25.12.2014 Views

John Muldoon

John Muldoon

John Muldoon

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A “Gold Rush” for High Energy<br />

Batteries <br />

<strong>John</strong> <strong>Muldoon</strong><br />

Toyota Research Institute of North<br />

America


Moving Away From Alloys: Towards Metal Anodes<br />

9<br />

8<br />

Abundance<br />

(ppb)<br />

log<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Li Na K Be Mg Ca Zn Al<br />

Li Na K Be Mg Ca Zn Al<br />

MW<br />

(g/mol)<br />

Density<br />

(g/cm 3 )<br />

6.94 23.0 39.1 9.01 24.3 40.1 65.4 27.0<br />

0.53 0.97 0.86 1.85 1.74 1.55 7.14 2.7<br />

A magnesium anode is very attractive due to high capacities, reductive potential<br />

and abundance in the earth crust


Reduction at the Anode: the SEI<br />

Li +<br />

Li +<br />

Mg 2+ Mg 2+<br />

Mg 2+<br />

Li + Li SEI conducts Li<br />

+<br />

Passivating layer<br />

+<br />

X<br />

Li/C<br />

Mg<br />

• In contrast to Li, an SEI (solid‐electrolyte interface) on Mg precludes the<br />

use of many electrolytes.<br />

• Reversible Mg deposition can be observed in Grignard‐based electrolytes,<br />

first shown by Overcash and Mathers in 1933.<br />

Overcash, D. M.; Mathers, F. C. Trans. Electrochem. Soc. 1933, 64, 305.<br />

Gregory, T. D.; Hoffman, R. J.; Winterton, R. C. J. Electrochem. Soc. 1990, 137, 775‐780.<br />

Lu, Z.; Schechter, A.; Moshkovich, M.; Aurbach, D. J. Electroanal. Chem. 1999, 466, 203‐217.


Deposition at the Magnesium Anode<br />

Highly dependent on<br />

electrolyte<br />

Lithium<br />

SEM resolution: 5000X<br />

Deposition rate: 2.0 mAcm −2<br />

Magnesium<br />

SEM resolution: 5000X<br />

Deposition rate: 2.0 mAcm −2<br />

Mg is less<br />

reductive than Li =><br />

• Mg does not form SEI in ether solvents<br />

• Mg does not form dendrites<br />

Dey, A.N.; Sullivan, B.P. J. Electrochem. Soc. 1970, 117, 222<br />

Matsui, M., J Pow. Sou. 2011, 196, 7048–7055<br />

Gregory, T.D.; Hoffman, R.J.;Winterton, R.C. J. Electrochem. Soc. 1990, 137, 775


Mg Battery with Mg Organohaloaluminate Electrolytes<br />

Anode: Mg metal<br />

Cathode: Mg x Mo 3 S 4<br />

Electrolyte: in situ generated Mg organohaloaluminate 2:1 Bu 2 Mg : AlClEt 2<br />

• First demonstration of rechargeable Mg battery system:<br />

•Proven >2000 cycle with


Roadblocks Towards a High Energy Magnesium Battery<br />

Q<br />

<br />

/<br />

vol <br />

<br />

V<br />

(<br />

q<br />

)<br />

dq<br />

/<br />

vol<br />

[<br />

WhL<br />

0<br />

1 ]<br />

Increase voltage<br />

Increase capacity<br />

1) 2e ‐ transfer to the same metal center<br />

dilithium in Li 2 NiO 2 , LiVSe 2 /Li 2 VSe 2<br />

2) Facile solid state diffusion of magnesium in the cathode<br />

3) High voltage, non‐corrosive electrolyte<br />

Whittingham, S., Chem. Rev., 2004, 104, 4271‐4301.<br />

Dahn, J.R, U. von Sacken, Michal, C.A, Sol. State. Ion., 1990, 44, 87‐97.


In Situ Generated Mg Organohaloaluminates<br />

Black: 1:2 Bu 2 Mg and EtAlCl 2<br />

Red: 1:2 AlCl 3 and PhMgCl<br />

Bu 2 Mg + 2 EtAlCl 2<br />

THF<br />

Crystallization product was electrochemically inactive when re-dissolved in THF.<br />

Aurbach, D et al, Nature, 2000, 407, 724‐727.<br />

Aurbach, D et al, Chem. Record 2003, 3, 61‐73.<br />

Aurbach, D et al, Adv. Mater., 2007, 19, 4260‐4267.


