30.11.2014 Views

Small-scale magnetorheological dampers for vibration mitigation ...

Small-scale magnetorheological dampers for vibration mitigation ...

Small-scale magnetorheological dampers for vibration mitigation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Outline<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

1 Introduction<br />

Motivation<br />

2 Hysteretic models<br />

MR damper dynamic models<br />

Normalized Bouc-Wen model<br />

New MR Dahl friction model<br />

3 Identification methodology<br />

New MR Dahl friction model<br />

4 Future work<br />

Experimental identification<br />

Summary<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

New MR Dahl friction model identification methodology steps<br />

Identification methodology steps<br />

Ikhouane et. al. Previous considerations<br />

Step 1 Excite the system with a T-periodic input signal convex in its loading part<br />

Step 2 Compute k x<br />

Proof<br />

¯F(T + ) + ¯F(0)<br />

k x =<br />

ẋ(0) + ẋ(T + )<br />

Step 3 Compute θ(x)<br />

Proof<br />

θ(τ) with τ ∈ [0, T + ] is now known, then<br />

k w¯w(τ) = ¯F(τ) − k xẋ(τ) θ(τ)<br />

k w¯w(x) = θ(x)<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

New MR Dahl friction model identification methodology steps<br />

Identification methodology steps<br />

Ikhouane et. al. Previous considerations<br />

Step 1 Excite the system with a T-periodic input signal convex in its loading part<br />

Step 2 Compute k x<br />

Proof<br />

¯F(T + ) + ¯F(0)<br />

k x =<br />

ẋ(0) + ẋ(T + )<br />

Step 3 Compute θ(x)<br />

Proof<br />

θ(τ) with τ ∈ [0, T + ] is now known, then<br />

k w¯w(τ) = ¯F(τ) − k xẋ(τ) θ(τ)<br />

k w¯w(x) = θ(x)<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

New MR Dahl friction model identification methodology steps<br />

Identification methodology steps<br />

Ikhouane et. al. Previous considerations<br />

Step 1 Excite the system with a T-periodic input signal convex in its loading part<br />

Step 2 Compute k x<br />

Proof<br />

¯F(T + ) + ¯F(0)<br />

k x =<br />

ẋ(0) + ẋ(T + )<br />

Step 3 Compute θ(x)<br />

Proof<br />

θ(τ) with τ ∈ [0, T + ] is now known, then<br />

k w¯w(τ) = ¯F(τ) − k xẋ(τ) θ(τ)<br />

k w¯w(x) = θ(x)<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

New MR Dahl friction model identification methodology steps<br />

Identification methodology steps (Cont’d)<br />

Ikhouane et. al.<br />

Step 4 Determine the zero of the function θ(x), which is the quantity x ∗ such that θ(x ∗) = 0<br />

Step 5 Compute a by using<br />

( ) dθ(x)<br />

a =<br />

dx x=x∗<br />

Step 6 Choose 1 design parameter, which is x ∗1 ≥ x ∗<br />

Step 7 Compute k w and ρ<br />

( ) dθ(x)<br />

a −<br />

dx x=x<br />

ρ =<br />

∗1<br />

θ(x ∗1 )<br />

k w = a ρ<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

New MR Dahl friction model identification methodology steps<br />

Identification methodology steps (Cont’d)<br />

Ikhouane et. al.<br />

Step 4 Determine the zero of the function θ(x), which is the quantity x ∗ such that θ(x ∗) = 0<br />

Step 5 Compute a by using<br />

( ) dθ(x)<br />

a =<br />

dx x=x∗<br />

Step 6 Choose 1 design parameter, which is x ∗1 ≥ x ∗<br />

Step 7 Compute k w and ρ<br />

( ) dθ(x)<br />

a −<br />

dx x=x<br />

ρ =<br />

∗1<br />

θ(x ∗1 )<br />

k w = a ρ<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

New MR Dahl friction model identification methodology steps<br />

Identification methodology steps (Cont’d)<br />

Ikhouane et. al.<br />

Step 4 Determine the zero of the function θ(x), which is the quantity x ∗ such that θ(x ∗) = 0<br />

Step 5 Compute a by using<br />

( ) dθ(x)<br />

a =<br />

dx x=x∗<br />

Step 6 Choose 1 design parameter, which is x ∗1 ≥ x ∗<br />

Step 7 Compute k w and ρ<br />

( ) dθ(x)<br />

a −<br />

dx x=x<br />

ρ =<br />

∗1<br />

θ(x ∗1 )<br />

k w = a ρ<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model<br />

New MR Dahl friction model identification methodology steps<br />

Identification methodology steps (Cont’d)<br />

Ikhouane et. al.<br />

Step 4 Determine the zero of the function θ(x), which is the quantity x ∗ such that θ(x ∗) = 0<br />

