29.12.2014 Views

April 9 - 5. Nieves_ICMAB.pdf - icmab csic

April 9 - 5. Nieves_ICMAB.pdf - icmab csic

April 9 - 5. Nieves_ICMAB.pdf - icmab csic

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nanostructured Electroactive Materials<br />

For Electrodes in the CNS stimulation and<br />

repair<br />

Prof. <strong>Nieves</strong> Casañ-Pastor, Ph.D.<br />

Institut of Materials Science of Barcelona, CSIC<br />

Spain


In collaboration with<br />

Hospital Nacional de Paraplejicos in Toledo<br />

Inst. Biomedical Sciences CSIC, Barcelona<br />

And Univ. Aberdeen School of Medical Sciences<br />

Finnancing CICYT (SPAIN)<br />

EU STREP<br />

CSIC


Nervous system and<br />

Electroactive Materials<br />

Prostheses/scaffolds<br />

Electrostimulation in the nervous system<br />

Inert Pt, Au RADICALS!!!!!!!!<br />

Which material <br />

-Electroactive<br />

-Biocompatible<br />

-Flexible


Deep Brain<br />

Electrostimulation<br />

Pt vs IrOx, pedot electrodes<br />

http://my.clevelandclinic.org/neurological_institute/<br />

Parkinson’s disease (PD),<br />

such as tremor, rigidity, stiffness, slowed movement, and walking problems.<br />

http://www.ninds.nih.gov/disorders/deep_brain_stimulation/deep_brain_stimulation.htm<br />

2007


Neuroblastoma and dendrite growth<br />

Growth cone directing <br />

REPAIR


Migration towards cathode in embryo cells (XENOPUS)<br />

http://www.abdn.ac.uk/ims/staff/details.phpid=c.mccaig<br />

Epithelial Cells migrate towards cathode<br />

WHAT IF CELLS ARE ON THE MATERIAL


WHICH MATERIALS


Most described materials in this field have a static property<br />

BUT THE MATERIAL MAY BE SEEN<br />

AS SOMETHING DYNAMIC<br />

ITS PROPERTIES MODULATED:<br />

ELECTROACTIVE<br />

ELECTROCHEMISTRY IS INTERFACE<br />

ALWAYS NANO !!!!!!


ELECTROACTIVE MATERIALS :<br />

C, Oxides, Conducting polymers…<br />

Active electrochemically<br />

Electrodes<br />

Mixed conduction<br />

Intercalation (Li+, O- , Na+, …)<br />

Redox Modulation of surface potential<br />

Applications: Bateries, FC, supercapacitors : Energy storage<br />

Sensors<br />

Electrostimulation<br />

Electronics<br />

Photovoltaics<br />

Electrochromism, electromechanics<br />

Artificial muscles……


An example : Li + ion batteries<br />

LiCoO 2 ↔ Li 1-x CoO 2 + xLi + + xe -<br />

Cathode<br />

All reactions occur at the interface<br />

Whatever this is : flat or pores…..<br />

C + xLi + + xe - ↔ Li x C<br />

Anode<br />

Ion diffusion : Interfaces<br />

Particle size and NANO


Li+ in lithium batteries<br />

Not only porosity or final nanosized


Electrochromism and conductivity switching<br />

by redox intercalation<br />

O<br />

O<br />

O<br />

O<br />

S<br />

S<br />

S<br />

S<br />

S<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O O<br />

A - O O<br />

+<br />

A -<br />

S<br />

S<br />

+<br />

S<br />

S<br />

S<br />

O O<br />

O O<br />

O O<br />

The electrochromic behavior is due to an electron transfer reaction taking place<br />

during the electrochemical oxidation and reduction of the polymer.


