24.12.2014 Views

Analysis of Hydrophobic and Hydrophilic Silica TLC Plates ... - dichrom

Analysis of Hydrophobic and Hydrophilic Silica TLC Plates ... - dichrom

Analysis of Hydrophobic and Hydrophilic Silica TLC Plates ... - dichrom

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Results<br />

To illustrate the capability <strong>of</strong> LAESI for imaging compounds<br />

separated on <strong>TLC</strong> plates, two plate types, a hydrophobic <strong>and</strong><br />

hydrophilic <strong>TLC</strong> plate were used for LAESI-MS analysis.<br />

Compounds 1 <strong>and</strong> 2 were separated on the hydrophilic <strong>TLC</strong><br />

plate as shown in the schematic <strong>and</strong> fluorescence optical<br />

image in Figure 1A.<br />

[des-­‐Arg]-­‐Bradykinin<br />

Substance P<br />

m/z = 452.7<br />

m/z = 674.9<br />

A)<br />

245.12 471.16<br />

100<br />

1<br />

100<br />

555.09<br />

2<br />

ACTH (7-­‐38)<br />

m/z = 1220<br />

B)<br />

Relative Abundance<br />

1687.96<br />

Relative Abundance<br />

245.06<br />

1085.97<br />

Figure 2: Ion maps <strong>of</strong> peptides (substance P, [des-Arg]-Bradykinin<br />

<strong>and</strong> ACTH (7-38)) separated on a C18 reversed phase silica bead<br />

plate.<br />

C)<br />

0<br />

200 600 1000 1400 1800<br />

m/z<br />

0<br />

200 600 1000 1400 1800<br />

m/z<br />

Conclusion<br />

The Protea LAESI DP-1000 system can be used to analyze<br />

compounds separated on both hydrophilic <strong>and</strong> hydrophobic<br />

<strong>TLC</strong> silica plates, by simply wetting the <strong>TLC</strong> plates with<br />

water. This analytical method can be used to determine both<br />

the location <strong>and</strong> confirm the identity <strong>of</strong> analytes separated on<br />

<strong>TLC</strong> plates.<br />

Figure 1: A) Schematic <strong>of</strong> the separation scheme <strong>of</strong> the two<br />

compounds, <strong>and</strong> a fluorescence optical image <strong>of</strong> separated<br />

compounds 1 <strong>and</strong> 2. B) Resulting mass spectra from LAESI-MS<br />

analysis. C) Ion maps <strong>of</strong> the compounds from ProteaPlot s<strong>of</strong>tware<br />

overlaid on <strong>TLC</strong> images <strong>of</strong> the analyzed <strong>TLC</strong> plate. The<br />

approximate position <strong>of</strong> the compounds optically visualized on the<br />

plate matched the position <strong>of</strong> the compounds indicated by the ion<br />

maps from LAESI-MS analysis.<br />

After performing LAESI-MS analysis on these plates, the<br />

data files were analyzed using ProteaPlot imaging s<strong>of</strong>tware<br />

to determine the location <strong>of</strong> the separated compounds<br />

shown in Figure 1B (sodium adducts at m/z 471.2 <strong>and</strong> m/z<br />

555.1). By overlaying an optical image <strong>of</strong> the <strong>TLC</strong> plate <strong>and</strong><br />

the ion map <strong>of</strong> the compounds from ProteaPlot s<strong>of</strong>tware<br />

(Figure 1C), very good correlation was achieved between<br />

the location <strong>of</strong> the compounds from ProteaPlot ion maps,<br />

<strong>and</strong> the locations indicated by optical fluorescence<br />

visualization (pencil circles). Similarly, an ion map from the<br />

separation <strong>of</strong> peptides on a hydrophobic <strong>TLC</strong> plate was<br />

achieved (Figure 2), showing the locations <strong>of</strong> three<br />

separated peptides, Bradykinin (m/z 452.7), Substance P<br />

(m/z 674.9) <strong>and</strong> ACTH (7-11) (m/z 1220).<br />

References<br />

(1) Han, Y, P. Levkin, I. Abarientos, H. Liu, F. Svec, <strong>and</strong><br />

J.M.J. Fréchet. Monolithic superhydrophobic polymer layer<br />

with photopatterened virtual channel for the separation <strong>of</strong><br />

peptides using two-dimensional thin layer chromatographydesorption<br />

electrospray ionization mass spectrometry.<br />

Analytical Chemistry. 2010, 82, 2520-2528.<br />

(2) Fuchs, B. R. Süß, A. Nimptsch, J. Schiller. MALDI-TOF-<br />

MS directly combined with <strong>TLC</strong>: a review <strong>of</strong> the current state.<br />

Chromatographia Supplement. 2009, 69(1), 95-105.<br />

(3) Robards, K., P.R. Haddad, P.E. Jackson. Principles <strong>and</strong><br />

practice <strong>of</strong> modern chromatographic methods (pp. 44, 182-<br />

224). 1994. San Diego, California: Academic Press.<br />

(4) Van Berkel, G.J., M.J. Ford, <strong>and</strong> M.A. Deibel. Thin-layer<br />

chromatography <strong>and</strong> mass spectrometry coupled using<br />

desorption electrospray ionization. Analytical Chemistry.<br />

2005, 77 (5), 1207-1215.<br />

(5) Nemes, P. <strong>and</strong> A. Vertes. Laser ablation electrospray<br />

ionization for atmospheric pressure, in vivo, <strong>and</strong> imaging<br />

mass spectrometry. Analytical Chemistry. 2007, 79, 8098-<br />

8106.<br />

Acknowledgements<br />

We acknowledge Dr. Miaosheng Li for preparing the<br />

hydrophilic <strong>TLC</strong> plates for analysis.<br />

© 2011 Protea Biosciences, Inc • 877.776.8321 • www.proteabio.com 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!