivatives).<br />

Undened and uninterpreted, the base <str<strong>on</strong>g>of</str<strong>on</strong>g> instance and abstract is transcendental<br />

because () is incommensurable with any other boundary c<strong>on</strong>structi<strong>on</strong>. An equality<br />

could be introduced that dened this to be n<strong>on</strong>-transcendental, such as base two with<br />

the deniti<strong>on</strong> () = : : Everything in the calculus would still hold as n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> it is<br />

dependent <strong>on</strong> this value.


Chapter 7<br />

FUTURE WORK<br />

7.1 Introducti<strong>on</strong><br />

The ability to form and manipulate numerical expressi<strong>on</strong>s is a small part <str<strong>on</strong>g>of</str<strong>on</strong>g> number<br />

mathematics and numbers are just <strong>on</strong>e domain <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics. The minimalist techniques<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> boundary mathematics can be applied to the larger c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers and<br />

to additi<strong>on</strong>al areas <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics. The representati<strong>on</strong>al paradigm may ultimately<br />

encompass much <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics.<br />

Here, I c<strong>on</strong>sider the future <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number. The advancement <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

calculus may proceed in three directi<strong>on</strong>s: towards wider coverage, that boundary<br />

numbers may bewell-dened within the structures known to elementary algebra; towards<br />

practicality, that techniques for learning and working with math can be rediscovered<br />

with this new c<strong>on</strong>ceptualizati<strong>on</strong>; and towards extended uses <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers, that<br />

integral calculus and other transformati<strong>on</strong>s may be rec<strong>on</strong>ceptualized under boundary<br />

mathematics. If they are suciently expanded boundary numbers may nd practical<br />

use.<br />

7.2 Coverage<br />

The mathematics <str<strong>on</strong>g>of</str<strong>on</strong>g> number is extensive and detailed. This calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number covers<br />

<strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> it, showing that algebraic expressi<strong>on</strong>s and arithmetic computati<strong>on</strong> can<br />

be d<strong>on</strong>e with boundaries. The calculus remains without many structures that would<br />

be required to do number mathematics.<br />

Arithmetic deniti<strong>on</strong>. The given deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus is not an ideal <strong>on</strong>e<br />

because it presents an algebraic deniti<strong>on</strong>. A proper deniti<strong>on</strong> would derive the<br />

algebraic axioms by generalizing from arithmetic laws <strong>on</strong> the basic forms. Choices <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

axioms need to be assessed and compared for their utility in describing the dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the forms, working towards arithmetic laws.


52<br />

Resolve paradoxes. This deniti<strong>on</strong> is not thorough because the paradoxes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multiple-value and zero singularity are not completely resolved. The traditi<strong>on</strong>al notati<strong>on</strong><br />

addresses these paradoxes by c<strong>on</strong>sidering the domain and range <str<strong>on</strong>g>of</str<strong>on</strong>g> each functi<strong>on</strong><br />

and then limiting rule applicati<strong>on</strong> accordingly. This approach does not clearly translate<br />

to the boundary forms because the approach relies heavily <strong>on</strong> a fairly wide c<strong>on</strong>text<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> forms (i.e. numerical class) to determine when a rule applies. In the boundary<br />

calculus, the paradoxes must be c<strong>on</strong>sidered at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries, with as little<br />

dependence <strong>on</strong> number type as possible. A preliminary attempt at this was made in<br />

Chapter 6.<br />

Additi<strong>on</strong>al functi<strong>on</strong>s. The boundary calculus can express <strong>on</strong>ly the basic arithmetic<br />

functi<strong>on</strong>s. It leaves out many useful functi<strong>on</strong>s found in elementary algebra. While<br />

it includes additi<strong>on</strong>, subtracti<strong>on</strong>, multiplicati<strong>on</strong>, divisi<strong>on</strong>, exp<strong>on</strong>ents, and logarithms,<br />

those functi<strong>on</strong>s which utilize set theoretics, such as summati<strong>on</strong>s, or those which have<br />

disc<strong>on</strong>tinuities, such as absolute value, are not covered.<br />

Structures around expressi<strong>on</strong>s. It lacks many structures for doing ordinary algebra,<br />

such as equality and inequality (standard linear structures were used here). It has<br />

no larger system <str<strong>on</strong>g>of</str<strong>on</strong>g> truth maintenance, nor a form for abstracting functi<strong>on</strong>s. Such basic<br />

tenets <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics are sorely necessary for any notati<strong>on</strong> to be remotely useful.<br />

Since most <str<strong>on</strong>g>of</str<strong>on</strong>g> predicate calculus is well understood, this extensi<strong>on</strong> is reas<strong>on</strong>able.<br />

In this discourse, these issues were avoided by embedding the boundary forms<br />

within traditi<strong>on</strong>al linear c<strong>on</strong>structi<strong>on</strong>s. Because boundary calculus is spatial, many<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its advantages are lost when it is restricted to linear c<strong>on</strong>structs. To maintain the<br />

spatial advantages, the calculus most cover this completely, so that the entire notati<strong>on</strong><br />

is spatial.<br />

7.3 Practical<br />

Currently, the boundary calculus is impractical for manipulating numbers, because<br />

traditi<strong>on</strong>al support tools and techniques do not apply directly to its forms. The<br />

comm<strong>on</strong> knowledge taught in grade school mathematics is directed towards standard<br />

notati<strong>on</strong> and must be rec<strong>on</strong>sidered to use with boundary numbers (see [29]).<br />

Problem phrasing. Traditi<strong>on</strong>al problem representati<strong>on</strong> techniques were designed<br />

around the c<strong>on</strong>ceptual objects <str<strong>on</strong>g>of</str<strong>on</strong>g> standard notati<strong>on</strong>: numbers and functi<strong>on</strong>s. In<br />

c<strong>on</strong>trast, the boundary forms use distincti<strong>on</strong> and collecti<strong>on</strong>. It is unlikely that math-


53<br />

ematics problems could be phrased directly in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundary c<strong>on</strong>structs,<br />

though higher compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> them, such asnumbers and functi<strong>on</strong>s, certainly would<br />

work. If boundary forms are in any way fundamental, then thinking in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

boundaries should provide a c<strong>on</strong>ceptual advantage over traditi<strong>on</strong>al forms.<br />

Algorithms. Algorithms for carrying through calculati<strong>on</strong>s and nding soluti<strong>on</strong>s<br />

must be reinterpreted in this form. Even comm<strong>on</strong> arithmetic routines, such as adding<br />

based integers, requires a heuristic to direct the result to the proper form. In many<br />

cases, comm<strong>on</strong> heuristics will emerge that are relatively hidden in the traditi<strong>on</strong>al notati<strong>on</strong>.<br />

Because the details <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical manipulati<strong>on</strong> dier so much in boundary<br />

calculus, the high level manipulati<strong>on</strong>s may fall into remarkably dierent patterns.<br />

Management <str<strong>on</strong>g>of</str<strong>on</strong>g> forms. The boundary calculus forces manipulati<strong>on</strong> at the very<br />

lowest level. C<strong>on</strong>structs that are used regularly should have some sort <str<strong>on</strong>g>of</str<strong>on</strong>g> abstracti<strong>on</strong><br />

mechanism for managing repetitive structural operati<strong>on</strong>s. For example, a macro <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a base boundary could represent base multiplicati<strong>on</strong>: fAg=([A][ ]).<br />