New Anodes<br />

NANO -----<br />

Sn alloys –Li- C


NOW! Li not only in PC<br />

Anode : TiOx NANO<br />

Fastest exchange More power<br />

Autonomy 150 Km<br />

Rechargable in 30 min<br />

(news 2009)


Intercalation in electrochemical systems :<br />

Not only small ions like Li+<br />

Not only positive ions<br />

Halides, (F - , Br - ), O -x


1991 Casañ et al <strong>ICMAB</strong><br />

Oxygen intercalation and mobility at room<br />

temperature also<br />

Electrochemical cell<br />

Semi to superconductor (Cu)<br />

Magnetic changes 300% (Mn)<br />

Oxygen enters in<br />

interstitial positions<br />

La 2 CuO 4 + d/n O -n La 2 CuO 4+d<br />

Ln 2 MnO 4 + d/n O -n Ln 2 MnO 4+d


Same process <br />

NEW PHASES by SOFT CHEMISTRY<br />

1999: First Ag-Cu oxide Ag 2 Cu 2 O 3<br />

(1)<br />

In the search of new superconductors:<br />

Replacing Ag by Hg<br />

New oxide Ag 2 Cu 2 O 4<br />

(3)<br />

by oxygen doping of Ag 2 Cu 2 O 3 !!!!<br />

(1) P. Gómez-Romero et al., Angew. Chem. 111, 1999, 544-6, Gómez-Romero, Casañ-Pastor et al, Inorg. Chem. 41, 2002,<br />

6604. (2) Gómez-Romero, et. al., J. Solid State Chem. 163, 2002, 151, (3) Casañ-Pastor et al. Electrochem. Comm. 4,<br />

(2002) , 684-689


Electrochemical Oxidation<br />

in NaOH (aq): nanoparticles in suspension<br />

Ag 2 Cu 2 O 3 Ag 2 Cu 2 O 4<br />

d = 7.01 g/cc<br />

-e - + O -2<br />

d = 7.16 g/cc


Ag 2 Cu 2 O 4 structure<br />

• 1 O atom “intercalated” per unit formula;<br />

• Pass from a 3D structure to a 2D one at r.t. !!!!;<br />

• Significant structure transformation and<br />

electronic delocalization Ag octahedral<br />

Ag 2 Cu 2 O 3 ; 3D<br />

Ag 2 Cu 2 O 4 ; 2D


Ag 2 Cu 2 O 4 vs its precursor 200 nm size part.<br />

• SEM<br />

Solid State Nano-transformations : Oxygen diffusion induced electrochemically<br />