Step 5 Compute a by using<br />

( ) dθ(x)<br />

a =<br />

dx x=x∗<br />

Step 6 Choose 1 design parameter, which is x ∗1 ≥ x ∗<br />

Step 7 Compute k w and ρ<br />

( ) dθ(x)<br />

a −<br />

dx x=x<br />

ρ =<br />

∗1<br />

θ(x ∗1 )<br />

k w = a ρ<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model simulation<br />

New MR Dahl friction model<br />

Results<br />

New MR Dahl friction model simulation under a convex input signal in its loading part<br />

Parameters Real Identified Relative error %<br />

k x 0.0320 0.0322 0.7722<br />

k w 5.4600 5.4591 0.0170<br />

ρ 600.0000 601.4496 0.2416<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

New MR Dahl friction model simulation<br />

New MR Dahl friction model<br />

Results<br />

New MR Dahl friction model simulation under a convex input signal in its loading part<br />

Parameters Real Identified Relative error %<br />

k x 0.0320 0.0322 0.7722<br />

k w 5.4600 5.4591 0.0170<br />

ρ 600.0000 601.4496 0.2416<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Outline<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

1 Introduction<br />

Motivation<br />

2 Hysteretic models<br />

MR damper dynamic models<br />

Normalized Bouc-Wen model<br />

New MR Dahl friction model<br />

3 Identification methodology<br />

New MR Dahl friction model<br />

4 Future work<br />

Experimental identification<br />

Summary<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a small-<strong>scale</strong> MR controllable-friction damper<br />

Main characteristics<br />

Chrzan and Carlson, 2001<br />

Enable low cost appropriate <strong>for</strong> less<br />

demanding, low-<strong>for</strong>ce applications with a high<br />

degree of control<br />

Consists in an absorbent foam saturated with<br />

MR fluid (aprox. 3 ml).<br />

Doesn’t have an accumulator and a bypass of<br />

the fluid.<br />

Operates in a direct shear mode without seals,<br />

bearings or precision mechanical tolerance.<br />

Technical data<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a small-<strong>scale</strong> MR controllable-friction damper<br />

Main characteristics<br />

Chrzan and Carlson, 2001<br />

Enable low cost appropriate <strong>for</strong> less<br />

demanding, low-<strong>for</strong>ce applications with a high<br />

degree of control<br />

Consists in an absorbent foam saturated with<br />

MR fluid (aprox. 3 ml).<br />

Doesn’t have an accumulator and a bypass of<br />

the fluid.<br />

Operates in a direct shear mode without seals,<br />

bearings or precision mechanical tolerance.<br />

Technical data<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a small-<strong>scale</strong> MR controllable-friction damper<br />

Main characteristics<br />

Chrzan and Carlson, 2001<br />

Enable low cost appropriate <strong>for</strong> less<br />

demanding, low-<strong>for</strong>ce applications with a high<br />

degree of control<br />

Consists in an absorbent foam saturated with<br />

MR fluid (aprox. 3 ml).<br />

Doesn’t have an accumulator and a bypass of<br />

the fluid.<br />

Operates in a direct shear mode without seals,<br />

bearings or precision mechanical tolerance.<br />

Technical data<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a small-<strong>scale</strong> MR controllable-friction damper<br />

Main characteristics<br />

Chrzan and Carlson, 2001<br />

Enable low cost appropriate <strong>for</strong> less<br />

demanding, low-<strong>for</strong>ce applications with a high<br />

degree of control<br />

Consists in an absorbent foam saturated with<br />

MR fluid (aprox. 3 ml).<br />

Doesn’t have an accumulator and a bypass of<br />

the fluid.<br />

Operates in a direct shear mode without seals,<br />

bearings or precision mechanical tolerance.<br />

Technical data<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Diagram of the identification experiment layout<br />

MR damper fixed on top of the Shake Table. The sensors used are: (i) a load cell, (ii) laser<br />

displacement, and (iii) accelerometer.<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a small-<strong>scale</strong> MR controllable-friction damper tests<br />

Experimental input current<br />

From the shear-mode MR damper model, the modified Dahl model has to include the voltage as<br />

k x(v) = k xa + k xb v<br />

k w(v) = k wa + k wb v<br />

˙v = −η(v − u)<br />

η = positive constant, u = command voltage applied to the Wonder Box, and v = is a varying<br />

voltage. η can be determined if u is available as the system is linear.<br />

Loading experiments using constant and variable input current using a convex input signal in its<br />

loading part.<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a small-<strong>scale</strong> MR controllable-friction damper tests<br />

