25.12.2014 Views

Homework Problem Set 5 Solutions ( )2

Homework Problem Set 5 Solutions ( )2

Homework Problem Set 5 Solutions ( )2

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chemistry 380.37<br />

Dr. Jean M. Standard<br />

<strong>Homework</strong> <strong>Problem</strong> <strong>Set</strong> 5 <strong>Solutions</strong><br />

1. Consider a bond involving atoms A and B represented using a harmonic force field of the<br />

form<br />

U = 1 2 k s,AB<br />

( r AB − r AB,eq ) 2 ,<br />

where r AB is the instantaneous bond length and r AB,eq is the equilibrium bond length. The<br />

equilibrium A-B bond length € is 1.00 Å, and the stretching force constant is 500 kcal<br />

mol –1 Å –2 . The atoms are arranged so that they have the cartesian coordinates given below<br />

€ (in Å).<br />

€<br />

Atom x y z<br />

A –0.50 –0.23 0.00<br />

B 0.37 0.54 0.00<br />

a.) What is the instantaneous A-B bond length<br />

[( ) 2 + ( y A − y ) 2 B + ( z A − z ) 2<br />

] 1/ 2<br />

B<br />

r AB = x A − x B<br />

( ) 2 + ( −0.23 − 0.54 Å) 2 + 0 − 0<br />

= ⎡⎡ −0.50 − 0.37 Å<br />

⎣⎣ ⎢⎢<br />

r AB = 1.16 Å .<br />

( ) 2<br />

1/ 2<br />

⎤⎤<br />

⎦⎦ ⎥⎥<br />

b.) What is the € potential energy of the system in units of kcal mol –1 <br />

U = 1 2 k s,AB ( r AB − r AB,eq ) 2<br />

= 1 2 ( 500 kcalmol−1 Å −2<br />

)( 1.16−1.00 Å) 2<br />

U = 6.56 kcalmol −1 .<br />

c.) Determine the x-, € y-, and z-components of the force on atom A.<br />

The force on atom A is determined as the partial derivative of the force field with respect to the cartesian<br />

coordinates. For the force on atom A in the x direction,<br />

⎛⎛<br />

F A,x = −<br />

∂U ⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂ x A ⎠⎠<br />

⎛⎛<br />

= − ∂U ⎞⎞ ⎛⎛<br />

⎜⎜ ⎟⎟ ∂ r ⎞⎞<br />

AB<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂ r AB ⎠⎠ ⎝⎝ ∂ x A ⎠⎠<br />

⎛⎛<br />

F A,x = − k s,AB ( r AB − r AB,eq ) ∂ r ⎞⎞<br />

AB<br />

⎜⎜ ⎟⎟ .<br />

⎝⎝ ∂ x A ⎠⎠<br />


1 c.) continued<br />

2<br />

To complete the derivation of the force, the derivative of the bond length<br />

coordinate x A must be determined.<br />

r AB with respect to the cartesian<br />

⎛⎛ ∂ r AB ⎞⎞<br />

⎜⎜ ⎟⎟ = 1 x<br />

⎝⎝ ∂ x A ⎠⎠ 2 [ ( A − x ) 2 B + ( y A − y ) 2 B + ( z A − z ) 2<br />

] −1/ 2 B 2<br />

⎛⎛ ∂ r AB ⎞⎞<br />

⎜⎜ ⎟⎟ = x A − x B<br />

.<br />

⎝⎝ ∂ x A ⎠⎠ r AB<br />

( )<br />

( ) x A − x B<br />

Substituting,<br />

€<br />

⎛⎛<br />

F A,x = − k s,AB ( r AB − r AB,eq ) x A − x ⎞⎞<br />

B<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ⎠⎠<br />

r AB<br />

= − ( 500 kcalmol −1 Å −2<br />

)( 1.16−1.00 Å) F A,x = 60.6 kcalmol −1 Å −1 .<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