More complicated c<strong>on</strong>structi<strong>on</strong>s will be necessary, although how to create powerful<br />

abstracti<strong>on</strong> mechanisms with spatial forms is not clear.<br />

Tools. Many people learn and use mathematics with the assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al<br />

aids, such as calculators and computers. These tools allow powerful interacti<strong>on</strong><br />

directly with the mathematical objects <str<strong>on</strong>g>of</str<strong>on</strong>g> standard notati<strong>on</strong>. The boundary calculus<br />

suggests that this assistance may hide some <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers<br />

from those students. Similar computati<strong>on</strong>al tools can be built for boundary calculus,<br />

wrapping in the preceding techniques for doing mathematics. These tools would<br />

need to be linked with powerful functi<strong>on</strong>ality that is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong>, such<br />

as graph plotting.<br />

The boundary calculus does not immediately make mathematics easier to use.<br />

Just as numbers are a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical understanding, notati<strong>on</strong> is<br />

a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical use. The supporting cast <str<strong>on</strong>g>of</str<strong>on</strong>g> tools and techniques<br />

must be lled in before the boundary calculus can support full use <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics.<br />

7.4 Extensi<strong>on</strong>s<br />

Algebra is just the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical mathematics: out <str<strong>on</strong>g>of</str<strong>on</strong>g> algebra stems differential<br />

calculus and integral calculus, out <str<strong>on</strong>g>of</str<strong>on</strong>g> dierential calculus stems dierential<br />

equati<strong>on</strong>s and partial dierentials, and out <str<strong>on</strong>g>of</str<strong>on</strong>g> integral calculus stems transformati<strong>on</strong>al


54<br />

Table 7.1: Rules for Boundary Dierentiati<strong>on</strong>.<br />

D1. =(A)==(A[=A=])<br />

D2. =[A]==([=A=])<br />

D3. ===<br />

D4. =A B===A==B=<br />

D5. == =<br />

methods including Fourier transforms. The elds c<strong>on</strong>tinue and boundary calculus can<br />

potentially extend to all <str<strong>on</strong>g>of</str<strong>on</strong>g> them. Boundary numbers may c<strong>on</strong>tribute to research and<br />

understanding in these areas, just as mathematical notati<strong>on</strong>s have enlightened problems<br />

in the past [26, 2].<br />

Dierentials are rather easily expressed in boundary form. Let =A= represent the<br />

dierential <str<strong>on</strong>g>of</str<strong>on</strong>g> A. Let (A) be interpreted as e A and let [A] be interpreted as ln a. The<br />

rules dening the inward propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dierential operator, shown in Table 7.1,<br />

are quite simple. These can be expressed more c<strong>on</strong>cisely, as the rst two rules are<br />

equivalent and the rest are transparencies.<br />

The chain rule, d(ab) =bda+adb, is easily proved from these rules:<br />

=([A][B])=<br />

Given<br />

([A][B][=[A] [B]=]) D1<br />

([A][B][=[A]==[B]=])<br />

D4<br />

([A][B][([=A=])([=B=])])<br />

D2 (2x)<br />

([A][B][([=A=])])([A][B][([=B=])]) Distributi<strong>on</strong><br />

([A][B] [=A=] )([A][B] [=B=] ) Involuti<strong>on</strong><br />

([B][=A=])([A][=B=])<br />

Inversi<strong>on</strong><br />

Boundary numbers lead into deeper mathematics because they have a natural interpretati<strong>on</strong><br />

as exp<strong>on</strong>entials. Many extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers rely <strong>on</strong> exp<strong>on</strong>entials, so it<br />

is likely that boundary numbers may illuminate some trends that are not directly noticeable<br />

in traditi<strong>on</strong>al notati<strong>on</strong>. For example, boundary numbers provide a framework<br />

for c<strong>on</strong>sidering the signicance <str<strong>on</strong>g>of</str<strong>on</strong>g> transcendental numbers and their relati<strong>on</strong>ships to<br />

other numbers.<br />

These extensi<strong>on</strong>s would involve translating current mathematical knowledge to


55<br />

boundary form, in search <str<strong>on</strong>g>of</str<strong>on</strong>g> hidden insight. Boundary numbers provide new perspective<br />

<strong>on</strong> old problems.<br />

7.5 C<strong>on</strong>clusi<strong>on</strong>s<br />

This minimalist eort was motivated by a need to clarify the mathematics we already<br />

know. Behind this goal lies a greater purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> creating a solid foundati<strong>on</strong> for<br />

mathematics itself|boundary mathematics has this foundati<strong>on</strong>. Distincti<strong>on</strong> is a<br />

fundamental representati<strong>on</strong>al act. Networks <str<strong>on</strong>g>of</str<strong>on</strong>g> nested and collected distincti<strong>on</strong>s can<br />

reduce by <strong>on</strong>ly a few basic possibilities, because the choices are limited. Dierent<br />

choices direct the initial forms into set theory, natural numbers, or propositi<strong>on</strong>al<br />

logic. This representati<strong>on</strong>al genesis organizes these domains, mapping them from<br />

the representati<strong>on</strong>al starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> the void. This clear, explicit organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mathematical domains is unique to boundary mathematics. It is the study <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

most fundamental dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> form.


Chapter 8<br />

APPLICATIONS<br />

8.1 Introducti<strong>on</strong><br />

The boundary calculus redenes numbers within the paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary mathematics.<br />

The calculus may eventually inuence the ways we implement and use<br />

mathematics, as well as how we teach it.<br />

When solving problems mathematically,we use three basic representati<strong>on</strong>al stages<br />

(introduced in Chapter 1): the problem in its own terms, the representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

problem mathematically, and separate representati<strong>on</strong>s for performing calculati<strong>on</strong>s.<br />

These stages combine into a basic soluti<strong>on</strong> loop for mathematical activity, shown in<br />

Figure 8.1<br />

Traditi<strong>on</strong>al notati<strong>on</strong> was designed for the cycle between the top two stages, when<br />

representing vaguely understood ideas was more important than the eectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their representati<strong>on</strong>. As mathematics developed, the features <str<strong>on</strong>g>of</str<strong>on</strong>g> the notati<strong>on</strong> evolved<br />

to encompass more and more expressive power. With this progressi<strong>on</strong>, calculati<strong>on</strong><br />

with the notati<strong>on</strong> became more complex, to the point where separate forms were<br />

introduced to assist in calculati<strong>on</strong> [30]. That is, the notati<strong>on</strong> was no l<strong>on</strong>ger suitable<br />

for direct calculati<strong>on</strong>, mandating the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surrogate forms.<br />

We are taught to compute most arithmetic functi<strong>on</strong>s with alternative forms, such<br />

as vertical additi<strong>on</strong> and l<strong>on</strong>g divisi<strong>on</strong>. In symbolic manipulati<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, algebraic<br />

expressi<strong>on</strong>s are stored in data structures much dierent from standard notati<strong>on</strong>, data<br />

structures that have been optimized for the type <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong> that needs to be<br />

d<strong>on</strong>e. Computati<strong>on</strong>al representati<strong>on</strong>s are everywhere; they blend in because they are<br />

c<strong>on</strong>sidered necessary. In fact, they are a disc<strong>on</strong>tinuity in representati<strong>on</strong>.<br />

The calculus may simplify the entire soluti<strong>on</strong> loop. The critical path goes through<br />

the calculati<strong>on</strong> loop, which presently is quite c<strong>on</strong>voluted. The fundamental objects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the calculus are boundaries, computati<strong>on</strong> objects that provide simple and direct computati<strong>on</strong>.<br />

The c<strong>on</strong>ceptual objects <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers and arithmetic functi<strong>on</strong>s are structures<br />

built out <str<strong>on</strong>g>of</str<strong>on</strong>g> these primitives, rather than being the primitives themselves.