Experimental input current<br />

From the shear-mode MR damper model, the modified Dahl model has to include the voltage as<br />

k x(v) = k xa + k xb v<br />

k w(v) = k wa + k wb v<br />

˙v = −η(v − u)<br />

η = positive constant, u = command voltage applied to the Wonder Box, and v = is a varying<br />

voltage. η can be determined if u is available as the system is linear.<br />

Loading experiments using constant and variable input current using a convex input signal in its<br />

loading part.<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a small-<strong>scale</strong> MR controllable-friction damper tests<br />

Experimental input current<br />

From the shear-mode MR damper model, the modified Dahl model has to include the voltage as<br />

k x(v) = k xa + k xb v<br />

k w(v) = k wa + k wb v<br />

˙v = −η(v − u)<br />

η = positive constant, u = command voltage applied to the Wonder Box, and v = is a varying<br />

voltage. η can be determined if u is available as the system is linear.<br />

Loading experiments using constant and variable input current using a convex input signal in its<br />

loading part.<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Identification of a large-<strong>scale</strong> MR controllable-fluid damper<br />

Main characteristics<br />

Yang et. al., 2004<br />

Real-time damping is controlled by the<br />

increase in yield stress of the MR fluid in<br />

response to magnetic field strength<br />

High dissipative <strong>for</strong>ce at low velocity<br />

Continual optimization<br />

High dynamic range<br />

Inherent stability and failure-safety<br />

Mechanical simplicity<br />

Fast response-time<br />

<strong>Small</strong> device size<br />

Large temperature range<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Outline<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

1 Introduction<br />

Motivation<br />

2 Hysteretic models<br />

MR damper dynamic models<br />

Normalized Bouc-Wen model<br />

New MR Dahl friction model<br />

3 Identification methodology<br />

New MR Dahl friction model<br />

4 Future work<br />

Experimental identification<br />

Summary<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Summary<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Presentation summary<br />

Understand the dynamic behavior of the MR <strong>dampers</strong> with a feasible<br />

hysteretic model.<br />

Apply an identification methodology to the chosen hysteretic model.<br />

Outlook <strong>for</strong> future work<br />

To do the experimental identification of the small-<strong>scale</strong> controllable<br />

friction MR damper.<br />

To do the experimental identification of the large-<strong>scale</strong> controllable<br />

friction MR damper.<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Muchas gracias<br />

Figure: Stenocutter - longest cable stayed bridge using MR <strong>dampers</strong> <strong>for</strong> cable<br />

<strong>vibration</strong> <strong>mitigation</strong>. Hong Kong, China<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Bibliography<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Tsu T. Soong and B.F. Spencer.<br />

Supplemental energy dissipation: State-of-the-art and state-of-the-practice.<br />

Engineering Structures 24(1):243–259, 2002.<br />

Michael D. Symans and Michael C. Constantinou<br />

Return<br />

Development and experimental study of semi-active fluid damping devices <strong>for</strong> seismic protection of<br />

structures.<br />

National Center <strong>for</strong> Earthquake Engineering Research. Report No. NCEER 95-0011. Buffalo, NY. 1995<br />

Return<br />

G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton, T.T.<br />

Soong, B.F. Spencer, and J.T.P. Yao<br />

Structural control: Past, present, and future.<br />

Journal of Engineering Mechanics 123(9):897–971, 1997.<br />

S. Nagarajaiah and S. Sahasrabudhe<br />

Return<br />

Seismic response control of smart sliding isolated buildings using variable stiffness systems: An<br />

experimental and numerical study.<br />

Earthquake Engineering and Structural Dynamics 35(2):177–197, 2005.<br />

Return<br />

N. Makris and S. McMahon<br />

Structural control with controllable fluid <strong>dampers</strong>: Design and implementation issues.<br />

Proceedings of Second International Workshop on Structural Control. Hong Kong. 1996:311Ű-322<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Bibliography (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Dorka, U.E.<br />

Testing algorithms <strong>for</strong> semiactive control of bridges.<br />

Kassel, Germany. 2000 Return<br />

Villamizar Mejia, Rodolfo<br />

Robust control of systems subjected to uncertain disturbances and actuator dynamics.<br />

PhD Universitat de Girona. 2005 Return<br />

H. Fujitani, H. Sodeyama, T. Tomura, T. Hiwatashi, Y. Shiozaki, K.Hata, K.Sunakoda, S.Morishita, and S.Soda<br />

Development of 400kN <strong>magnetorheological</strong> damper <strong>for</strong> a real base-isolated building.<br />

SPIE - Conference on Smart Structures and Materials. Bellingham, Washington. 5027:265–276<br />