−0.50− 0.37 Å<br />

1.16 Å<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

€<br />

Similarly, the y-component of the force can be calculated,<br />

€<br />

⎛⎛<br />

F A,y = − k s,AB ( r AB − r AB,eq ) y A − y ⎞⎞<br />

B<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ⎠⎠<br />

r AB<br />

= − ( 500 kcalmol −1 Å −2<br />

)( 1.16−1.00 Å) F A,y = 53.6 kcalmol −1 Å −1 .<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

−0.23− 0.54 Å<br />

1.16 Å<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

Finally, the z-component is calculated,<br />

€<br />

⎛⎛<br />

F A,z = − k s,AB ( r AB − r AB,eq ) z A − z ⎞⎞<br />

B<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ⎠⎠<br />

r AB<br />

= − ( 500 kcalmol −1 Å −2<br />

)( 1.16−1.00 Å) F A,z = 0.<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

0.0− 0.0 Å<br />

1.16 Å<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

d.) Determine the € x-, y-, and z-components of the force on atom B.<br />

The force on atom B is determined as the partial derivative of the force field with respect to the cartesian<br />

coordinates. As in part (c) above, the x component of the force on atom B is<br />

⎛⎛<br />

F B,x = −<br />

∂U ⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂ x B ⎠⎠<br />

⎛⎛<br />

= − ∂U ⎞⎞ ⎛⎛<br />

⎜⎜ ⎟⎟ ∂ r ⎞⎞<br />

AB<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂ r AB ⎠⎠ ⎝⎝ ∂ x B ⎠⎠<br />

⎛⎛<br />

F B,x = − k s,AB ( r AB − r AB,eq ) ∂ r ⎞⎞<br />

AB<br />

⎜⎜ ⎟⎟ .<br />

⎝⎝ ∂ x B ⎠⎠<br />


1 d.) continued<br />

3<br />

To complete the derivation of the force, the derivative of the bond length<br />

coordinate x B must be determined.<br />

r AB with respect to the cartesian<br />

⎛⎛ ∂ r AB ⎞⎞<br />

⎜⎜ ⎟⎟ = 1 x<br />

⎝⎝ ∂ x B ⎠⎠ 2 [ ( A − x ) 2 B + ( y A − y ) 2 B + ( z A − z ) 2<br />

] −1/ 2 B −2<br />

⎛⎛ ∂ r AB ⎞⎞<br />

⎜⎜ ⎟⎟ = − x A − x B<br />

.<br />

⎝⎝ ∂ x B ⎠⎠ r AB<br />

( )<br />

( ) x A − x B<br />

Substituting,<br />

€<br />

⎛⎛<br />

F B,x = k s,AB ( r AB − r AB,eq ) x A − x ⎞⎞<br />

B<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ⎠⎠<br />

r AB<br />

= ( 500 kcalmol −1 Å −2<br />

)( 1.16−1.00 Å) F B,x = − 60.6 kcalmol −1 Å −1 .<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

−0.50− 0.37 Å<br />

1.16 Å<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

€<br />

Similarly, the y-component of the force can be calculated,<br />

€<br />

⎛⎛<br />

F B,y = k s,AB ( r AB − r AB,eq ) y A − y ⎞⎞<br />

B<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ⎠⎠<br />

r AB<br />

= ( 500 kcalmol −1 Å −2<br />

)( 1.16−1.00 Å) F B,y = − 53.6 kcalmol −1 Å −1 .<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