57<br />

Technology<br />

interface<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

Soluti<strong>on</strong> Loop<br />

applicati<strong>on</strong><br />

6<br />

?<br />

c<strong>on</strong>ceptual objects<br />

6<br />

?<br />

computati<strong>on</strong>al objects<br />

hardware<br />

6<br />

Activity<br />

problem representati<strong>on</strong><br />

translati<strong>on</strong> and c<strong>on</strong>trol<br />

calculati<strong>on</strong><br />

Figure 8.1: Technology and Representati<strong>on</strong>.<br />

With this new set <str<strong>on</strong>g>of</str<strong>on</strong>g> primitives, the activities in the soluti<strong>on</strong> loop become more<br />

clearly delineated. In particular, c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong> steps, directi<strong>on</strong>, becomes<br />

clearly separated from the c<strong>on</strong>straints <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong>, terrain. These c<strong>on</strong>straints<br />

can be maintained throughout an algorithm so that all intermediate states are mathematically<br />

equivalent. These primitive dynamics allow more precise c<strong>on</strong>trol within the<br />

representati<strong>on</strong> than standard forms allow. Any given standard form is not optimally<br />

structured for certain calculati<strong>on</strong>s.<br />

Pushing the notati<strong>on</strong> down to computati<strong>on</strong>al objects signicantly aects the tools<br />

and mechanismsby which we do mathematics. We can streamline the entire soluti<strong>on</strong><br />

loop and the technology that assists us: the hardware that performs calculati<strong>on</strong>s,<br />

the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware that builds and manipulates c<strong>on</strong>ceptual objects, our interface to these<br />

mathematical objects, and the pedagogy <str<strong>on</strong>g>of</str<strong>on</strong>g> this entire loop. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these areas are<br />

protable applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this material and are briey c<strong>on</strong>sidered in the following<br />

secti<strong>on</strong>s.<br />

8.2 Hardware<br />

The way we c<strong>on</strong>ceptualize mathematics aects how we implement computati<strong>on</strong>al<br />

hardware. Most machine computati<strong>on</strong>s are built up<strong>on</strong> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics based<br />

in the higher c<strong>on</strong>ceptual objects <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard notati<strong>on</strong>. The boundary calculus<br />

provides lower-level forms from which to base machine computati<strong>on</strong>s.<br />

The boundary calculus has computati<strong>on</strong>al advantages because it is inherently


58<br />

parallel. Linear computati<strong>on</strong> models have isolated c<strong>on</strong>trol points which sequence<br />

computati<strong>on</strong>|forcing these to be parallel violates their very design, even though<br />

mathematics is inherently parallel. The calculus does not limit c<strong>on</strong>trol and computati<strong>on</strong><br />

but allows as little or as much parallelism as a platform will allow.<br />

To implement the calculus in hardware, a network data structure must be provided<br />

in silic<strong>on</strong> to support the nesting and collecting <str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries. It must have means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> determining equivalent nodes and creating multiple reference. It must support<br />

the match and substitute mechanism and it must include a c<strong>on</strong>trol routine which<br />

progresses elements towards a stable, can<strong>on</strong>ical representati<strong>on</strong>.<br />

Anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> issues presentchallenges to this development. How toachieve can<strong>on</strong>ical<br />

representati<strong>on</strong>s must be determined for the broadest domain <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers, and<br />

c<strong>on</strong>straints must be imposed to remain within that domain. Algorithmic means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

avoiding the paradoxes must be fully worked out.<br />

Achip that implements the boundary calculus could be based in the ve operati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its deniti<strong>on</strong>: set to the void, collect values, wrap with instance, wrap with<br />

abstract, or wrap with inverse. The chip could store and manipulate algebraic expressi<strong>on</strong>s<br />

by manipulating unknowns. Two additi<strong>on</strong>al commands provide this functi<strong>on</strong><br />

manipulati<strong>on</strong>: create a lambda variable in a register and replace occurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

lambda variable with another value.<br />

Ir<strong>on</strong>ically, these functi<strong>on</strong>s are described for a linear machine. Instructi<strong>on</strong> sets are<br />

based <strong>on</strong> procedural languages within procedural machines. In c<strong>on</strong>trast, this calculus<br />

provides a basis for a spatial machine. Thorough architectures <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial machines<br />

have recently been proposed for which the calculus seems compatible [15].<br />

8.3 Computer Algebra<br />

Current computer algebra systems (CAS) adopt data structures which deviate signicantly<br />

from the parsing structure <str<strong>on</strong>g>of</str<strong>on</strong>g> standard algebra. These structures help optimize<br />

manipulati<strong>on</strong>s and operati<strong>on</strong>s <strong>on</strong> functi<strong>on</strong>s. The boundary calculus takes this a step<br />

further by proposing objects to which specialized network structures can be designed.<br />

To computer algebra, the calculus represents a signicant reducing technology.<br />

Suddenly, less does more. Fewer formulas are required which ultimately do more.<br />

C<strong>on</strong>straints are easier to follow and simpler to implement. Additi<strong>on</strong>ally, the exp<strong>on</strong>ential<br />

interpretati<strong>on</strong> makes it particularly useful for more customized operati<strong>on</strong>s,


59<br />

such asintegrals and Fourier transforms where c<strong>on</strong>versi<strong>on</strong> to an exp<strong>on</strong>ential form is<br />

necessary anyway.<br />

Because the calculus is minimal, it provides a str<strong>on</strong>g basis for automatic theorem<br />

proving by limiting decisi<strong>on</strong> points. As with hardware applicati<strong>on</strong>, a key problem<br />

is to nd a c<strong>on</strong>sistent reducti<strong>on</strong> for every expressi<strong>on</strong>, using heuristics to guide the<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rules. The decisi<strong>on</strong> procedure is easier within the calculus simply<br />

because there are fewer c<strong>on</strong>structs to deal with.<br />

The following reducti<strong>on</strong>s show that e ,=2 = i i . In boundary form, the two seemingly<br />

dierent forms actually reduce to an equivalent form.<br />

(([][()]))<br />

e ,=2<br />

(([ (JJ[J]([J])) ][()])) Inverse promoti<strong>on</strong><br />

(( JJ[J]([J]) )) Involuti<strong>on</strong><br />

(( [J]([J]) )) J cancellati<strong>on</strong><br />

(([[(([J]))]][(([J]))]))<br />

(( [J] ([J]) )) Involuti<strong>on</strong><br />

It would be dicult to implement the calculus in s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware because it does not cover<br />

all the mathematics necessary for a complete mathematics package. The spatial forms<br />

are powerful and immediately useful in isolati<strong>on</strong> but they c<strong>on</strong>ict with traditi<strong>on</strong>al<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics. Until more math is similarly expressed in spatial forms,<br />

the full power <str<strong>on</strong>g>of</str<strong>on</strong>g> the paradigm cannot be exploited.<br />

i i<br />

8.4 Mathematical Interface<br />

The calculus makes an immediate c<strong>on</strong>tributi<strong>on</strong> to the visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics<br />

because its spatial c<strong>on</strong>structs aord many visual interpretati<strong>on</strong>s. Two interpretati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ax 2 ! ([a]([[x]][])) are shown in Figure 8.2. Because the notati<strong>on</strong> computes<br />

in-place, these forms directly support animati<strong>on</strong>.<br />

The boundary calculus denes c<strong>on</strong>structs spatially from the beginning, rather<br />

than retrotting prior structures into spatial form. This frees it from the linear<br />

assumpti<strong>on</strong>s that corrupt many visual languages.<br />

In breaking from traditi<strong>on</strong>al linear methods, the calculus has attained many features<br />

that are essential to a good visual language. First it is completely visual. There<br />

are no hidden semantics except for the axioms which can be seen in operati<strong>on</strong> and are