Return<br />

Stanway, R., Sproston, J.L., and Stevens, N.G.<br />

Non-linear Modelling of an Electrorheological Vibration Damper.<br />

Journal of Electrostatics. 1987(20):167Ű-184 Return<br />

D. R. Gamato and F. E. Filisko<br />

Dynamic mechanical studies of electrorheological materials: Moderate frequencies.<br />

Journal of Rheology. 1991(35):399–425 Return<br />

B.F. Spencer, S.J. Dyke, M.K. Sain, and J.D. Carlson<br />

Phenomenological model of a <strong>magnetorheological</strong> damper.<br />

ASCE Journal of Engineering Mechanics. 1997(123):230-238<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Bibliography (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Y.K. Wen<br />

Method of random <strong>vibration</strong> fo hysteretic systems.<br />

Journal of Engineering Mechanics. 1976(102):246–263<br />

Return<br />

Fayçal Ikhouane and José Rodellar<br />

On the hysteretic Bouc-Wen model. Part I: Forced limit cycle characterization.<br />

Nonlinear Dynamics. 2005(42):63–78 Return<br />

Fayçal Ikhouane and José Rodellar<br />

On the hysteretic Bouc-Wen model. Part II: Robust parametric identification.<br />

Nonlinear Dynamics. 2005(42):79–95 Return<br />

Fayçal Ikhouane, Victor Mañosa, and José Rodellar<br />

Dynamic properties of the hysteretic Bouc-Wen model.<br />

Sytems and Control Letters. 2006. in press Return<br />

Fayçal Ikhouane, Oriol Gomis-Bellmunt, and Pere Castell-Vilanova<br />

A limit cycle approach <strong>for</strong> the parametric identification of hysteretic systems.<br />

Submitted to IEEE - Control Systems Technology Return<br />

Fayçal Ikhouane and Shirley J. Dyke<br />

Modeling and identification of a shear mode <strong>magnetorheological</strong> damper.<br />

Submitted to Smart Materials and Structures Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Bibliography (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Silvano Erlicher and Nelly Point<br />

Thermodynamic admissibility of BoucŰWen type hysteresis models.<br />

Comptes Rendus Mecanique. 2004(332):51–57 Return<br />

Fayçal Ikhouane, José Rodellar, and José E. Hurtado<br />

Analytical characterization of hysteresis loops described by the Bouc-Wen model.<br />

Mechanics of Advanced Materials and Structures. 2006(13):463-472 Return<br />

P. R. Dahl<br />

A solid friction model.<br />

The Aerospace Corporation, El-Segundo, TOR-158(3107-18), Cali<strong>for</strong>nia. 1968<br />

Return<br />

F. Yi, S. J. Dyke, J. M. Caicedo, and J. D. Carlson.<br />

Experimental verification of multiinput seismic control strategies <strong>for</strong> smart <strong>dampers</strong>.<br />

ASCE Journal of Engineering Mechanics. 2001(127):1152–1164 Return<br />

LORD Corp.<br />

Rheonetic Magnetorheological (MR) Fluid Technology MR damper.<br />

Cary, NC Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Bibliography (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Michael J. Chrzan and J. David Carlson<br />

MR fluid sponge devices and their use in <strong>vibration</strong> control of washing machines.<br />

SPIE - 8th Annual Symposium on Smart Structures and Materials. Newport Beach, CA. 2001<br />

Return<br />

G. Yang, B.F. Spencer, J.D. Carlson, and M.K. Sain<br />

Large-<strong>scale</strong> MR fluid <strong>dampers</strong>: Modeling and dynamic per<strong>for</strong>mance considerations.<br />

Engineering Structures. 2002(24):309–323 Return<br />

G. Yang, B.F. Spencer, H.J. Jung, and J.D. Carlson<br />

Dynamic modeling of large-<strong>scale</strong> <strong>magnetorheological</strong> damper systems <strong>for</strong> civil engineering applications.<br />

Journal of Engineering Mechanics. 2004(130):1107–1114 Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Demonstration of alternative to shear-mode MR damper<br />

Previous considerations<br />

Overparametrized → per<strong>for</strong>m normalization<br />

Ikhouane and Dyke<br />

The fact that lim ρ−→∞ ψ σ,n(¯x tp) = −1 is independent from σ and n <strong>for</strong> large values of ρX max<br />

Proof<br />

Conclusion → <strong>for</strong> large values of ρX max, the values of the parameters σ and n are irrelevant.<br />

After considering the previous alternatives a new model is suggested<br />

F(T) = k vẋ(t) + k vF c(ẋ)<br />

k x and k w are voltage dependent, and F c is the Coulomb dry friction <strong>for</strong>ce representation<br />