−0.23− 0.54 Å<br />

1.16 Å<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

Finally, the z-component is calculated,<br />

€<br />

⎛⎛<br />

F B,z = k s,AB ( r AB − r AB,eq ) z A − z ⎞⎞<br />

B<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ⎠⎠<br />

r AB<br />

= ( 500 kcalmol −1 Å −2<br />

)( 1.16−1.00 Å) F B,z = 0.<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

0.0− 0.0 Å<br />

1.16 Å<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />


4<br />

1. continued<br />

e.) Are the atoms moving closer together or farther apart<br />

The positions of the two atoms are shown in the figure below (note that the force vectors are not drawn to<br />

scale). The force on atom A is in the positive x and positive y direction (along the bond). The force on<br />

atom B is in the negative x and negative y direction (also along the bond). Thus, the atoms are moving<br />

closer together.<br />

1.0<br />

0.5<br />

B<br />

y (Å)<br />

0.0<br />

-0.5<br />

A<br />

-1.0<br />

-1.0 -0.5 0.0 0.5 1.0<br />

x (Å)<br />

2. Consider the simple one-dimensional harmonic potential as a representation of the motion<br />

of a bond in a molecular system,<br />

U( x) = 1 2 k x 2 .<br />

The coordinate x represents the bond displacement, x = r − r eq. Assume that the force<br />

constant k for the bond is 720 € kcal mol –1 Å –2 . The reduced mass is 12.0 g/mol. The<br />

bond displacement coordinate has an initial value of 0 Å. The initial velocity is 8400<br />

m/s.<br />

€<br />

a.) What is the potential energy<br />

U = 1 2 kx 2<br />

= 1 2 720 kcalmol−1 Å −2<br />

U = 0.<br />

( ) 0<br />

( ) 2<br />


2. continued<br />

5<br />

b.) What is the kinetic energy of the system<br />

T = 1 2 mv 2<br />

= 1 2<br />

( 0.012 kg mol−1) 8400 ms −1<br />

( ) 2<br />

= 4.23×10 5 J/mol<br />

T = 1.01×10 5 cal/mol (or 101 kcal/mol).<br />

c.) What is the total € energy of the system<br />

E = T + U<br />

= 101 + 0 kcal/mol<br />

E = 101 kcal/mol.<br />


3. Consider the potential energy function studied in problem 2 with the same parameters.<br />

Since the potential energy function described in problem 2 is harmonic, the bond<br />

undergoes simple harmonic motion as a function of time. The exact analytical solutions<br />

of Newton's equations for a harmonic oscillator with an initial position of zero and an<br />

initial velocity v(0) are<br />

6<br />

€<br />

x(t) = v(0)<br />

ω<br />

sin( ω t)<br />

v(t) = v(0) cos( ω t) .<br />

The parameter ω is the angular velocity and is defined by the relation<br />

ω =<br />

where m is the mass. The angular velocity ω is related to the harmonic frequency of<br />

oscillation ν o ,<br />

€<br />

k<br />

m ,<br />

€<br />

ν o =<br />

ω<br />

2π .<br />

a.) Using the same parameters as € given in problem 2, determine the harmonic frequency of<br />

vibration for this system.<br />

For simple harmonic motion, the harmonic frequency of vibration ν o is<br />

ν o =<br />

=<br />

ω<br />

2π = 1<br />

2π<br />

1<br />

2π<br />

ν o = 2.52 ×10 13 s −1 .<br />

k<br />

m<br />

€<br />

⎛⎛ 720 kcalmol −1 Å −2 ⎞⎞ ⎛⎛ 4.184 kJ<br />

⎜⎜<br />

⎝⎝ 0.012 kg mol −1 ⎟⎟ ⎜⎜<br />

⎠⎠ ⎝⎝ 1kcal<br />

⎞⎞ ⎛⎛<br />

⎟⎟ 1000 J ⎞⎞ ⎛⎛ 1Å ⎞⎞<br />

⎜⎜ ⎟⎟ ⎜⎜<br />

⎠⎠ ⎝⎝ 1kJ ⎠⎠ ⎝⎝ 10 −10 ⎟⎟<br />

m⎠⎠<br />

2<br />


3. continued<br />

7<br />

b.) Using the analytic solution to Newton's equations for the harmonic oscillator, plot the<br />

bond displacement coordinate x as a function of time.<br />

For simple harmonic motion and the provided initial conditions, the analytic expression for the position is<br />

x(t) = v(0)<br />

ω<br />

sin( ω t)<br />

.<br />

Using the harmonic vibrational frequency ν o calculated in part (a), the angular frequency ω can be<br />

determined,<br />

€<br />

€<br />

ω = 2π ν o<br />

( )<br />

= 2π 2.52 ×10 13 s −1<br />

ω = 1.58 ×10 14 s −1 .<br />

The initial velocity is<br />

€<br />

v( 0) = 8400 m/s . Thus, the position as a function of time is given by the equation<br />