60<br />

''<br />

a<br />

x<br />

&&<br />

i i<br />

Encircling Boundaries<br />

$<br />

i<br />

%<br />

a<br />

x<br />

i<br />

ii<br />

Distincti<strong>on</strong> Network<br />

Figure 8.2: Visual Interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Boundary <str<strong>on</strong>g>Number</str<strong>on</strong>g>s.<br />

visually simple. No part <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculus involves dissociated textual code; the picture<br />

itself completely and unambiguously describes a mathematical expressi<strong>on</strong>.<br />

The calculus also performs computati<strong>on</strong> in-place, a valuable feature <str<strong>on</strong>g>of</str<strong>on</strong>g> a visual<br />

programming language [18]. Expressi<strong>on</strong>s change themselves into new forms, exactly<br />

where they are, in many cases simply by fading in or out parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the expressi<strong>on</strong>.<br />

This computati<strong>on</strong> is naturally parallel and c<strong>on</strong>current, without explicit c<strong>on</strong>trol points:<br />

computati<strong>on</strong> occurs where and when it can.<br />

The boundary calculus can improve the mathematical interface by making it visual:<br />

expressi<strong>on</strong>s are visually specied and computati<strong>on</strong> occurs visually <strong>on</strong> the same<br />

forms.<br />

8.5 Educati<strong>on</strong><br />

The standard algebraic notati<strong>on</strong>|made <str<strong>on</strong>g>of</str<strong>on</strong>g> operators and equati<strong>on</strong>s|dominates mathematical<br />

experience. As the primary means <str<strong>on</strong>g>of</str<strong>on</strong>g> communicating algebraic c<strong>on</strong>cepts, it<br />

is used in textbooks, <strong>on</strong> ash cards and posters, <strong>on</strong> tests and homework. The notati<strong>on</strong><br />

holds an exclusive role: it is the <strong>on</strong>ly comm<strong>on</strong> thread through all mathematical<br />

experience and so is comm<strong>on</strong>ly c<strong>on</strong>fused as being mathematics itself.<br />

The notati<strong>on</strong> not <strong>on</strong>ly serves to implement mathematical c<strong>on</strong>cepts, it also serves<br />

as an authority <strong>on</strong>how these c<strong>on</strong>cepts are made to work. The notati<strong>on</strong> links ideas<br />

into comm<strong>on</strong> abstracti<strong>on</strong>s that serve as the identifying references for the ideas. All<br />

mathematical explanati<strong>on</strong>s are ultimately tied back to these representati<strong>on</strong>s; they are<br />

relied up<strong>on</strong> pedagogically as fundamental to mathematics.<br />

Standard notati<strong>on</strong> c<strong>on</strong>ceals knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ships between functi<strong>on</strong>s. For-


61<br />

mulas specify how they transform: some functi<strong>on</strong>s have several representati<strong>on</strong>s while<br />

others are unique and some combinati<strong>on</strong>s can be simplied while others cannot. Because<br />

the visual form does not c<strong>on</strong>vey these relati<strong>on</strong>ships, much external knowledge<br />

must be brought to the task <str<strong>on</strong>g>of</str<strong>on</strong>g> doing mathematics.<br />

In this way, standard notati<strong>on</strong> fails to support learning mathematics. Availability<br />

and applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rules are not suggested by the forms. Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

rules remains distinct and separate from this mathematical interface. Dissociating<br />

knowledge from appearance leaves an impressi<strong>on</strong> that the knowledge is arbitrary and<br />

without foundati<strong>on</strong>. Only by accepting this knowledge <strong>on</strong> faith can a student bypass<br />

the c<strong>on</strong>tradicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> form introduced by this dissociati<strong>on</strong>.<br />

The failure to instantiate mathematical knowledge in its visual forms further c<strong>on</strong>tributes<br />

to the misc<strong>on</strong>cepti<strong>on</strong> that mathematics is a purely cognitive activity. In<br />

doing so, mathematical ability is politely restricted to <strong>on</strong>ly the \gifted" populati<strong>on</strong>,<br />

another failure <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics educati<strong>on</strong>.<br />

The boundary calculus can impact mathematics educati<strong>on</strong>. It provides another<br />

reference for the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> formal mathematical c<strong>on</strong>cepts and arguably presents<br />

a better interface to mathematical behavior.<br />

8.6 C<strong>on</strong>clusi<strong>on</strong>s<br />

The stages <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical representati<strong>on</strong> can be readdressed under the paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

boundary mathematics so that the activities <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics are more clearly delineated.<br />

The boundary calculus isolates manipulative c<strong>on</strong>straints, leaving c<strong>on</strong>ceptual<br />

objects as c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundary forms. The delineati<strong>on</strong> gives those particular<br />

c<strong>on</strong>structi<strong>on</strong>s meaning and benet that is usually hidden. Standard choices for<br />

organizing numbers are actually optimized for certain criteria. Opening up representati<strong>on</strong><br />

with the boundary calculus makes the criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> and the<br />

choices <str<strong>on</strong>g>of</str<strong>on</strong>g> structure more explicit.


GLOSSARY<br />

abstract Atype <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary in the calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number. Abstract forms the black<br />

hole when empty. Written as 2 when empty or[A]around boundary c<strong>on</strong>gurati<strong>on</strong><br />

A.<br />

anti-logarithm Functi<strong>on</strong>al interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the instance boundary, e x ! (x):<br />

black hole The abstract boundary with no c<strong>on</strong>tents. The black hole dominates its<br />

c<strong>on</strong>text. Written as 2:<br />

boundary Drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> a distincti<strong>on</strong>. (); []; and are types <str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries.<br />

boundary mathematics A representati<strong>on</strong>al and computati<strong>on</strong>al paradigm based <strong>on</strong><br />

boundary forms that transform by match and substitute.<br />

cardinality A theorem stating that a repeated form can be rewritten using a single<br />

reference. Written as A:::A=([A][:::]):<br />

collecti<strong>on</strong> <strong>Spatial</strong> justapositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>gurati<strong>on</strong>s, as AB. Collecti<strong>on</strong>s are<br />

unordered, ungrouped, and variary.<br />

c<strong>on</strong>gurati<strong>on</strong> Any algebraic boundary expressi<strong>on</strong>, including void.<br />

c<strong>on</strong>tent The space inside <str<strong>on</strong>g>of</str<strong>on</strong>g> a distincti<strong>on</strong>. e.g. (c<strong>on</strong>tent).<br />

c<strong>on</strong>text The space outside <str<strong>on</strong>g>of</str<strong>on</strong>g> a distincti<strong>on</strong>. e.g. c<strong>on</strong>text().<br />

distincti<strong>on</strong> A cleaving <str<strong>on</strong>g>of</str<strong>on</strong>g> space. Drawn as a boundary, ():<br />

distributi<strong>on</strong> An axiom that denes the modier form as distributiveover collecti<strong>on</strong>.<br />