F c(ẋ) = 1 <strong>for</strong> ẋ > 0<br />

F c(ẋ) = −1 <strong>for</strong> ẋ < 0<br />

Disadvantage → discontinuity at zero velocity or numerical instability when the ẋ of the damper is<br />

close to 0<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Demonstration of alternative to shear-mode MR damper<br />

Previous considerations<br />

Overparametrized → per<strong>for</strong>m normalization<br />

Ikhouane and Dyke<br />

The fact that lim ρ−→∞ ψ σ,n(¯x tp) = −1 is independent from σ and n <strong>for</strong> large values of ρX max<br />

Proof<br />

Conclusion → <strong>for</strong> large values of ρX max, the values of the parameters σ and n are irrelevant.<br />

After considering the previous alternatives a new model is suggested<br />

F(T) = k vẋ(t) + k vF c(ẋ)<br />

k x and k w are voltage dependent, and F c is the Coulomb dry friction <strong>for</strong>ce representation<br />

F c(ẋ) = 1 <strong>for</strong> ẋ > 0<br />

F c(ẋ) = −1 <strong>for</strong> ẋ < 0<br />

Disadvantage → discontinuity at zero velocity or numerical instability when the ẋ of the damper is<br />

close to 0<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Demonstration of alternative to shear-mode MR damper<br />

Previous considerations<br />

Overparametrized → per<strong>for</strong>m normalization<br />

Ikhouane and Dyke<br />

The fact that lim ρ−→∞ ψ σ,n(¯x tp) = −1 is independent from σ and n <strong>for</strong> large values of ρX max<br />

Proof<br />

Conclusion → <strong>for</strong> large values of ρX max, the values of the parameters σ and n are irrelevant.<br />

After considering the previous alternatives a new model is suggested<br />

F(T) = k vẋ(t) + k vF c(ẋ)<br />

k x and k w are voltage dependent, and F c is the Coulomb dry friction <strong>for</strong>ce representation<br />

F c(ẋ) = 1 <strong>for</strong> ẋ > 0<br />

F c(ẋ) = −1 <strong>for</strong> ẋ < 0<br />

Disadvantage → discontinuity at zero velocity or numerical instability when the ẋ of the damper is<br />

close to 0<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Demonstration of alternative to shear-mode MR damper<br />

Previous considerations<br />

Overparametrized → per<strong>for</strong>m normalization<br />

Ikhouane and Dyke<br />

The fact that lim ρ−→∞ ψ σ,n(¯x tp) = −1 is independent from σ and n <strong>for</strong> large values of ρX max<br />

Proof<br />

Conclusion → <strong>for</strong> large values of ρX max, the values of the parameters σ and n are irrelevant.<br />

After considering the previous alternatives a new model is suggested<br />

F(T) = k vẋ(t) + k vF c(ẋ)<br />

k x and k w are voltage dependent, and F c is the Coulomb dry friction <strong>for</strong>ce representation<br />

F c(ẋ) = 1 <strong>for</strong> ẋ > 0<br />

F c(ẋ) = −1 <strong>for</strong> ẋ < 0<br />

Disadvantage → discontinuity at zero velocity or numerical instability when the ẋ of the damper is<br />

close to 0<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Demonstration of alternative to shear-mode MR damper<br />

Previous considerations<br />

Overparametrized → per<strong>for</strong>m normalization<br />

Ikhouane and Dyke<br />

The fact that lim ρ−→∞ ψ σ,n(¯x tp) = −1 is independent from σ and n <strong>for</strong> large values of ρX max<br />

Proof<br />

Conclusion → <strong>for</strong> large values of ρX max, the values of the parameters σ and n are irrelevant.<br />

After considering the previous alternatives a new model is suggested<br />

F(T) = k vẋ(t) + k vF c(ẋ)<br />

k x and k w are voltage dependent, and F c is the Coulomb dry friction <strong>for</strong>ce representation<br />

F c(ẋ) = 1 <strong>for</strong> ẋ > 0<br />

F c(ẋ) = −1 <strong>for</strong> ẋ < 0<br />

Disadvantage → discontinuity at zero velocity or numerical instability when the ẋ of the damper is<br />

close to 0<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Demonstration of alternative to shear-mode MR damper<br />

Previous considerations<br />

Overparametrized → per<strong>for</strong>m normalization<br />

Ikhouane and Dyke<br />

The fact that lim ρ−→∞ ψ σ,n(¯x tp) = −1 is independent from σ and n <strong>for</strong> large values of ρX max<br />

Proof<br />

Conclusion → <strong>for</strong> large values of ρX max, the values of the parameters σ and n are irrelevant.<br />

After considering the previous alternatives a new model is suggested<br />

F(T) = k vẋ(t) + k vF c(ẋ)<br />

k x and k w are voltage dependent, and F c is the Coulomb dry friction <strong>for</strong>ce representation<br />