€<br />

( ) = v(0)<br />

x t<br />

sin( ω t)<br />

ω<br />

⎛⎛ 8400 m/s ⎞⎞<br />

= ⎜⎜<br />

⎝⎝ 1.58 ×10 14 s −1 ⎟⎟ sin 1.58 ×10 14 s −1 t<br />

⎠⎠<br />

= 5.31×10 −11 m<br />

( )<br />

( ) sin( 1.58 ×10 14 s −1 t)<br />

( ) sin( 1.58 ×10 14 s −1 t) .<br />

x( t) = 0.531Å<br />

A plot of this function versus time is shown in the figure below.<br />

0.6<br />

€<br />

0.4<br />

0.2<br />

x(t) (Å)<br />

0.0<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

-0.2<br />

-0.4<br />

-0.6<br />

time (ps)


3. continued<br />

8<br />

c.) Using the analytic solution to Newton's equations for the harmonic oscillator, plot the<br />

velocity as a function of time.<br />

The velocity is the time derivative of the position,<br />

€<br />

( ) = x ˙ ( t) = d dt x( t)<br />

v t<br />

= d dt<br />

⎡⎡ v(0)<br />

⎣⎣<br />

⎢⎢<br />

ω<br />

sin( ω t)<br />

⎤⎤<br />

⎦⎦<br />

⎥⎥<br />

v( t) = v( 0) cos( ω t ) .<br />

Substituting the specific parameters for this problem, the expression for the velocity becomes<br />

v( t) = ( 8400 m/s) cos( 1.58 ×10 14 s −1 t),<br />

with the velocity in m/s and the frequency in s –1 . A plot of the velocity as a function of time is shown in<br />

the figure below. €<br />

10000<br />

8000<br />

6000<br />

4000<br />

v(t) (m/s)<br />

2000<br />

0<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

-2000<br />

-4000<br />

-6000<br />

-8000<br />

-10000<br />

time (ps)


4. Again consider the simple one-dimensional potential used in problems 2 and 3. Assume<br />

that the force constant k is 720 kcal mol –1 Å –2 . The reduced mass is 12.0 g/mol. The<br />

initial position is 0 Å and the initial velocity is 8400 m/s.<br />

9<br />

a.) Using the Verlet leapfrog algorithm, carry out two time steps to determine the<br />

position and velocity of the particle at times t 1 and t 2 . Use a step size of 1<br />

femtosecond.<br />

The Verlet leapfrog algorithm for one particle in one dimension is given by<br />