Ag 2 Cu 2 O 3 Ag 2 Cu 2 O 4<br />

• HRTEM


I / A<br />

After been prepared, it has electrochemical transformations<br />

also in solid state .<br />

•CV Ag 2 Cu 2 O 3 pellet ; NaOH(1M); 0.35 mV/s<br />

Cathodic run<br />

0.06<br />

reduction<br />

A<br />

Ag + Ag 0<br />

0.04<br />

B<br />

C<br />

Cu 2+ Cu +<br />

0.02<br />

OCV<br />

0.00<br />

Cu + Cu 0 5<br />

-0.02<br />

Single oxides<br />

A’<br />

B’<br />

C’<br />

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5<br />

E / V vs. Au


INTENSITY (Arbitrary Units)<br />

Hydrothermal oxidation<br />

eff<br />

( B<br />

)<br />

1/ mol<br />

/ mol/emu<br />

Ag + Cu +2 with MnO4 - :<br />

Ag 2 CuMnO 4<br />

5<br />

4.5<br />

4<br />

3.5<br />

180<br />

3<br />

160<br />

140<br />

2.5<br />

2<br />

120<br />

100<br />

80<br />

60<br />

1.5<br />

40<br />

20<br />

0 50 100 150 200 250 300 350<br />

T (K)<br />

1<br />

0 50 100 150 200 250 300 350<br />

T (K)<br />

10 19 28 37 46 55 64 73 82 91 100<br />

2Theta (Degrees)<br />

Ferro and Antiferrom<br />

Coupling in layered<br />

phase<br />

N. Casañ-Pastor et al. ,<br />

J. Solid State Chem. , 179, 2006, 3883


When „Nano“ was not named Nano<br />

Technology can precede science<br />

Mayan BLUE<br />

Now we know: heat can embed aniline, a bright indigo<br />

chemical from the plant Indigofera suffruticosa, into<br />

the natural clay palygorskite, which provides a<br />

protective lattice.<br />

Really : HYBRID NANOCOMPOSITE Organic-<br />

Inorganic<br />

(Mg,Al) 2 Si 4 O 10 (OH)·4(H 2 O) clay mineral


Materials- Polymers<br />

• Polypyrrole and PEDOT<br />

Poly (3,4-ethylenedioxythiophene)<br />

electrochemically synthesized on Pt substrates<br />

With counterions as<br />

• Anionic surfactants (potentiostatic deposition)<br />

-PSS: poly (sodium 4-styrenesulfonate)<br />

• Aminoacids (dynamic deposition):<br />

-Glutamate<br />

-Glutamine<br />

-Glycine<br />

-Glutamine<br />

-Lysine<br />

Oxidation state modulation of Polymer coatings


Atomic Force Microscopy- Topography<br />

Current sensing AFM<br />

PPy-aminoacid films<br />

Polymer films < 1 m thick<br />

Coatings on transparent Pt (Ti) 12 + 5 nm<br />

Sample<br />

PSS As<br />

prepared<br />

Roughness<br />

RMS (nm)<br />

Peak to valley<br />

Maximum (nm)<br />

1<strong>5.</strong>5 86.3<br />

Glutamate 30.9 176.3<br />

Glutamine 16.9 107.2<br />

Glycine 26.9 16<strong>5.</strong>2<br />

Glutamic<br />

acid<br />

73.3 610.0<br />

1 μm<br />

Glutamate<br />

1 μm<br />

Glutamine<br />

Polypyrrole-PSS < 1 m thick<br />

Institut de Ciència de Materials de<br />

Barcelona<br />

0 200 400 600 800 1000 nm<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

nm<br />

nm<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1 μm<br />

Glycine<br />

1 μm<br />

Glutamic acid<br />

Current sensing measurements show how samples are much more<br />

conductive at the top of the grains for all cases


Cell cultures on polymers<br />

Ppy-PSS 4DIV<br />

Ppy-Glutamina 4DIV<br />

Ppy-Lisina 4DIV<br />

Ppy-Lisina pH 12 , 4DIV<br />

Aminoacid insertion improves material 500%


Steel/ppy/ electrolyte /ppy/steel<br />

electrochemical cell<br />

T.Otero, Chem. Comm. 1997


Materials: Electroactive oxides …<br />

Iridium Oxide IrOx<br />

Mixed Valence Ir (III) – Ir (IV)<br />

IV<br />

<br />

III IV<br />

Intercalation redox process<br />

Ir O2 xe xH H<br />

xIrx<br />

Ir O2<br />

Charge transference without<br />

injurious reactions or thermal<br />

Low effects impedance !!!<br />

Biocompatibility + good electrochemical properties


I(mA)<br />

Synthesis<br />

• Constant current<br />

35 A/cm 2 (* Petit et al. 1998)<br />

• Cyclyc Voltametry<br />

Voc – 0.55 V, 10mV/s 50 and 100 cycles<br />

Substrates:<br />

soda lime glass coated with Pt 12 nm<br />

(5nm Ti adhesion layer)<br />

Oxalic acid + K 2<br />

CO 3<br />

+ IrCl 3<br />

(CV, 0.55V, 10mV/s 1 cycle)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

≈ 130 nm thick<br />

-0.2<br />

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

E (V) Vs Pt<br />

* PETIT, M.A; PICHON, V. Anodic electrodeposition of iridium oxide films. J. Electroanal. Chem. v. 444, p. 247-252, 1998


EQCM SÍNTHESIS of IrOx…<br />

Pulsed deposition<br />

m<br />

Q<br />

13.2 µg<br />

depositada<br />

oxidación<br />

Q/m : 6 to 4 e-/ Ir<br />

4.2 e - /Ir<br />

Aditional process: Oxalate oxidation to CO2<br />

Carga superior a la esperada …<br />

21


IrO x<br />

Similar to palygorskite<br />

≈ 130 nm thick<br />

Corriente<br />

aumenta<br />

IrOx.nH 2 O Oxohydroxide amorphous/channels<br />

Local structure<br />

similar to IrO 2 rutile<br />

Grazing angle XRay<br />

XAS (ESRF)


