24.12.2014 Views

Farah Abi-Akar (MDE) - Maryland Department of Natural Resources ...

Farah Abi-Akar (MDE) - Maryland Department of Natural Resources ...

Farah Abi-Akar (MDE) - Maryland Department of Natural Resources ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biological Stressor<br />

Identification Process:<br />

Addressing <strong>Maryland</strong>’s Nontidal<br />

Biological Impairments<br />

<strong>Maryland</strong> <strong>Department</strong> <strong>of</strong> the Environment<br />

TMDL Development Program<br />

Prepared for the <strong>Maryland</strong> Water Monitoring Council Annual Conference<br />

6 December 2012<br />

<strong>Farah</strong> <strong>Abi</strong>-<strong>Akar</strong>, Lee Currey


Overview<br />

• Background<br />

• Methods<br />

• Results


Background


Background<br />

• Clean Water Act’s Total<br />

Maximum Daily Loads<br />

(TMDLs)<br />

Allowable in-stream limits<br />

Point & non-point sources<br />

Are developed when a Water<br />

Quality Standard is not met,<br />

and when tech. standards<br />

aren’t enough


Background<br />

• MD Water Quality Standards (WQS)<br />

For a body <strong>of</strong> water, the combination <strong>of</strong>:<br />

• A designated use, and<br />

• The water quality criteria designed to protect that<br />

use.<br />

Designated uses include swimming, drinking,<br />

shellfish harvest, protection <strong>of</strong> aquatic life<br />

• DNR’s Benthic Index <strong>of</strong> Biological Integrity (BIBI)<br />

and Fish Index <strong>of</strong> Biological Integrity (FIBI)