x( t n+1 ) = x( t n ) + hv x ( t n+1/ 2 )<br />

v x ( t n+1/ 2 ) = v x ( t n−1/ 2 ) + h m F x( t n) .<br />

The force F x is obtained from the force field,<br />

€<br />

F x = − dU<br />

dx<br />

F x = − kx .<br />

Subsituting, the velocity equation becomes<br />

€<br />

( ) = v x ( t n−1/ 2 ) − hk m x t n<br />

v x t n+1/ 2<br />

( ).<br />

For n = 0, the Verlet leapfrog equations are given by<br />

v x ( t 1/ 2 ) = v x ( t −1/ 2 ) − hk<br />

m x t 0<br />

x( t 1 ) = x( t 0 ) + h v x ( t 1/ 2 ) .<br />

The time step is h = 10 −15 s . Using the initial conditions x t 0<br />

v x ( t −1/2 ) = v x ( 0) = 8400 € m/s, the velocity equations is<br />

The position equation then becomes<br />

€<br />

( )<br />

v x ( t 1/ 2 ) = v x ( t −1/ 2 ) − hk<br />

m x ( t 0)<br />

= 8400 m/s − hk<br />

m ( 0)<br />

v x ( t 1/ 2 ) = 8400 m/s.<br />

x( t 1 ) = x( t 0 ) + h v x ( t 1/ 2 )<br />

= 0 + ( 10 −15 s) ( 8400 m/s)<br />

x( t 1 ) = 8.40 × 10 −12 m.<br />

( ) = x( 0) = 0 and<br />


4 a.) continued<br />

10<br />

For the next time step, with n = 1, the velocity equation becomes<br />

v x ( t 3/ 2 ) = v x ( t 1/2 ) − hk<br />

m x ( t 1).<br />

In order to evaluate this equation, it is helpful to convert the force constant into SI units,<br />

€<br />

v x t 3/ 2<br />

k = ( 760 kcalmol −1 Å −2 ⎛⎛ 4.184 kJ ⎞⎞<br />

) ⎜⎜ ⎟⎟ 1000 J<br />

2<br />

⎛⎛ ⎞⎞ ⎛⎛<br />

1Å<br />

⎞⎞<br />

⎜⎜ ⎟⎟ ⎜⎜<br />

⎝⎝ 1kcal ⎠⎠ ⎝⎝ 1kJ ⎜⎜<br />

⎠⎠ ⎝⎝ 10 −10 ⎟⎟<br />

⎟⎟<br />

m⎠⎠<br />

k = 3.01×10 26 J mol −1 m −2 .<br />

Substituting the force constant into the velocity equation yields<br />

€<br />

( ) = v x ( t 1/ 2 ) − hk<br />

( )<br />

m x t 1<br />

= 8400 m/s − 10−15 s<br />

v x ( t 3/ 2 ) = 8189 m/s.<br />

For the time step with n = 1 the position equation becomes<br />

( )( 3.01× 10 26 J mol −1 m −2 )( 8.40 × 10 −12 m)<br />

( 0.012 kg mol −1 )<br />

x( t 2 ) = x( t 1 ) + h v x ( t 3/ 2 ) .<br />

Substituting,<br />

€<br />

x t 2<br />

( )<br />

( ) = 8.40 ×10 −12 m + 10 −15 s ( 8189 m/s )<br />

x( t 2 ) = 1.66 ×10 −11 m.<br />

Finally, for the final time step, with n = 2, the velocity equation becomes<br />

€<br />

€<br />

v x ( t 5/ 2 ) = v x ( t 3/ 2 ) − hk<br />

m x ( t 2).<br />

Using the force constant in the velocity equation yields<br />

€<br />

v x ( t 5/ 2 ) = 8189 m/s −<br />

v x ( t 5/ 2 ) = 7773 m/s.<br />

Averaging the first pair of velocities, the equations are<br />

v x t 0<br />

( 10 −15 s) 3.01×1026 J mol −1 m −2<br />

( )( 1.66 ×10−11 m)<br />

( 0.012 kg mol −1<br />

)<br />

( ) = 1 2<br />

[ v x( t 1/ 2) + v x ( t −1/ 2 )]<br />

= 1 [ 8400 m/s + 8400 m/s ]<br />

2<br />

v x ( t 0 ) = 8400 m/s.<br />


4 a.) continued<br />

11<br />

Averaging the second pair of velocities yields<br />

€<br />

( ) = 1 2 [ v x( t 3/ 2) + v x ( t 1/ 2 )]<br />

= 1 [ 8189 m/s + 8400 m/s ]<br />

2<br />

( ) = 8295m/s.<br />

v x t 1<br />

v x t 1<br />

Averaging the final pair of velocities yields<br />

€<br />

( ) = 1 2 [ v x( t 5/ 2) + v x ( t 3/ 2 )]<br />

= 1 [ 7773m/s + 8189 m/s ]<br />

2<br />

( ) = 7981m/s.<br />

v x t 2<br />

v x t 2<br />

These results are summarized in the table below.<br />

n<br />

t n<br />

(s)<br />

x( t n )<br />

(m)<br />

v x ( t n )<br />

(m/s)<br />

0 0 0 8400<br />

1 1×10 −15 8.40× 10 −12 8295<br />

2 2× 10 −15 1.66 ×10 −11 7981<br />

b.) Compare your results from part (a) to the exact solution obtained in problem 3.<br />