Written as (A[BC]) : =(A[B])(A[C]):


63<br />

domini<strong>on</strong> A theorem stating that elements collected with the black hole are irrelevant.<br />

Written as 2a=2:<br />

e A transcendental intepretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nested instance boundaries, e!():<br />

equivalence axiom Two or more templates that dene equivalent expressi<strong>on</strong>s. e.g.<br />

([A]) : =A:<br />

fracti<strong>on</strong>al cardinality Expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a partial cardinality (inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated cardinality).<br />

Written as ([A]) where the number <str<strong>on</strong>g>of</str<strong>on</strong>g> instance marks<br />

indicates the dem<strong>on</strong>imator <str<strong>on</strong>g>of</str<strong>on</strong>g> the reciprocal multiplying A.<br />

i A complex number formed with a half cardinality<str<strong>on</strong>g>of</str<strong>on</strong>g>J.Written as i!(([J])):<br />

instance Atype <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary in the calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number. Instance forms the unit<br />

when empty. Written as when empty or(A)around boundary c<strong>on</strong>gurati<strong>on</strong><br />

A.<br />

inverse Atype <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary in the calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> number. Inverse serves as a generalized<br />

inverse. Written as 4 when empty oraround boundary c<strong>on</strong>gurati<strong>on</strong> A.<br />

inverse cancellati<strong>on</strong> A theorem stating that inverse applied twice cancels out.<br />

Written as =A:<br />

inverse collecti<strong>on</strong> A theorem stating that a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two inverted elements is<br />

equivalent to the inversi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the collected elements. Written as =:<br />

inverse promoti<strong>on</strong> A theorem stating that inverse can be brought inside <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

modier form. Written as =(A[]):<br />

inversi<strong>on</strong> An axiom that denes the generalized inverse. Written as A : = :<br />

involuti<strong>on</strong> An axiom that denes instance and abstract as functi<strong>on</strong>al inverses. Written<br />

as ([A]) : =A : =[(A)]:<br />

J The phase element, J : =[].


64<br />

J cancellati<strong>on</strong> A theorem stating that J cancels with itself. Written as JJ= :<br />

match and substitute Replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> template variables in an equivalence axiom<br />

so that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its templates matches part <str<strong>on</strong>g>of</str<strong>on</strong>g> a given expressi<strong>on</strong>.<br />

modier form A c<strong>on</strong>gurati<strong>on</strong> composed <str<strong>on</strong>g>of</str<strong>on</strong>g> instance around abstract. Written as<br />

(A[B]); with A part <str<strong>on</strong>g>of</str<strong>on</strong>g> the form, wrapped around c<strong>on</strong>tents B.<br />

natural logarithm Functi<strong>on</strong>al interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the abstract boundary, ln(a) !<br />

[a]:<br />

negative cardinality Expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an inverted repetiti<strong>on</strong>. Written for reference A<br />

as ([A][]); where the number <str<strong>on</strong>g>of</str<strong>on</strong>g> units indicates the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cardinality.<br />

phase element A form that captures the inverse in an arithmetic c<strong>on</strong>structi<strong>on</strong>. De-<br />

ned as J =[]: : It serves as the inverse when placed in the modier form, as<br />

(J[A])=.<br />

phase independence A theorem stating that the c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase operator<br />

can be moved to the c<strong>on</strong>text. Written as []=A[]:<br />

phase operator A c<strong>on</strong>tructi<strong>on</strong> nesting the abstract, inverse, and instance boundaries<br />

around an argument. Written as []:<br />

pi An algebraic c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radian unit. Written as !(J[J]([J])):<br />

template A boundary expressi<strong>on</strong> that includes zero or more template variables, e.g.<br />

(A[B]):<br />

template variable A form found in templates that can be replaced byany boundary<br />

expressi<strong>on</strong>. Template variables are written as uppercase letters.<br />

unit The instance boundary with no c<strong>on</strong>tents. It serves as the unit in cardinality.<br />

Written as :<br />

void Empty space; a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> structure up<strong>on</strong> which distincti<strong>on</strong>s are made.


BIBLIOGRAPHY<br />

[1] B. Banaschewski. On G. Spencer Brown's Laws <str<strong>on</strong>g>of</str<strong>on</strong>g> Form. Notre Dame Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Formal Logic, 18:507{509, 1977.<br />

[2] C.B. Boyer. A History <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematics. John Wiley and S<strong>on</strong>s, Inc., New York,<br />

1991.<br />

[3] W. Bricken and E. Gullichsen. An introducti<strong>on</strong> to boundary logic with the losp<br />

deductive engine. Future Computing Systems, 2(4), 1989.<br />

[4] W. Bricken and P.C. Nels<strong>on</strong>. Pure lisp as a network <str<strong>on</strong>g>of</str<strong>on</strong>g> systems. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Sec<strong>on</strong>d Kansas C<strong>on</strong>ference: Knowledge-<str<strong>on</strong>g>Based</str<strong>on</strong>g> S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Development, Kansas<br />

State <strong>University</strong>, 1986.<br />

[5] W. Bricken. Boundary numbers. Technical report, Advanced Decisi<strong>on</strong> Systems,<br />

1987.<br />

[6] W. Bricken. The eciency <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary mathematics for deducti<strong>on</strong>. Technical<br />

Report ADS-6824-1, Advanced Decisi<strong>on</strong> Systems, 1987.<br />

[7] W. Bricken. Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the extended program model for the intelligent<br />

program editor. Technical Report TR-1047-03, Advanced Decisi<strong>on</strong> Systems,<br />

1987.<br />

[8] W. Bricken. Utilizing boundary mathematics for deducti<strong>on</strong>. Technical report,<br />

Advanced Decisi<strong>on</strong> Systems, 1987.<br />

[9] W. Bricken. Boundary mathematics, 1993. Pers<strong>on</strong>al Communicati<strong>on</strong>.<br />

[10] G. Spencer Brown. An algebra for the natural numbers. Pers<strong>on</strong>al notes, May<br />

1961.<br />

[11] G. Spencer Brown. Laws <str<strong>on</strong>g>of</str<strong>on</strong>g> Form. Bantam, New York, 1969.<br />

[12] J.H. C<strong>on</strong>way. On <str<strong>on</strong>g>Number</str<strong>on</strong>g>s and Games. Academic Press, New York, 1976.<br />

[13] P. Cull and W. Frank. Flaws <str<strong>on</strong>g>of</str<strong>on</strong>g> form. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> General Systems,<br />

5(4):201{211, 1979.