IrO x<br />

The microestructure depends of the<br />

synthesis conditions and oxidation<br />

state !!!<br />

Synthesys Conditions<br />

RMS<br />

(nm)<br />

35 A/cm 2 > 1000<br />

0.55V/2mV/s/17cycles <strong>5.</strong>6<br />

0.55V/10mV/s/50cycles 20.7<br />

0.55V/10mV/s/100cycles 84.5<br />

Modulation of Ir oxidation state<br />

Ir reduction at -0.23 V and simultaneous<br />

H + (H2O) intercalation assumed MW 13


In general IrO 2 crystallizes in the rutile form but in this case …<br />

GIXRD, XAS<br />

XPS y ATG<br />

XPS<br />

Amophous phase with local<br />

structure rutile<br />

Wet phase. OH - y H 2 O in the structure<br />

K ions in the structure, it is not residual.<br />

Is this K localized in channels <br />

Hollandite structure …<br />

Rutile<br />

Hollandite<br />

Proton, K, H 2 O, OH -<br />

Intercalation …<br />

Electrochemical Window of -1 V to 0.7V<br />

(no water redox processes)


Electrochemistry in AFM<br />

Current (mA)<br />

Iridium Oxide<br />

Electrochemistry in AFM<br />

CV scans_1st experiment<br />

-0.04<br />

-0.08<br />

-0.12<br />

-0.16<br />

-0.20<br />

0 1 2 3 4 5 µm<br />

0<br />

0.5<br />

1<br />

1.5<br />

2<br />

2.5<br />

3<br />

3.5<br />

4<br />

4.5<br />

RMS= 2<strong>5.</strong>7 nm<br />

5<br />

µm<br />

0 1 2 3 4 5 µm<br />

0<br />

0.5<br />

1<br />

nm<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

nm<br />

140<br />

120<br />

0.12 V<br />

-0.06 V<br />

-0.33 V<br />

-0.24<br />

1.5<br />

2<br />

2.5<br />

100<br />

80<br />

-0.6 -0.4 -0.2 0.0 0.2<br />

E (V) vs Pt<br />

3<br />

3.5<br />

4<br />

4.5<br />

5<br />

µm<br />

RMS= 14.2 nm<br />

60<br />

40<br />

20<br />

0<br />

-0.57 V


Electroactive materials, electrochemistry, field applications, interfaces and cultures<br />

Hybrids<br />

IrOx encapsulated on PPy<br />

SEM<br />

Ir shows brighter<br />

Back-scattered Electrons<br />

Institut de Ciència de Materials de<br />

Barcelona NERBIOS Meeting, Aberdeen 21-22 otc 2009


IrOx-PEDOT<br />

IrOx-PPy


IrOx encapsulation with polypyrrole


Intensity (counts)<br />

Scaffold Hybrids IrOx<br />

–nanotubes and IrOXnanotubes<br />

-polys<br />

1,0<br />

0,8<br />

0,6<br />

IrOx + CNTs<br />

IrOx + PEDOT + CNTs<br />

IrOx AP<br />

Ir 4s<br />

O1s<br />

Ir 4d<br />

Ir 4d 5/2<br />

3/2 Ir 4f<br />

Ir 4p<br />

C1s 5/2 Ir 4f7/2<br />

3/2<br />

K 2s<br />

0,4<br />

0,2<br />

Cl 2s<br />

Cl 2p<br />

S 2s<br />

S 2p<br />

0,0<br />

1000 800 600 400 200 0<br />

Binding Energy (eV)