Background<br />

• WQS not met <br />

Watershed gets listed on MD’s 303(d) list <strong>of</strong><br />

impaired waters (Integrated Report).<br />

Assessment Unit Designated Use Cause Indicator<br />

Liberty Reservoir<br />

Aquatic Life and<br />

Wildlife<br />

Sedimentation/siltation<br />

Unknown<br />

Liberty Reservoir<br />

Aquatic Life and<br />

Wildlife<br />

Phosphorus (Total)<br />

Dissolved Oxygen<br />

Antietam Creek<br />

Aquatic Life and<br />

Wildlife<br />

Cause Unknown<br />

Fish and Benthic IBIs


Background<br />

• WQS not met <br />

Watershed gets listed on MD’s 303(d) list <strong>of</strong><br />

impaired waters (Integrated Report).<br />

Need a TMDL to fix it.<br />

• Listed for sediment TMDL to reduce sediment.<br />

• Listed for nitrogen TMDL to reduce nitrogen.<br />

• Listed for biology TMDL to reduce… what<br />

–What TMDL(s) should we develop to improve<br />

biology What is making fish & benthics


What is responsible<br />

for reducing fish &<br />

benthics’ biological<br />

integrity<br />

We need to find the guilty<br />

stressors in each watershed.<br />

Round up the suspects and<br />

begin investigation!<br />

Biological<br />

Stressor<br />

IDentification


How the BSID works


Domain<br />

• Freshwater (non-tidal)<br />

• Stream orders 1-4<br />

• 8-digit watershed scale


Data<br />

• DNR’s <strong>Maryland</strong> Biological Stream Survey<br />

Rounds 2 and 3 (2000-2009)<br />

Conditions & biology paired<br />

Most comprehensive<br />

Consistent sampling & analysis methods<br />

• Land use: Chesapeake Bay Program<br />

Spatially consistent (vs: RESAC + NCLD)<br />

More detail in urban areas<br />

Consistent with TMDL Program<br />

• & RESAC Impervious, & State Roads


Data<br />

• Acknowledgements<br />

<strong>MDE</strong> BSID Section<br />

MD DNR MBSS<br />

Chesapeake Bay Program<br />

EPA ORD<br />

University <strong>of</strong> <strong>Maryland</strong><br />

Versar<br />

Programs: SAS and R


Goal: Compare Bio to Stressors<br />

• How Using case-control statistics<br />

Commonly used in epidemiology:<br />

Mantel-Haenszel Odds or Risk Ratios<br />

Categorizes all samples into groups, then<br />

compares numbers in each group.<br />

Groups characterized by:<br />

• Biology: or <br />

• Stressor: Above or Below<br />

• Region and order


Goal: Compare Bio to Stressors<br />

1. Bio<br />

Cases vs. Controls<br />

FIBI < 3<br />

FIBI ≥ 3<br />

BIBI < 3<br />

BIBI ≥ 3<br />

# in 8-digit watershed # in physiographic region


Goal: Compare Bio to Stressors<br />

Controls grouped by:<br />

1. Bio<br />

1 st 2 nd +<br />

Eastern Piedmont<br />

Highland<br />

1 st 2 nd +<br />

1 st 2 nd +<br />

Coastal


Goal: Compare Bio to Stressors<br />

2. Stressors<br />

Potential culprits:<br />

•Habitat<br />

•Sediment<br />

•Water Chemistry<br />

•Acid sources<br />

•Land use – Agriculture<br />

•Land use – Anthropogenic<br />

•Land use – Urban


Goal: Compare Bio to Stressors<br />

2. Stressors<br />

Every 8-digit watershed gets investigated for<br />

every one <strong>of</strong> these stressors.


Goal: Compare Bio to Stressors<br />

2. Stressors<br />

Stressor above limit vs. Stressor below limit


Goal: Compare Bio to Stressors<br />

Stressor Thresholds<br />

2. Stressors<br />

• A.K.A. Defining the line between and <br />

for each stressor<br />

• Some are already defined in COMAR, by<br />

DNR, or in literature, e.g.:<br />

Low lab pH:


Goal: Compare Bio to Stressors<br />

Stressor Thresholds<br />

2. Stressors<br />

• What about stressors without defined<br />

thresholds<br />

High conductivity<br />

Low shading<br />

Low % forest in 60-meter buffer<br />

• Made our own.<br />

Includes R1 & non-random<br />

Nice big sample sizes (72-304)


Goal: Compare Bio to Stressors<br />

Stressor Thresholds<br />

2. Stressors<br />

• Compared stressor levels,<br />

within BIBI & FIBI groups,<br />

within regions.<br />

• 80% confidence intervals<br />

• Strengthen analysis with<br />

bootstrapping (10,000x)


High Conductivity,<br />

Highland<br />

1. Do these overlap<br />

No they are<br />

statistically different.<br />

Threshold set at<br />

mean <strong>of</strong> Fair.


1. Do these overlap<br />

Yes they are not<br />

statistically different.<br />

Low % Forest,<br />

Coastal<br />

2. Do these overlap<br />

No they are<br />

statistically different.<br />

Threshold set at the<br />

mean <strong>of</strong> Poor & Fair.


… for all potential stressors, for all regions.


Goal: Compare Bio to Stressors


Goal: Compare Bio to Stressors<br />

Two-way contingency table: every stressor, every watershed


Goal: Compare Bio to Stressors<br />

• Hypothesis: Sub-par biology will be<br />

correlated to sub-par water quality.<br />

Or,


Goal: Compare Bio to Stressors<br />

Odds Ratio = ad<br />

bc<br />

=<br />

• One odds ratio per watershed, per stressor<br />

• If the OR > 1, the result is significant. The<br />

stressor is likely to be impacting biology.<br />

• Mantel-Haenszel exact test, 90% CI p value


Thanks to odds ratios,<br />

probable stressors<br />

have been ID’d in each<br />

watershed.<br />

Now, how much risk do<br />

we attribute to each


Attributable Risk<br />

• The portion <strong>of</strong> samples with poor to very poor<br />

biological conditions as a result <strong>of</strong> the stressor<br />

The % <strong>of</strong> cases that are the stressor’s “fault”<br />

AR <br />

Proportion<br />

cases<br />

-<br />

Proportion<br />

controls<br />

AR<br />

<br />

<br />

<br />

<br />

a<br />

a<br />

<br />

c<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

b<br />

b<br />

<br />

d


Attributable Risk<br />

• ARs are also combined by category:<br />

Stressors<br />

• Sediment<br />

• Habitat<br />

• Water Chemistry<br />

Sources<br />

• Acid sources<br />

• Land use – Agriculture<br />

• Land use – Anthropogenic<br />

• Land use – Urban


Results


Stressor<br />

above<br />

Cases<br />

6<br />

Controls<br />

9<br />

Example:<br />

Seneca Creek,<br />

Impervious Surface<br />

Stressor<br />

below<br />

4<br />

163


Example: Seneca Creek,<br />

Impervious Surface<br />

Cases<br />

Controls<br />

Stressor<br />

above<br />

Stressor<br />

below<br />

6<br />

4<br />

9<br />

163<br />

Odds Ratio ≈<br />

ad<br />

bc ≈ 6*163<br />

9*4<br />

≈ 27<br />

6 9<br />

Attributable Risk ≈ % cases - % controls ≈ - ≈ 55%<br />

10 172<br />

Therefore:<br />

• Yes, impervious surface is a possible bio stressor in<br />

Seneca Creek.<br />

• Estimated risk attributable to impervious surface: 55%


Group Stressor AR<br />

Sources - Agr High % <strong>of</strong> agriculture in watershed 29% 29% 96%<br />