F c(ẋ) = 1 <strong>for</strong> ẋ > 0<br />

F c(ẋ) = −1 <strong>for</strong> ẋ < 0<br />

Disadvantage → discontinuity at zero velocity or numerical instability when the ẋ of the damper is<br />

close to 0<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Regions of the hysteresis BW loops Ikhouane et. al., 2006<br />

The main slope of the linear region is ρX max. This slope comes from d¯w(¯x) at the point of the loading<br />

d¯x<br />

part of the limit cycle where ¯w(¯x) = 0<br />

The abscissa of the point P tp where the plastic region starts is ¯x tp<br />

We have<br />

lim<br />

u−→∞ ψσ,n(u) = 1<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Regions of the hysteresis BW loops Ikhouane et. al., 2006<br />

The main slope of the linear region is ρX max. This slope comes from d¯w(¯x) at the point of the loading<br />

d¯x<br />

part of the limit cycle where ¯w(¯x) = 0<br />

The abscissa of the point P tp where the plastic region starts is ¯x tp<br />

We have<br />

lim<br />

u−→∞ ψσ,n(u) = 1<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Regions of the hysteresis BW loops Ikhouane et. al., 2006<br />

The main slope of the linear region is ρX max. This slope comes from d¯w(¯x) at the point of the loading<br />

d¯x<br />

part of the limit cycle where ¯w(¯x) = 0<br />

The abscissa of the point P tp where the plastic region starts is ¯x tp<br />

We have<br />

lim<br />

u−→∞ ψσ,n(u) = 1<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Proof shear mode<br />

The fact that lim ρ−→∞ ψ σ,n(¯x tp) = −1 is independent from σ and n <strong>for</strong> large values of ρX max<br />

1<br />

¯x tp ≈ −1 [ϕ + σ,n<br />

ρX ( n√ 1 − r 2 ) − ϕ + σ,n (−1)]<br />

max<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Previous considerations in the Identification Methodology<br />

Ikhouane and Rodellar, 2005b<br />

Assumes knowledge of the limit cycle → (x(τ), ¯F(τ)) by a variable τ ∈ [0, T]<br />

Only the loading part of the input signal is considered τ ∈ [0, T + ]<br />

The equation of the loading part is<br />

¯w(x) = ψ + σ,n (ϕ+ σ,n [−ψσ,n(ρ(Xmax − X min))] + ρ(x − X min ))<br />

Its derivative is<br />

Proof<br />

Theorem 1 shows that<br />

d¯w(x)<br />

= ρ(1 − ¯w(x))<br />

dx<br />

x = X min → τ = 0 → −ψ 1,1 (ρ(X max − X min ))<br />

x = X max → τ = T + → ψ 1,1 (ρ(X max − X min ))<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Previous considerations in the Identification Methodology<br />

Ikhouane and Rodellar, 2005b<br />

Assumes knowledge of the limit cycle → (x(τ), ¯F(τ)) by a variable τ ∈ [0, T]<br />

Only the loading part of the input signal is considered τ ∈ [0, T + ]<br />

The equation of the loading part is<br />

¯w(x) = ψ + σ,n (ϕ+ σ,n [−ψσ,n(ρ(Xmax − X min))] + ρ(x − X min ))<br />

Its derivative is<br />

Proof<br />

Theorem 1 shows that<br />

d¯w(x)<br />

= ρ(1 − ¯w(x))<br />

dx<br />

x = X min → τ = 0 → −ψ 1,1 (ρ(X max − X min ))<br />

x = X max → τ = T + → ψ 1,1 (ρ(X max − X min ))<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Previous considerations in the Identification Methodology<br />

Ikhouane and Rodellar, 2005b<br />

Assumes knowledge of the limit cycle → (x(τ), ¯F(τ)) by a variable τ ∈ [0, T]<br />

Only the loading part of the input signal is considered τ ∈ [0, T + ]<br />

The equation of the loading part is<br />

¯w(x) = ψ + σ,n (ϕ+ σ,n [−ψσ,n(ρ(Xmax − X min))] + ρ(x − X min ))<br />

Its derivative is<br />

Proof<br />

Theorem 1 shows that<br />

d¯w(x)<br />

= ρ(1 − ¯w(x))<br />

dx<br />

x = X min → τ = 0 → −ψ 1,1 (ρ(X max − X min ))<br />

x = X max → τ = T + → ψ 1,1 (ρ(X max − X min ))<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Previous considerations in the Identification Methodology<br />

Ikhouane and Rodellar, 2005b<br />

Assumes knowledge of the limit cycle → (x(τ), ¯F(τ)) by a variable τ ∈ [0, T]<br />