66<br />

[14] B. Doyle, M. Friedman, and B. York. An introducti<strong>on</strong> to forms and logic. Technical<br />

Report BUCS-87-008, Bost<strong>on</strong> <strong>University</strong>, 1987.<br />

[15] Y. Feldman and E. Shapiro. <strong>Spatial</strong> machines: a more realistic approach to<br />

parallel computati<strong>on</strong>. Communicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the ACM, 35(10):60{73, 1992.<br />

[16] J.A. Goguen and F.J. Varela. Systems and distincti<strong>on</strong>s; duality and complementary.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> General Systems, 5:31{43, 1979.<br />

[17] J. James and W. Bricken. A boundary notati<strong>on</strong> for visual mathematics. In<br />

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the IEEE Workshop <strong>on</strong> Visual Languages, 1992.<br />

[18] K.M. Kahn and V.A. Saraswat. Complete visualizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>current programs<br />

and their executi<strong>on</strong>s. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the IEEE Workshop <strong>on</strong> Visual Languages,<br />

pages 7{15, 1990.<br />

[19] L.H. Kauman. Demorgan algebras - completeness and recursi<strong>on</strong>. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Eighth Internati<strong>on</strong>al Symposium <strong>on</strong> Multiple-Valued Logic, pages 82{86.<br />

IEEE Computer Society Press, 1978.<br />

[20] L.H. Kauman. Network synthesis and Varela's calculus. Internati<strong>on</strong>al Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> General Systems, 4:179{187, 1978.<br />

[21] L.H. Kauman. Self-reference and recursive forms. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Social and Biological<br />

Structures, 10:53{72, 1978.<br />

[22] L.H. Kauman. Formal arithmetic. Pers<strong>on</strong>al communicati<strong>on</strong> to W. Bricken,<br />

August 1986.<br />

[23] L.H. Kauman. Reinventing the negative numbers. Pers<strong>on</strong>al communicati<strong>on</strong> to<br />

W. Bricken, June 1987.<br />

[24] L.H. Kauman. The form <str<strong>on</strong>g>of</str<strong>on</strong>g> arithmetic. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 18th Internati<strong>on</strong>al<br />

Symposium <strong>on</strong> Multiple-Valued Logic. IEEE Computer Society Press, 1988.<br />

[25] L.H. Kauman and F.J. Varela. Form dynamics. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Social and Biological<br />

Structures, 3:171{206, 1980.<br />

[26] M. Kline. Mathematical Thought From Ancient To Modern Times. Oxford<br />

<strong>University</strong> Press, New York, 1972.<br />

[27] L.J. Kohout and V. Pinkava. The algebraic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the Spencer Brown and<br />

Varela calculi. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> General Systems, 6:155{171, 1980.


67<br />

[28] L. Lamport. LaTeX: A Document Preparati<strong>on</strong> System. Addis<strong>on</strong>-Wesley Publishing<br />

Company, Menlo Park, CA, 1986.<br />

[29] Nati<strong>on</strong>al Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Teachers <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematics, Inc., Rest<strong>on</strong>, Va. Curriculum and<br />

Evaluati<strong>on</strong> Standards for School Mathematics, 1989.<br />

[30] R.S. Nickers<strong>on</strong>. Counting, computing, and the representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers. Human<br />

Factors, 30(2):181{199, 1988.<br />

[31] R.A. Orchard. On the laws <str<strong>on</strong>g>of</str<strong>on</strong>g> form. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> General Systems,<br />

2:99{106, 1975.<br />

[32] D.G. Schwartz. Isomorphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Spencer Brown's Laws <str<strong>on</strong>g>of</str<strong>on</strong>g> Form and Varela's<br />

calculus for self-reference. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> General Systems, 6:239{255,<br />

1981.<br />

[33] R.G. Shoup. A complex logic for computati<strong>on</strong> with simple interpretati<strong>on</strong>s for<br />

physics, 1992. Pers<strong>on</strong>al communicati<strong>on</strong>.<br />

[34] F.J. Varela. A calculus for self-reference. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> General Systems,<br />

2:5{24, 1975.<br />

[35] F.J. Varela. Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Aut<strong>on</strong>omy. North Holland, New York, 1979.<br />

[36] F.J. Varela and J.A. Goguen. The arithmetic <str<strong>on</strong>g>of</str<strong>on</strong>g> closure. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cybernetics,<br />

8:291{324, 1978.


Appendix A<br />

CONVERSION<br />

A.1 <str<strong>on</strong>g>Number</str<strong>on</strong>g>s<br />

The basic numbers types can be expressed in boundary notati<strong>on</strong>. For each number<br />

type below, the general structure <str<strong>on</strong>g>of</str<strong>on</strong>g> that type is given in boundary form followed by<br />

some examples.<br />

Standard Boundary<br />

Zero 0<br />

Natural n :::<br />

1 <br />

2 <br />

Integer i n or <br />

,1 <br />

,2 <br />

Rati<strong>on</strong>al q ([i 1 ])<br />

2=3 ([])<br />

1=4 ()<br />

Algebraic Irrati<strong>on</strong>al r (([[q 1 ]][q 2 ])) or r 1 ([r 2 ]([[r 3 ]][r 4 ]))<br />

3p<br />

7 (([[]]))<br />

p<br />

2=2 (([[]]))<br />

Complex c r 1 ([r 2 ]([J]))<br />

i (([J]))<br />

2+4i ([]([J]))<br />

Transcendental e ()<br />

(J[J]([J]))<br />

i []


69<br />

A.2 Functi<strong>on</strong>s<br />

The standard algebraic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>, subtracti<strong>on</strong>, multiplicati<strong>on</strong> and divisi<strong>on</strong><br />

can be formed with boundaries. Powers and transcendental functi<strong>on</strong>s can be formed<br />

with the same objects. These are shown below.<br />

Standard Boundary<br />

Identity x x<br />

Inverse ,x <br />

1=x ()<br />

Additi<strong>on</strong> x + y xy<br />

x , y x<br />

Multiplicati<strong>on</strong> x y ([x][y])<br />

x=y ([x])<br />

Power x y (([[x]][y]))<br />

x ,y<br />

yp x<br />

Transcendental e x (x)<br />

ln x [x]<br />

(([[x]][]))<br />

(([[x]]))<br />

A.3 <str<strong>on</strong>g>Number</str<strong>on</strong>g> Formats<br />

The boundary notati<strong>on</strong> does not restrict the structural format <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers. The notati<strong>on</strong><br />

can express numbers in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> formats by adapting the algebraic structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> that format. Below are some examples.<br />

Dene b to be the base radix, b<br />

: = .<br />

Dene fAg to be the base boundary, fAg : =([b][A]):


70<br />

Standard<br />

Boundary<br />

Mixed i 0<br />

i 1<br />

i2<br />

i 0 ([i 1 ])<br />

4 2 3<br />

([])<br />

1 1 2<br />

()<br />

<str<strong>on</strong>g>Based</str<strong>on</strong>g> :::+i 1 b 1 +i 0 b 0 ff:::gi 1 gi 0<br />

17 fg <br />

6243 fffggg<br />

Scientic r 10 i ([r]([[b]][i]))<br />

3 10 8 ([]([[b]][]))<br />

6 10 23 ([]([[b]][fg]))<br />

A.4 Standard Postulates<br />

The standard eld postulates can be derived directly from the boundary axioms.<br />

Derivati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these postulates are shown below.<br />

Commutativity<br />

x + y = y + x xy=yx<br />

xy = yx ([x][y])=([y][x])<br />

Commutativity is implicit in the boundary forms because no ordering has been<br />

imposed in the rst place. The typographic dierence between xy and yx is not<br />

recognized by the boundary notati<strong>on</strong>: c<strong>on</strong>tainment is meaningful, ordering is not.<br />