Sources - Low % <strong>of</strong> forest in watershed 45% 47%<br />

Anthropogenic Low % <strong>of</strong> forest in 60m buffer 18%<br />

Sources - Urban High % <strong>of</strong> impervious surface in 60m buffer 49% 59%<br />

High % <strong>of</strong> impervious surface in watershed 55%<br />

High % <strong>of</strong> high-intensity developed in watershed 38%<br />

High % <strong>of</strong> low-intensity developed in watershed 57%<br />

High % <strong>of</strong> medium-intensity developed in watershed 58%<br />

High % <strong>of</strong> early-stage residential in watershed 44%<br />

High % <strong>of</strong> residential developed in watershed 57%<br />

High % <strong>of</strong> roads in watershed 52%<br />

High % <strong>of</strong> high-intensity developed in 60m buffer 19%<br />

High % <strong>of</strong> low-intensity developed in 60m buffer 55%<br />

High % <strong>of</strong> medium-intensity developed in 60m buffer 49%<br />

High % <strong>of</strong> early-stage residential in 60m buffer 25%<br />

High % <strong>of</strong> residential developed in 60m buffer 58%<br />

High % <strong>of</strong> roads in 60m buffer 10%<br />

Sediment Epifaunal substrate poor 18% 18% 96%<br />

Instream Habitat Concrete/gabion present 18% 48%<br />

Instream habitat structure poor 10%<br />

Riffle/run quality marginal to poor 28%<br />

Water Chemistry High chlorides 34% 76%<br />

High conductivity 62%<br />

High orthophosphate 22%<br />

High lab pH 18%<br />

High total nitrogen 54%


Seneca Output: What wasn’t there<br />

• Atmospheric deposition present<br />

• Agricultural acid source present<br />

• AMD acid source present<br />

• Organic acid source present<br />

• High % <strong>of</strong> agriculture in 60m buffer<br />

• Low % <strong>of</strong> wetland in watershed<br />

• Low % <strong>of</strong> wetland in 60m buffer<br />

• High % <strong>of</strong> rural developed in watershed<br />

• High % <strong>of</strong> rural developed in 60m buffer<br />

• Extensive bar formation present<br />

• Moderate bar formation present<br />

• Bar formation present<br />

• Channel alteration moderate to poor<br />

• Channel alteration poor<br />

• High embeddedness<br />

• Epifaunal substrate marginal to poor<br />

• Moderate to severe erosion present<br />

• Severe erosion present<br />

• Silt clay present<br />

• Beaver pond present<br />

• Channelization present<br />

• Instream habitat structure marginal to<br />

poor<br />

• Pool/glide/eddy quality marginal to poor<br />

• Pool/glide/eddy quality poor<br />

• Riffle/run quality poor<br />

• Velocity/depth diversity marginal to poor<br />

• Velocity/depth diversity poor<br />

• No riparian buffer<br />

• Low shading<br />

• Acid neutralizing capacity below chronic<br />

level<br />

• Acid neutralizing capacity below episodic<br />

level<br />

• Dissolved oxygen < 5mg/l<br />

• Dissolved oxygen < 6mg/l<br />

• Low dissolved oxygen saturation<br />

• Low field pH<br />

• High field pH<br />

• Low lab pH<br />

• High sulfates<br />

• Ammonia acute with salmonid present<br />

• Ammonia acute with salmonid absent<br />

• Ammonia chronic with salmonid present<br />

• Ammonia chronic with salmonid absent<br />

• High total phosphorus


# Watersheds Impacted per Stressor<br />

impsurf 1<br />

COND_LAB1<br />

bimpsurf 1<br />

CL1<br />

WB_MURB1<br />

X60M_MURB1<br />

WB_ROAD1<br />

SO4_LAB1<br />

X60M_ROAD1<br />

X60M_LURB1<br />