Intensity (cps)<br />

j(mA/cm2)2)<br />

INTERFACE MATERIAL - CELL<br />

Polylysine: Evidence of polypeptide adhesion<br />

• Both CV and XPS evidence the adhesion of P-L-Lysine to the PPy coating<br />

Electrochemical effect<br />

Not passivating<br />

DBS 0,75V as prep. samples<br />

1<br />

0.5<br />

0<br />

-2 -1.5 -1 -0.5 0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

phosphate<br />

phosphate p-<br />

lysine<br />

medium<br />

50000<br />

40000<br />

30000<br />

20000<br />

XPS N 1s<br />

N 1s<br />

PPY-PSS As prepared<br />

PPY-PSS AP<br />

with lysyne<br />

PPY-PSS AP<br />

with polilysyne<br />

x 10<br />

E(V) vs Pt<br />

-2.5<br />

XPS<br />

O 1s<br />

medium p-<br />

lysine<br />

10000<br />

0<br />

398 400 402 404<br />

Binding Energy (eV)<br />

Institut de Ciència de Materials de<br />

Barcelona


Intensity (cps)<br />

Oxides IrOx and polypyrrole with lysine and polylysine<br />

XPS<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

O 1s Comparison<br />

*TiO O 1s<br />

2<br />

Ppy<br />

IrOx AP with lysyne<br />

IrOx AP with poliysyne<br />

TiO2 350ºC, 3x with lysysne<br />

TiO2 350ºC, 3x with polilysysne<br />

PPY-PSS AP with lysysne<br />

PPY-PSS AP with polilysysne<br />

IrOx<br />

528 530 532 534 536<br />

Binding Energy (eV)


Contact angle (deg)<br />

Contact angle (deg)<br />

Contact angle (deg)<br />

Surface Hydrophylicity: Contact Angle<br />

with PLL<br />

As prepared<br />

PPY-PSS<br />

PEDOT-PSS<br />

IrOx<br />

100<br />

Ppy-pss<br />

100<br />

Pedot-pss<br />

100<br />

IrOx<br />

90<br />

80<br />

As prepared<br />

with PLL<br />

90<br />

80<br />

As prepared<br />

with PLL<br />

90<br />

80<br />

70<br />

70<br />

70<br />

60<br />

50<br />

40<br />

water<br />

medium<br />

60<br />

50<br />

40<br />

water<br />

medium<br />

60<br />

50<br />

40<br />

As prepared<br />

With PLL<br />

water<br />

medium<br />

PLL decreases contact angle<br />

increases wetability<br />

θ<br />

A<br />

θ<br />

B<br />

Contact angle for IrOx samples without<br />

(A) and with PLL (B) in water


mA<br />

PLL Peptide adhesion 1 nm does not modify electroactivity<br />

Voltammetry.<br />

5<br />

cv_red_medio_ IrOx<br />

4<br />

3<br />

as prepared<br />

con PLL<br />

2<br />

1<br />

0<br />

-1<br />

-1,0 -0,5 0,0 0,5 1,0<br />

Ewe/V vs SCE


Electroactive materials, electrochemistry, field applications, interfaces and cultures<br />