Only the loading part of the input signal is considered τ ∈ [0, T + ]<br />

The equation of the loading part is<br />

¯w(x) = ψ + σ,n (ϕ+ σ,n [−ψσ,n(ρ(Xmax − X min))] + ρ(x − X min ))<br />

Its derivative is<br />

Proof<br />

Theorem 1 shows that<br />

d¯w(x)<br />

= ρ(1 − ¯w(x))<br />

dx<br />

x = X min → τ = 0 → −ψ 1,1 (ρ(X max − X min ))<br />

x = X max → τ = T + → ψ 1,1 (ρ(X max − X min ))<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Previous considerations in the Identification Methodology<br />

Ikhouane and Rodellar, 2005b<br />

Assumes knowledge of the limit cycle → (x(τ), ¯F(τ)) by a variable τ ∈ [0, T]<br />

Only the loading part of the input signal is considered τ ∈ [0, T + ]<br />

The equation of the loading part is<br />

¯w(x) = ψ + σ,n (ϕ+ σ,n [−ψσ,n(ρ(Xmax − X min))] + ρ(x − X min ))<br />

Its derivative is<br />

Proof<br />

Theorem 1 shows that<br />

d¯w(x)<br />

= ρ(1 − ¯w(x))<br />

dx<br />

x = X min → τ = 0 → −ψ 1,1 (ρ(X max − X min ))<br />

x = X max → τ = T + → ψ 1,1 (ρ(X max − X min ))<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Derivative of the loading part of the limit cycle of the new MR Dahl friction model<br />

¯w(x) = ψ + σ,n (ϕ+ σ,n [−ψσ,n(ρ(Xmax − X min))] + ρ(x − X min ))<br />

} {{ }<br />

f (x)<br />

, where<br />

∂f (x)<br />

= ρ<br />

∂x<br />

Then by using the fact that the function ψ σ,n + is the inverse of the function ϕ+ σ,n the following relationship is true<br />

∂ψ σ,n + (f (x))<br />

∂x<br />

(<br />

∂f (x) ∂ψ<br />

+ )<br />

σ,n (u)<br />

= = ρ ∗<br />

(<br />

∂x ∂u<br />

⎜<br />

u=f (x) ⎝<br />

⎛<br />

∂ϕ + σ,n (v)<br />

∂v<br />

⎞<br />

1<br />

)<br />

⎟<br />

⎠<br />

v=ψ σ,n + (f (x))<br />

The fact that ψ σ,n + (f (x)) = ¯w(x) so the previous equation becomes<br />

⎛<br />

∂¯w(x)<br />

= ρ ∗<br />

(<br />

∂x ⎜<br />

⎝<br />

∂ϕ + σ,n (v)<br />

∂v<br />

1<br />

)<br />

v=¯w(x)<br />

⎞<br />

⎟<br />

⎠<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Step 2 k x demonstration<br />

x = X min<br />

¯F(0) = k xẋ(0) + k w¯w(x)<br />

x = X max<br />

¯F(T + ) = k xẋ(T + ) + k w¯w(x)<br />

¯F(0) = k xẋ(0) + k w(−ψ 1,1 (ρ(X max − X min ))) ¯F(T + ) = k xẋ(0) + k w(ψ 1,1 (ρ(X max − X min )))<br />

Then if we combine the previous equations we arrive at the parameter k x the following way<br />

−¯F(0) + k xẋ(0) = ¯F(T + ) − k xẋ(T + )<br />

¯F(T + ) + ¯F(0)<br />

k x =<br />

ẋ(0) + ẋ(T + )<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


Proofs (Cont’d)<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Proof.<br />

Step 3 θ(x) demonstration<br />

Then its derivative<br />

dθ(x)<br />

= k wρ(1 − w(x))<br />

dx<br />

Defining a = k wρ and b = ρ, the derivative can be rewritten as<br />

dθ(x)<br />

= a − ρθ(x)<br />

dx<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


<strong>Small</strong>-<strong>scale</strong> technical data<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Technical data of the small-<strong>scale</strong> MR friction<br />

controllable damper<br />

LORD Corp.<br />

Stroke = 58 mm, Weight = 0.48 Kg, Input<br />

current = 0.5 A (continuous) and = 1 A<br />

(intermittent), Resistance (ambient temp.)<br />

= 20Ω<br />

Operating temperature = 70 C<br />

Damper <strong>for</strong>ces (peak-to-peak) = 100 N (5<br />

cm/sec @ 1 A) and = 2 N (20 cm/sec @ 0 A)<br />

Disadvantage → do not apply more than 0.5 A<br />

<strong>for</strong> longer than 30 sec at a time, or heat buildup<br />

may melt the plastic shaft.<br />

Wonder Box → device to control the MR<br />

damper. Power supply = 12 V DC and 2 A DC,<br />

the PC voltage signal is from 0 to 5 V DC, and<br />

the output current is from 0 to 2 A DC.<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