X60M_FRST1<br />

WB_REHML1<br />

WB_LURB1<br />

EPI_SUB2<br />

X60M_REHML1<br />

X60M_HURB1<br />

CHANNELbin1<br />

X60M_AGRI1<br />

WB_HURB1<br />

WB_FRST1<br />

INSTRHAB2<br />

INSTRHAB1<br />

TP1<br />

EPI_SUB1<br />

VEL_DPTH2<br />

X60M_REEARL1<br />

RIFFQUAL1<br />

WB_REEARL1<br />

LDOSAT_FLD1<br />

DO_FLD2<br />

RIFFQUAL2<br />

POOLQUAL2<br />

O_PHOS1<br />

DO_FLD1<br />

X60M_RUHML1<br />

WB_RUHML1<br />

TN1<br />

RIP_WID1<br />

EMBEDDED1<br />

WB_AGRI1<br />

PH_LAB1<br />

CONCRETEbin1<br />

CHAN_ALT2<br />

WB_WETL1<br />

AR_FORM_MEbin1<br />

POOLQUAL1<br />

CHAN_ALT1<br />

ANC_LAB1<br />

PH_FLD1<br />

ERODSV_Sbin1<br />

ERODSV_Mbin1<br />

BAR_FORM_Ebin1<br />

VEL_DPTH1<br />

SHADING1<br />

X60M_WETL1<br />

PH_LAB2<br />

ACIDAGRbin1<br />

ANC_LAB2<br />

ACIDADbin1<br />

BEAVPNDbin1<br />

ACIDAMDbin1<br />

TANc2bin1<br />

TANc1bin1<br />

PH_FLD2<br />

BAR_FORMbin1<br />

ACIDORGbin1<br />

TANa2bin1<br />

TANa1bin1<br />

SILTCLAYbin1<br />

0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

8<br />

666<br />

4 55 4<br />

13<br />

13<br />

13<br />

10 11<br />

11<br />

11 12<br />

12<br />

9 10<br />

10<br />

10<br />

17<br />

16 17<br />

17<br />

17<br />

16<br />

15 16<br />

16<br />

16<br />

43 44<br />

35 36 37 43<br />

35<br />

35<br />

34<br />

31 32<br />

32<br />

32 33<br />

33<br />

30<br />

30<br />

29<br />

29<br />

27<br />

27<br />

26<br />

25<br />

20 21<br />

21 22 24<br />

19<br />

19<br />

0 10 20 30 40<br />

Statewide<br />

Top 5 stressors/sources<br />

1. Impervious surface<br />

2. Conductivity<br />

3. Chloride<br />

4. Medium-intensity<br />

development<br />

5. Roads<br />

5. SO 4<br />

Bottom 5 stressors/sources<br />

1. Silt/clay presence<br />

2. Ammonia<br />

3. Organic acid source<br />

4. Bar formation<br />

5. pH > 8.5<br />

Watersheds


BSID Output<br />

• Analysis <strong>of</strong> stressors and interrelationships


BSID Output<br />

• Watershed-specific<br />

reports


Summary<br />

• Challenges<br />

Sample sizes limited<br />

Uncertainty inherent in thresholds<br />

Accounting for “all” stressors<br />

One stressor at a time<br />

• But…<br />

Provides a systematic, quantitative means <strong>of</strong><br />

addressing non-tidal biological impairments.<br />

Analysis strengthened in several ways (sample size,<br />

bootstrapping, land use consistency…)


What’s next<br />

• Analysis <strong>of</strong> results &<br />

interrelationships<br />

• Updating <strong>of</strong> existing reports &<br />

writing new ones<br />

• Development <strong>of</strong> appropriate<br />

water quality criteria and/or<br />

TMDLs to address results


<strong>Maryland</strong> <strong>Department</strong> <strong>of</strong> the Environment<br />

TMDL Development Program<br />

Biological Stressor Identification Section<br />

Allison O’Hanlon<br />

AOHanlon@mde.state.md.us<br />

Shirley Kirby<br />

Skirby@mde.state.md.us<br />

<strong>Farah</strong> <strong>Abi</strong>-<strong>Akar</strong><br />

F<strong>Abi</strong>-<strong>Akar</strong>@mde.state.md.us<br />

BSID Website<br />

http://www.mde.state.md.us/programs/Water/TMDL/<br />

Pages/Programs/WaterPrograms/tmdl/bsid_studies.aspx<br />

1800 Washington Boulevard | Baltimore, MD 21230-1718<br />

410-537-3000 | TTY Users: 1-800-735-2258<br />

www.mde.state.md.us

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!