Associativity<br />

x +(y+z)=(x+y)+x xyz=xyz<br />

x(yz)=(xy)z ([x][([y][z])])=([([x][y])][z])<br />

Associativity is similarly implicit in the boundary forms. Additi<strong>on</strong> by collecti<strong>on</strong> is<br />

avariary operati<strong>on</strong>, allowing zero or more items to be collected at a time. Collecting<br />

with a collecti<strong>on</strong> leaves no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al ordering. Multiplicati<strong>on</strong> does leave<br />

evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al ordering but this can be erased and replaced by involuti<strong>on</strong>.<br />

x(y + z) =(xy)+(xz)<br />

Distributi<strong>on</strong><br />

([x][yz])=([x][y])([x][z])


71<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplicati<strong>on</strong> over additi<strong>on</strong> follows as a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong><br />

axiom.<br />

Identity<br />

x +0=x x=x<br />

1x=x ([][x])=([x])=x<br />

The additive identity is implicit in spatial collecti<strong>on</strong> as the void. The multiplicative<br />

identity reduces to void within the outer instance boundary and the resulting<br />

unary multiplicati<strong>on</strong> reduces to identity.<br />

A.5 Formulas<br />

Comm<strong>on</strong> algebraic formulas can be deduced directly from the boundary axioms. Some<br />

are listed below. Many additi<strong>on</strong> formulas have corresp<strong>on</strong>ding <strong>on</strong>es in multiplicati<strong>on</strong>.<br />

The pairs are listed together to dem<strong>on</strong>strate their similarities in boundary form.<br />

Cardinality<br />

x + :::+x = nx x:::x=([x][:::])<br />

x :::x= x n ([x]:::[x])=(([[x]][:::]))<br />

Cardinality counts repeated instances in the same space, whether a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x for additi<strong>on</strong> or a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [x] for multiplicati<strong>on</strong>.<br />

Inversi<strong>on</strong><br />

x +(,x)=0 x=<br />

x=x =1 ([x])=()<br />

Inversi<strong>on</strong> cancels an item and its inverse. It acts <strong>on</strong> the additiveinverse, cancelling<br />

x and , and it acts <strong>on</strong> the multiplicative, cancelling [x] and .<br />

Inverse Collecti<strong>on</strong><br />

(,x)+(,y)=,(x+y) =<br />

1=x 1=y =1=xy ([()][()])=()<br />

Inverse collecti<strong>on</strong> accumulates multiple objects within the same inverse boundary.<br />

It carries the additive inverse over an sum and it carries the multiplicative inverse


72<br />

over a product.<br />

Inverse Cancellati<strong>on</strong><br />

,(,x) =x =x<br />

1=(1=x) =x ()=x<br />

The generalized inverse cancels itself out.<br />

Inverse Promoti<strong>on</strong><br />

,x =(,1)x =([x][])<br />

1=x = x ,1 ()=(([[x]][]))<br />

,(xy) =x(,y) =([x][])<br />

1=x y = x ,y ()=(([[x]][]))<br />

Inverse promoti<strong>on</strong> c<strong>on</strong>verts the additiveinverse to a product with negative <strong>on</strong>e and<br />

the multiplicative inverse to a power <str<strong>on</strong>g>of</str<strong>on</strong>g> negative <strong>on</strong>e. It provides a straightforward<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> moving the inverse around within an expressi<strong>on</strong>.<br />

Powers<br />

x 1 = x (([[x]][]))=x<br />

x 0 =1 (([[x]][]))=()<br />

x m x n = x m+n ([(([[x]][m]))][(([[x]][n]))])<br />

= (([[x]][mn]))<br />

(x m ) n = x mn (([[(([[x]][m]))]][n]))<br />

= (([[x]][([m][n])]))<br />

x m y m =(xy) m ([(([[x]][m]))][(([[y]][m]))])<br />

= (([[([x][y])]][m]))<br />

Powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e and zero reduce in boundary form byinvoluti<strong>on</strong> and domini<strong>on</strong>. The<br />

other power formulas are derived by involuti<strong>on</strong> and distributi<strong>on</strong>.<br />

Logarithms<br />

ln(xy) =lnx+lny [([x][y])]=[x][y]<br />

ln x=y =lnx,ln y [([x])]=[x]<br />

ln x y = y ln x [(([[x]][y]))]=([[x]][y])<br />

These logarithmic formulas reduce directly by involuti<strong>on</strong>.


73<br />

Radians<br />

1+e i =0 ([]) =<br />

Euler's formula works because the form [] was dened that way.


Appendix B<br />

EXAMPLES<br />

B.1 Multiplicati<strong>on</strong><br />

Here is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two integers. To visually simplify the forms,<br />

a few deniti<strong>on</strong>s will be made rst.<br />

Let b be the base radix, b = : : Let fAg be the base functi<strong>on</strong> <strong>on</strong> A,<br />

dened as fAg =([b][A]): : The radix carries into the base functi<strong>on</strong>, bfAg=fAg:<br />

The base functi<strong>on</strong> collects, fAgfBg=fABg; and promotes, f(A[B])g=(A[fBg]);<br />

just like inverse:<br />

fAgfBg=([b][A])([b][B])=([b][AB])=fABg;<br />

f(A[B])g=([b][(A[B])])=([b]A[B])=(A[([b][B])])=(A[fBg]):<br />

Using these deniti<strong>on</strong>s, the multiplicati<strong>on</strong> 23 114 can be computed by making<br />

copies at each magnitude, collecting magnitudes, and doing a carry operati<strong>on</strong>.<br />

23 114 Given<br />

fg ffgg<br />

<str<strong>on</strong>g>Number</str<strong>on</strong>g> Rewrite<br />

([fg][ffgg])<br />

Functi<strong>on</strong> Rewrite<br />

([fg][ffgg])([][ffgg])<br />

Distributi<strong>on</strong><br />

f([][ffgg])g([][ffgg])<br />

Promoti<strong>on</strong><br />

fffggffgggffggffggffgg Cardinality (2x)<br />

fffg fgg fg fg fgg Collecti<strong>on</strong><br />

fff g g g Collecti<strong>on</strong><br />

fffggbgb<br />

Replacement<br />

fffggg<br />

Carry<br />

2622 Rewrite


75<br />

B.2 Square Root<br />

The following square root calculati<strong>on</strong> is an informed calculati<strong>on</strong>. It does not represent<br />

an algorithm for determining square roots, it merely dem<strong>on</strong>strates the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p<br />

9 and 3.<br />

p<br />

9<br />

(([[]]))<br />

(([[([][])]]))<br />

(([[(([[]][]))]]))<br />

Given<br />

Rewrite<br />

Cardinality, A=<br />

Cardinality, A=[]<br />

(( [[]][] )) Involuti<strong>on</strong> (2x)<br />

(( [[]] )) Inversi<strong>on</strong><br />

<br />

Involuti<strong>on</strong> (2x)<br />

3 Rewrite<br />

B.3 Fracti<strong>on</strong>s<br />

In standard notati<strong>on</strong>, fracti<strong>on</strong>s are added by forming comm<strong>on</strong> denominators and distributing.<br />

In the boundary calculus, they are combined by forming comm<strong>on</strong> modiers<br />

and distributing.<br />

1=a +1=b Given<br />

()()<br />

Rewrite<br />

([b])([a]) Inversi<strong>on</strong><br />

([ab])<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

([ab])<br />

Inverse Collecti<strong>on</strong><br />

([ab])<br />

Involuti<strong>on</strong><br />

(a + b)=(ab) Rewrite<br />

B.4 Algebraic Distributi<strong>on</strong><br />

This algebraic derivati<strong>on</strong> uses the distributi<strong>on</strong> axiom in ways that appear dierent<br />

when written in standard form, distributing a+b over subtracti<strong>on</strong> a,b and distributing<br />

a and ,b over additi<strong>on</strong> a + b. These applicati<strong>on</strong>s all use the same boundary rule.<br />

Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this product can be d<strong>on</strong>e in dierent ways, this ordering and choice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distributi<strong>on</strong>s are but <strong>on</strong>e way.