<strong>Small</strong>-<strong>scale</strong> technical data<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Technical data of the small-<strong>scale</strong> MR friction<br />

controllable damper<br />

LORD Corp.<br />

Stroke = 58 mm, Weight = 0.48 Kg, Input<br />

current = 0.5 A (continuous) and = 1 A<br />

(intermittent), Resistance (ambient temp.)<br />

= 20Ω<br />

Operating temperature = 70 C<br />

Damper <strong>for</strong>ces (peak-to-peak) = 100 N (5<br />

cm/sec @ 1 A) and = 2 N (20 cm/sec @ 0 A)<br />

Disadvantage → do not apply more than 0.5 A<br />

<strong>for</strong> longer than 30 sec at a time, or heat buildup<br />

may melt the plastic shaft.<br />

Wonder Box → device to control the MR<br />

damper. Power supply = 12 V DC and 2 A DC,<br />

the PC voltage signal is from 0 to 5 V DC, and<br />

the output current is from 0 to 2 A DC.<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


<strong>Small</strong>-<strong>scale</strong> technical data<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Technical data of the small-<strong>scale</strong> MR friction<br />

controllable damper<br />

LORD Corp.<br />

Stroke = 58 mm, Weight = 0.48 Kg, Input<br />

current = 0.5 A (continuous) and = 1 A<br />

(intermittent), Resistance (ambient temp.)<br />

= 20Ω<br />

Operating temperature = 70 C<br />

Damper <strong>for</strong>ces (peak-to-peak) = 100 N (5<br />

cm/sec @ 1 A) and = 2 N (20 cm/sec @ 0 A)<br />

Disadvantage → do not apply more than 0.5 A<br />

<strong>for</strong> longer than 30 sec at a time, or heat buildup<br />

may melt the plastic shaft.<br />

Wonder Box → device to control the MR<br />

damper. Power supply = 12 V DC and 2 A DC,<br />

the PC voltage signal is from 0 to 5 V DC, and<br />

the output current is from 0 to 2 A DC.<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


<strong>Small</strong>-<strong>scale</strong> technical data<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Technical data of the small-<strong>scale</strong> MR friction<br />

controllable damper<br />

LORD Corp.<br />

Stroke = 58 mm, Weight = 0.48 Kg, Input<br />

current = 0.5 A (continuous) and = 1 A<br />

(intermittent), Resistance (ambient temp.)<br />

= 20Ω<br />

Operating temperature = 70 C<br />

Damper <strong>for</strong>ces (peak-to-peak) = 100 N (5<br />

cm/sec @ 1 A) and = 2 N (20 cm/sec @ 0 A)<br />

Disadvantage → do not apply more than 0.5 A<br />

<strong>for</strong> longer than 30 sec at a time, or heat buildup<br />

may melt the plastic shaft.<br />

Wonder Box → device to control the MR<br />

damper. Power supply = 12 V DC and 2 A DC,<br />

the PC voltage signal is from 0 to 5 V DC, and<br />

the output current is from 0 to 2 A DC.<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>


<strong>Small</strong>-<strong>scale</strong> technical data<br />

Introduction<br />

Hysteretic models<br />

Identification methodology<br />

Future work<br />

Experimental identification<br />

Summary<br />

Technical data of the small-<strong>scale</strong> MR friction<br />

controllable damper<br />

LORD Corp.<br />

Stroke = 58 mm, Weight = 0.48 Kg, Input<br />

current = 0.5 A (continuous) and = 1 A<br />

(intermittent), Resistance (ambient temp.)<br />

= 20Ω<br />

Operating temperature = 70 C<br />

Damper <strong>for</strong>ces (peak-to-peak) = 100 N (5<br />

cm/sec @ 1 A) and = 2 N (20 cm/sec @ 0 A)<br />

Disadvantage → do not apply more than 0.5 A<br />

<strong>for</strong> longer than 30 sec at a time, or heat buildup<br />

may melt the plastic shaft.<br />

Wonder Box → device to control the MR<br />

damper. Power supply = 12 V DC and 2 A DC,<br />

the PC voltage signal is from 0 to 5 V DC, and<br />

the output current is from 0 to 2 A DC.<br />

Return<br />

Arturo Rodríguez Tsouroukdissian<br />

<strong>Small</strong>-<strong>scale</strong> MR <strong>dampers</strong> <strong>for</strong> <strong>vibration</strong> <strong>mitigation</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!