The equations for the exact analytic solutions for the position and velocity are given in problem 3. The<br />

position is<br />

€<br />

x( t) = ( 0.531 Å)sin( 1.58 ×10 14 s −1 t) ,<br />

with time in seconds and position in angstroms. The velocity is<br />

v( t) = ( 8400 m/s) cos( 1.58 ×10 14 s −1 t) ,<br />

€<br />

€<br />

with the velocity in m/s and time in seconds. The results for the analytic solution, using the same time<br />

points as in part (b), yields € the results presented in the table below.<br />

n<br />

t n<br />

(s)<br />

x( t n )<br />

(m)<br />

v x ( t n )<br />

(m/s)<br />

0 0 0 8400<br />

1 1×10 −15 8.363×10 −12 8295<br />

2 2× 10 −15 1.652 ×10 −11 7982<br />

We can see from these results that the leapfrog algorithm predicts the velocities with little error compared to<br />

the analytic solution. The percent errors for the n = 0, 1, and 2 time steps are 0%, 0%, and 0.01%,<br />

respectively. The leapfrog algorithm also does a reasonable job in predicting the position of the particle<br />

compared to the analytic solution. The errors are somewhat larger than those for the velocity, with errors of<br />

0%, 0.4%, and 0.6%, respectively.


5. The Maxwell-Boltzmann distribution for speeds is<br />

12<br />

F(v) = 4π v 2<br />

3/ 2<br />

⎛⎛ m ⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ 2π k B T ⎠⎠<br />

⎛⎛<br />

exp − mv2 ⎞⎞<br />

⎜⎜<br />

⎝⎝ 2k B T<br />

⎟⎟ .<br />

⎠⎠<br />

In this equation, m is the mass of a particle, k B is the Boltzmann constant, T is<br />

temperature, and v € is the speed.<br />

velocity vector,<br />

where<br />

v x ,<br />

v y, and<br />

The most probable speed<br />

€ by € the equation €<br />

The speed v is defined to be the magnitude of the<br />

2<br />

v = v x +<br />

2 vy +<br />

2<br />

[ vz ] 1/ 2 ,<br />

v z are the components of the velocity vector.<br />

€<br />

v mp corresponding to the maximum in the distribution is given<br />

€<br />

v mp =<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

2k B T<br />

m<br />

1/ 2<br />

⎞⎞<br />

⎟⎟ .<br />

⎠⎠<br />

a.) Plot the Maxwell-Boltzmann distribution function F(v) (y-axis) versus v (x-axis) for a<br />

collection of atoms at 300 € K. Assume that one mole of atoms weighs 12.0 g.<br />

b.)<br />

Using the same mass as in part (a), plot € the Maxwell-Boltzmann distribution function<br />

F(v) versus v for a collection of atoms at 1000 K. Discuss the effect of temperature<br />

on the distribution of atomic speeds.<br />

€<br />

Both questions (a) and (b) are answered below.<br />

The Maxwell-Boltzmann distribution function for the atoms at 300 K is given by<br />