76<br />

(a + b)(a , b) Given<br />

([ab][a])<br />

Rewrite<br />

([ab][a])([ab][])<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [ab]<br />

([a][a])([b][a])([ab][])<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [a]<br />

([a][a])([b][a])([a][])([b][]) Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> []<br />

([a][a])([b][a]) Inverse Promoti<strong>on</strong> (2x)<br />

([a][a]) Inversi<strong>on</strong><br />

(([[a]][])) <br />

Cardinality (2x)<br />

a 2 , b 2<br />

Rewrite<br />

In the boundary calculus, operati<strong>on</strong>s can be d<strong>on</strong>e in parallel. Here simultaneous<br />

operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the same kind are d<strong>on</strong>e in parallel and marked with \(2x)". The sec<strong>on</strong>d<br />

and third distributi<strong>on</strong> operati<strong>on</strong>s can be d<strong>on</strong>e in parallel as can the nal inversi<strong>on</strong><br />

and cardinality.<br />

B.5 Quadratic Formula<br />

The quadratic formula gives soluti<strong>on</strong>s to equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the form ax 2 +bx+c =0. To derive<br />

the quadratic formula in the boundary calculus, this equati<strong>on</strong> will be transformed<br />

to this form, which reveals the soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> x:<br />

(x , ,b + p b 2 , 4ac<br />

2a<br />

)(x , ,b , p b 2 , 4ac<br />

)=0<br />

2a<br />

The above quadratic appears in boundary form as the following void equivalent:<br />

([a]([[x]][]))([b][x])c =<br />

The objective is to transform it to the following form, revealing soluti<strong>on</strong>s, s 1 and s 2 :<br />

([x][x]) = :<br />

To remove the rst coecient a, introduce its multiplicative inverse from the void.<br />

([]) Involuti<strong>on</strong><br />

([])<br />

Domini<strong>on</strong><br />

Then substitute the quadratic in the black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> the product.<br />

([ ([a]([[x]][]))([b][x])c ]) Void substituti<strong>on</strong>


77<br />

The a coecient can now be removed. Distribute its inverse and cancel.<br />

([([a]([[x]][]))])([([b][x])])([c]) Distributi<strong>on</strong><br />

( [a]([[x]][]) )( [b][x] )([c]) Involuti<strong>on</strong><br />

( ([[x]][]) )( [b][x] )([c]) Inversi<strong>on</strong><br />

Now the x 2 has a unary coecient. Dene d and e.<br />

d = : ([b])<br />

e = : ([c])<br />

Work them into the equati<strong>on</strong>.<br />

(([[x]][]))([x][b][]) ([c]) Inversi<strong>on</strong><br />

(([[x]][]))([x][b][]) ([c]) Collecti<strong>on</strong><br />

(([[x]][]))([x][([b])][])([c]) Involuti<strong>on</strong><br />

(([[x]][]))([x][d][])e<br />

Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> d and e<br />

Flatten and complete the square.<br />

([x][x])([x][d][])e<br />

Cardinality<br />

([x][x])([x][d][])([d][d])e Inversi<strong>on</strong><br />

Now factor it.<br />

([x][x])([x][d])([x][d])([d][d])e Cardinality<br />

([x][xd])([xd][d])e<br />

Distributi<strong>on</strong> (2x)<br />

([xd][xd])e<br />

Distributi<strong>on</strong> (2x)<br />

Make a dierence <str<strong>on</strong>g>of</str<strong>on</strong>g> squares.<br />

([xd][xd])<br />

Inverse Cancellati<strong>on</strong><br />

([xd][xd])<br />

Collecti<strong>on</strong><br />

([xd][xd])<br />

Involuti<strong>on</strong><br />

([xd][xd])<br />

Inversi<strong>on</strong><br />

([xd][xd]) Involuti<strong>on</strong><br />

Dene f to clean up the negative square.<br />

f<br />

: = (([[([d][d])]]))<br />

Put it into the equati<strong>on</strong> and atten to a product.<br />

([xd][xd])<br />

([xd][xd])<br />

Separate into two factors.<br />

Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f<br />

Cardinality


78<br />

([xd][xd])([xd][f])<br />

([xd][xd])([xd][f])([xd][])([f][])<br />

([xd][xdf])([xdf][])<br />

([xdf][xd])<br />

([x][x])<br />

Inversi<strong>on</strong><br />

Promoti<strong>on</strong><br />

Distributi<strong>on</strong><br />

Distributi<strong>on</strong><br />

Inverse Cancellati<strong>on</strong><br />

This gives two soluti<strong>on</strong>s.<br />

x = and x = <br />

Expand these for the recognized soluti<strong>on</strong>s. Recall f.<br />

f<br />

: = (([[([d][d])]]))<br />

First expand the interior <str<strong>on</strong>g>of</str<strong>on</strong>g> f.<br />

([d][d]) =<br />

= ([([b])][([b])]) Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> d<br />

= ( [b] [b] ) Involuti<strong>on</strong><br />

= ([b][b]) Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> e<br />

= ([b][b])<br />

<br />

Inversi<strong>on</strong><br />

= ([b][b])<br />

<br />

Collecti<strong>on</strong><br />

= ([([b][b])])<br />

<br />

Involuti<strong>on</strong><br />

= ([([b][b])])<br />


79<br />

f = (([[(([][])<br />

[(([[b]][]))])]]))<br />

Substituti<strong>on</strong><br />

= (([ ([][])<br />

[(([[b]][]))] ])) Involuti<strong>on</strong><br />

= (([ ([][]) ])<br />

([[(([[b]][]))]])) Distributi<strong>on</strong><br />

= (( [][] )<br />

([[(([[b]][]))]])) Involuti<strong>on</strong><br />

= (( [] )<br />

([[(([[b]][]))]])) Inversi<strong>on</strong><br />

= (([[(([[b]][]))]])) Involuti<strong>on</strong><br />

Dene g as the root expressi<strong>on</strong>.<br />

g<br />

: = (([[(([[b]][]))]]))<br />

The soluti<strong>on</strong>s are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> g.<br />

= Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> g<br />

= Distributi<strong>on</strong><br />

= ([]) Promoti<strong>on</strong><br />

= ([]) Collecti<strong>on</strong><br />

= <br />

Collecti<strong>on</strong><br />

= f Inverse Cancellati<strong>on</strong><br />

= ([g]) Deniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> g<br />

= ([])([]) Promoti<strong>on</strong><br />

= ([g]) Distributi<strong>on</strong><br />

The soluti<strong>on</strong>s to the quadratic formula, ([a]([[x]][]))([b][x])c; are:<br />

x = ([(([[(([[b]][]))]]))]);<br />

x = ([]):<br />

which translate to<br />

x = ,b + p b 2 , 4ac<br />

2a<br />

and x = ,b , p b 2 , 4ac<br />

2a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!