Crystallization of 1 st Generation Electrolyte<br />

+<br />

Si<br />

THF<br />

O<br />

N<br />

Si + AlCl 3<br />

OMg<br />

24 hrs<br />

MgCl<br />

O<br />

Cl<br />

Cl<br />

Cl<br />

O<br />

Mg<br />

O<br />

O<br />

Si Si<br />

N Cl<br />

Al<br />

Cl Cl<br />

HMDSMgCl<br />

Kim, H.S.et HSetal. Nat. Commun. 2:427 doi: 10.1038/ncomms14351038/ncomms1435 (2011) .


Electrochemistry of crystal<br />

crystal<br />

In situ<br />

electrolyte<br />

HMDSMgCl<br />

Formation of (Mg 2 (μ-Cl) 3·6THF)[(HMDS)AlCl 3 ]<br />

HMDSMgCl + AlCl 3<br />

→ MgCl + + HMDSAlCl 3<br />

-<br />

Transmetallation (1)<br />

2HMDSMgCl HMDS 2 Mg + MgCl 2 Schlenk equilibrium (2)<br />

MgCl + + MgCl 2<br />

Mg 2<br />

Cl 3<br />

+<br />

(3)<br />

3HMDSMgCl + AlCl 3<br />

→ Mg 2<br />

Cl 3+ + HMDSAlCl 3- + HMDS 2<br />

Mg (4)<br />

• Transmetallation is key reaction in the formation of the product<br />

• (Mg 2 (μ-Cl) 3·6THF) is the electrochemically active species


The Role of Frontier Orbitals in Electrochemistry of Electrolytes<br />

Oxidation is the loss<br />

of electron to HOMO<br />

orbital<br />

(eV)<br />

Energy<br />

Lowest Unoccupied<br />

Molecular Orbital (LUMO)<br />

Highest Occupied<br />

Molecular Orbital (HOMO)<br />

Reduction is the addition<br />

of electron to LUMO<br />

orbital<br />

• Reductive stability may be predicted by calculating LUMO energy value<br />

•Oxidative stability may be predicted by calculating HOMO energy value<br />

More negative HOMO energy → higher oxidave stability<br />

More posive LUMO energy → higher reducve stability


DFT Prediction of Electrochemical Properties<br />

Table 1 Summary of HOMO and LUMO energy levels for the anion component of the<br />

crystallized electrolytes. 20<br />

Electrolyte Anion HOMO (eV) LUMO (eV)<br />

1<br />

2<br />

J , mA/cm 2<br />

*(HMDS) 2 AlCl 2<br />

-<br />

(HMDS)AlCl 3<br />

-<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

--- ---<br />

-5.670 0.061<br />

Ph - 4 Al -5384 -5.384 0182 0.182<br />

Ph 3 AlCl - -5.678 0.047<br />

Ph 2 AlCl 2<br />

-<br />

1 1.5 2 2.5 3 3.5 4 4.5<br />

E , V vs Mg<br />

-6.045 0.058<br />

•Based on this logic, our DFT<br />

calculations predict the<br />

electrolyte order of oxidative<br />

stability to be 4>2>1>3.<br />

•Based on the assumption that<br />

the HOMO energy level gap<br />

between the (HMDS)AlCl 3‐ and<br />

(HMDS) 2 AlCl 2‐ anions is similar to<br />

the energy gap between PhAlCl ‐<br />

3<br />

and Ph 2 AlCl 2‐ anions.<br />

-<br />

Fig. 5 Linear PhAlCl scan 3 voltammograms -6.402 depicting typical -0.062 voltage stability of (Mg 2 (μ-<br />

Cl 4 Al - -6.742 -1.384<br />

Cl) 3·6THF)(HMDS n AlCl 4-n ) (n=1,2) (blue), (Mg 2 (μ-Cl) 3·6THF)(Ph n AlCl 4-n ) (n = 1 – 4)<br />

(turquoise), (Mg 2 (μ-Cl) 3·6THF)(BPh 4 ) (red) and (Mg 2 (μ-Cl) 3·6THF)[B(C 6 F 5 ) 3 Ph] (green)<br />

3 Ph 4 B - -4.819 -0.536<br />

on a Pt working electrode with a surface area of 0.02 cm 2 . Scan rate for all scans is 25<br />

mV s -1 ; magnesium reference and counter electrodes are used at a temperature of 21 °C.<br />

4 (C 6 F 5 ) 3 BPh - -5.559 -0.422<br />

*The structural flexibility of (HMDS) 2 AlCl 2 - makes its geometry difficult to optimize.