⎢⎢ 0.012 kg/mol<br />

( ) = 4π v 2 ⎢⎢<br />

F v<br />

3/ 2<br />

⎡⎡<br />

⎛⎛ 1mol ⎞⎞ ⎤⎤<br />

( ) ⎜⎜<br />

⎝⎝ 6.02217 × 10 23 ⎟⎟<br />

⎠⎠<br />

⎥⎥<br />

⎥⎥<br />

⎢⎢ 2π( 1.38062 × 10 -23 JK −1 )( 300 K)<br />

⎥⎥<br />

⎢⎢<br />

⎥⎥<br />

⎣⎣<br />

⎦⎦<br />

⎧⎧<br />

⎛⎛ 1mol ⎞⎞<br />

( 0.012 kg/mol)<br />

⎜⎜<br />

⎝⎝ 6.02217 × 10<br />

× exp −<br />

23 ⎟⎟ v 2 ⎫⎫<br />

⎪⎪<br />

⎠⎠<br />

⎪⎪<br />

⎪⎪<br />

⎪⎪<br />

⎨⎨<br />

2( 1.38062 × 10 -23 JK −1 ⎬⎬<br />

⎪⎪<br />

)( 300 K)<br />

⎪⎪<br />

⎩⎩ ⎪⎪<br />

⎭⎭ ⎪⎪<br />

€<br />

F( v) = ( 8.41956 × 10 −9 v 2 ) exp{ −2.40549 × 10 −6 v 2 }.<br />


5a, b.) continued<br />

13<br />

The velocity distribution function for the atoms at 1000 K is given by<br />

€<br />

⎢⎢ 0.012 kg/mol<br />

( ) = 4π v 2 ⎢⎢<br />

F v<br />

3/ 2<br />

⎡⎡<br />

⎛⎛ 1mol ⎞⎞ ⎤⎤<br />

( ) ⎜⎜<br />

⎝⎝ 6.02217 × 10 23 ⎟⎟<br />

⎠⎠<br />

⎥⎥<br />

⎥⎥<br />

⎢⎢ 2π( 1.38062 × 10 -23 JK −1 )( 1000 K)<br />

⎥⎥<br />

⎢⎢<br />

⎥⎥<br />

⎣⎣<br />

⎦⎦<br />

⎧⎧<br />

⎛⎛ 1mol ⎞⎞<br />

( 0.012 kg/mol)<br />

⎜⎜<br />

⎝⎝ 6.02217 × 10<br />

× exp −<br />

23 ⎟⎟ v 2 ⎫⎫<br />

⎪⎪<br />

⎠⎠<br />

⎪⎪<br />

⎪⎪<br />

⎪⎪<br />

⎨⎨<br />

2( 1.38062 × 10 -23 JK −1 ⎬⎬<br />

⎪⎪<br />

)( 1000 K)<br />

⎪⎪<br />

⎩⎩ ⎪⎪<br />

⎭⎭ ⎪⎪<br />

F( v) = ( 1.38347 × 10 −9 v 2 ) exp{ −7.21646 × 10 −7 v 2 }.<br />

Note that the units of the exponent cancel out so that it is unitless, while the units of the terms in front of<br />

the exponent are € sm –1 .<br />

Plots of the Maxwell-Boltzmann distribution of speeds at 300 and 1000 K are shown on a single graph<br />

below.<br />

0.0014<br />

0.0012<br />

T = 300 K<br />

0.0010<br />

F(v)<br />

0.0008<br />

0.0006<br />

T = 1000 K<br />

0.0004<br />

0.0002<br />

0.0000<br />

0 500 1000 1500 2000 2500 3000<br />

v (m/s)<br />

As can be seen from the graph, the maximum (or most probable) speed increases as the temperature<br />

increases. In addition, the entire distribution shifts to larger speeds as the temperature increases.


5. continued<br />

14<br />

c.) Calculate the most probable speed for atoms weighing 12.0 g/mol at 300 K and 1000<br />