Confocal Microscope (Fluorescence)<br />

PEDOT-PSS 4 μg/cm 2 PEDOT-PSS 28 μg/cm 2 IrOx 4 μg/cm 2<br />

Sample<br />

Integrated intensity<br />

(arbitrary units)<br />

PEDOT-PSS 4 μg/cm 2 (5,04 ± 2,25)·10 5<br />

PEDOT-PSS 28 μg/cm 2 (2,75 ± 0,96)·10 7<br />

* Marker: FITC<br />

IrOx 4 μg/cm 2 (1,50 ± 0,52)·10 6<br />

Institut de Ciència de Materials de<br />

Barcelona NERBIOS Meeting, Aberdeen 21-22 otc 2009


Atomic Force Microscopy (contact mode)<br />

with poly-L-lysine<br />

WEAR TESTS on Au and TiO 2 flat facet<br />

TiO 2 rutile 1 nm thickness PLL<br />

Au


Interdigital patterns by UV lithography<br />

PPY on Pt patterns<br />

Screen printing<br />

electrodes<br />

1. Substrate treatment<br />

Humidity<br />

2.- UV-Resin deposition<br />

3.- UV- insulation<br />

PPY-PSS<br />

4.- Developing<br />

<strong>5.</strong>- Platinum<br />

deposition<br />

6.- Lift-off<br />

7.- Electrodeposition


Cultivos celulares (células primarias embrionarias) …<br />

Rata Whistar Embrión E14/18 Córtex Siembra sobre el<br />

material<br />

Lamelopodia<br />

Neuritas<br />

Inmaduras<br />

Formación<br />

del Axón<br />

Dendritas<br />

múltiples<br />

Formación de<br />

las Dendritas<br />

Maduración<br />

Ramifica<br />

ciones<br />

Axón<br />

8


Neural cortex Cell cultures on polymer<br />

100 m<br />

PPY-DBS (Surfactant) 100 4DIVm<br />

Control 4 DIV (borosilicate glass) PPY-DBS (Surfactant) 4DIV<br />

Cells grow better on aminoacid<br />

containning polymers vs. those<br />

with surfactants<br />

Living cells statistics<br />

(25000 neurons/cm 2 original seeding)<br />

100 m<br />

100 m<br />

35000<br />

30000<br />

PEDOT-PPy Lysine 4DIV<br />

PEDOT-PPy Glutamine 4DIV<br />

25000<br />

20000<br />

15000<br />

Neurons/cm 2<br />

10000<br />

5000<br />

0<br />

PPy DBS<br />

PEDOT-PPy-<br />

Glutamine<br />

PEDOT-PPy-<br />

Lysine<br />

Control<br />

Material


There is no inhibition in the dendrite<br />

growth<br />

Neural cortex Cell cultures on IrOx<br />

Cerebral Cortex of embryos of Whistar E14 rats<br />

Survival is statistically<br />

equivalent to the control<br />

Good cell survival, adhesion, proliferation up to 4 days…and more


NEURONS GROWTH from Cerebral Cortex of embryos of Whistar E14 rats<br />

IrO x<br />

(Ir-Ti)O x<br />

There is no inibition in<br />

the dendrite growth<br />

4DIV<br />

Survival is<br />

statistically<br />

equivalent to the<br />

control<br />

Cell survival improve when Ir<br />

content increase


Surface potential may also be modified in situ !<br />

Material in the media<br />

Or<br />

Material as substrate and electrode


http://www.abdn.ac.uk/ims/staff/details.phpid<br />

=c.mccaig<br />

Epithelial Cells migrate towards cathode


I/mA<br />

Surface potential may also be modified in situ<br />

IrOx<br />

0 min<br />

Cultures<br />

Rat Cortical neurons<br />

3 min<br />

E-18<br />

Neurobasal + B27<br />

DC -0.2V<br />

DC ON<br />

-15 μA -0.1μA<br />

Q = 0.84 mC<br />

6 min<br />

15% IrOx capacity<br />

10 min<br />

6,00E-01<br />

5,00E-01<br />

4,00E-01<br />

3,00E-01<br />

20x<br />

2,00E-01<br />

1,00E-01<br />

0,00E+00<br />

-1,00E-01<br />

-2,00E-01<br />

IrOx MC -<br />

0 50 100 150 200<br />

time / s<br />

OFF<br />

14 hours after


An example: STIMULATION<br />

ON PEDOT-PSS HEPARIN CATHODE


Electric field modulation in nanoparticles or nanostructured coatings<br />

-Control of doping state/redox potential may change the physical properties largely.<br />

Applicable to surfaces acting as electrodes..<br />

-Intercalation achieved yielding to solid state reactions and new phases<br />

- Neural cells grow well in electroactive materials and survive in both<br />

OXIDES and AMINOACID containning POLYMERS.<br />

-Peptides absorb in both types of surfaces<br />

-Electroactivity is preserved after peptide adhesion, and is not modified by it<br />

- IrOx as an open structure with channels allows ion intercalation during redox changes,<br />

-Polymers behave also as an open structure allowing the same type of behavior<br />

-Modulation of the surface oxidation state and electrical potential is posible.<br />

Minimal changes occur in topography, hydrophilicity, or structure in IrOx , max in polymer


People involved in this work<br />

Dr. N. Casañ, Ph.D.<br />

Dr. J. Fraxedas<br />

Dr. P. Lozano<br />

Nina Carretero<br />

Dr. Ll. Abad<br />

MSc. A. M. Cruz<br />

Dr. C. de Haro<br />

MSc. J. Moral

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!