Problem Charging in a 2025 Coin Cell<br />

• why cannot charge above 22V 2.2V<br />

•voltage stability of gen1 on Pt working electrode (w. e.) is 3.2V


Voltage Stabilities of Gen 1 on Various Working Electrodes<br />

20<br />

15<br />

SS Ni Pt C Au<br />

A B<br />

2<br />

J , mA/cm<br />

10<br />

5<br />

0<br />

-5<br />

1.5 2 2.5 3 3.5 4 4.5<br />

E vs Mg, V<br />

SEM of stainless steel before (A) and after (B)<br />

exposure to 1 st generation electrolyte for 1 week<br />

• Crystallized magnesium organohaloaluminates are corrosive in nature


Voltage Stabilities for Gen 2 Electrolyte<br />

m 2<br />

mA/c20<br />

J ,<br />

mA/cm 2<br />

J ,<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Pt working electrode<br />

1.25 1.75 2.25 2.75 3.25 3.75<br />

15<br />

E , V vs Mg<br />

SS working electrode<br />

10<br />

5<br />

0<br />

-5<br />

1.25 1.75 2.25 2.75 3.25 3.75<br />

E , V vs Mg<br />

3PhMgCl + BPh 3 → [Mg 2 Cl 3+ ][BPh4 ‐ ] + Ph 2 Mg<br />

No pitting observed<br />

• Causes an improvement of 400 mV in voltage stability<br />

•Anion has dramatic effect on corrosion<br />

<strong>Muldoon</strong>, et al, Energy and Environ. Sci., 2012. 5, 5941


Voltage Stabilities for Gen 3 Electrolyte<br />

235<br />

25<br />

15<br />

5<br />

-5<br />

J , mA/cm 2<br />

235<br />

25<br />

, mA/cm 2<br />

J<br />

15<br />

5<br />

-5<br />

Pt working electrode<br />

1 2 3 4 5<br />

E , V vs Mg<br />

SS working electrode<br />

Hysteresis<br />

0 1 2 3 4 5<br />

E , V vs Mg<br />

3PhMgCl + B(C 6 F 5 ) 3 → [Mg 2 Cl 3+ ][B(C 6 F 5 )Ph 3‐ ]+ Mg(C 6 F 5 ) 2<br />

•1.0V improvement in voltage stability on Pt w.e. : 3.7V<br />

• Corrosion on SS limits potential window to 2.2V<br />

Corrosion observed<br />

<strong>Muldoon</strong>, et al, Energy and Environ. Sci., 2012. 5, 5941


Chlorine Free Magnesium Organoborates<br />

Mixture and Filter<br />

BPh 3 +Bu 2 Mg (BPh 3 Bu) 2 Mg Soluble in THF 0.4M<br />

(BPh 3 Bu)2Mg (gen 4) THF


Electrolyte Preparation by Ion Switching<br />

gen3<br />

On SS316<br />

gen1<br />

gen2<br />

genX<br />

genX<br />

• Solubility of genX is >0.5M in glyme<br />

• Chlorides Are the Culprit of Corrosion<br />

• Its reductive stability must be improved<br />

<strong>Muldoon</strong> et al, Energy Environ. Sci., 2013, 6, 482–487


Membrane Encapsulated Sulfur Cathodes<br />

membrane<br />

0.1C ‐ membrane<br />

Blue: 1C – membrane<br />

Black: 1C –non‐membrane<br />

Red: 5C – membrane<br />

Improved lifetime and C – rates on encapsulation with a<br />

selective membrane


Conclusions<br />

Anion structure as well as<br />

combination between cation<br />

and anion strongly gyaffected<br />

the oxidation stability and<br />

corrosion of the electrolyte.<br />

There is a need for<br />

developing high dielectric<br />

solvents with a higher<br />

reductive stability such that<br />

they are compatible with Mg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!