K. Express your answers in m/s.<br />

The most probable speed<br />

v mp is<br />

€<br />

v mp =<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

2k B T<br />

m<br />

1/ 2<br />

⎞⎞<br />

⎟⎟ .<br />

⎠⎠<br />

At 300 K, the most probable speed is therefore<br />

€<br />

2 1.38062 × 10 −23 JK −1<br />

1/ 2<br />

⎡⎡<br />

( )( 300 K)<br />

⎤⎤<br />

v mp = ⎢⎢<br />

⎥⎥<br />

⎢⎢ ( 0.012 kg/mol) ( 1mol/6.02217 × 10<br />

⎣⎣<br />

23 ) ⎥⎥<br />

⎦⎦<br />

v mp = 645 m/s.<br />

At 1000 K, the most probable speed is<br />

€<br />

2 1.38062 × 10 −23 JK −1<br />

1/ 2<br />

⎡⎡<br />

( )( 1000 K)<br />

⎤⎤<br />

v mp = ⎢⎢<br />

⎥⎥<br />

⎢⎢ ( 0.012 kg/mol) ( 1mol/6.02217 × 10<br />

⎣⎣<br />

23 ) ⎥⎥<br />

⎦⎦<br />

v mp = 1180 m/s.<br />

d.) From the most € probable speeds calculated in part (c), determine the most probable<br />

kinetic energy of one mole of atoms at 300 K and 1000 K. Express your answers in<br />

J/mol.<br />

The most probable kinetic energy KE mp is given by<br />

KE mp = 1 2 m v 2<br />

mp .<br />

At 300 K, the most probable kinetic energy is<br />

€<br />

KE mp = 1 ( 0.012 kg/mol )( 2 645m/s)2<br />

KE mp = 2490 J/mol.<br />

At 1000 K, the most probable kinetic energy is<br />

€<br />

KE mp = 1 0.012 kg/mol<br />

2<br />

( ) ( 1180 m/s )2<br />

KE mp = 8310 J/mol.<br />


15<br />

6. The equipartition theorem states that each degree of freedom contributes 1<br />

2 k BT to the<br />

internal energy of a particle (or 1<br />

2 RT to the internal energy of one mole of particles).<br />

a.) Use the equipartition theorem to calculate the internal energy of a mole of atoms at<br />

300 K. Express your answer in J/mol.<br />

Since an atom has only three translational degrees of freedom (and no vibrational or rotational degrees of<br />

freedom), the internal energy U for one mole of atoms at 300 K is<br />

U = 3 2 RT<br />

( )( 300 K)<br />

= 3 8.314 J/molK<br />

2<br />

U = 3740 J/mol.<br />

b.) Repeat the calculation € of the internal energy for a mole of atoms at 1000 K.<br />

your answer in J/mol.<br />

Express<br />

The internal energy U for one mole of atoms at 1000 K is<br />

€<br />

U = 3 2 RT<br />

( )( 1000 K)<br />

= 3 8.314 J/molK<br />

2<br />

U = 12500 J/mol.<br />

c.) Compare your results from € parts (a) and (b) to the kinetic energy determined in part<br />

5(d). Are the values similar<br />

The internal energy values are similar in magnitude to the most probably kinetic energy values, 3740 vs.<br />

2490 J/mol at 300 K, and 12500 vs. 8310 J/mol at 1000 K. The internal energy values are a little lower<br />

than the most probable kinetic energy. This is because the distribution of speeds is skewed to higher<br />

speeds; therefore, the average speed is greater than the most probable speed. The equipartition theorem<br />

provides a measure of the average kinetic energy of the system rather than the most probable kinetic energy;<br />

thus, the internal energy computed from the equipartition theorem is larger than the most probable kinetic<br />

energy.


7. Given a collection of five atoms with speeds of 640, 552, 695, 533, and 697 m/s,<br />

determine the temperature of the system. The mass of the atoms is 12.0 g/mol.<br />

16<br />

From the equipartition theorem for atoms,<br />

U = 3 2 Nk B T ,<br />

where N is the number of atoms and 3N is the number of degrees of freedom. Relating the internal energy to<br />

the average kinetic energy, €<br />

where the brackets indicate an average.<br />

Solving for the temperature,<br />

€<br />

U = 3 2 Nk B T = 1<br />

2 m v2 ,<br />

T =<br />

2<br />

3Nk B<br />

1<br />

2 m v2 ,<br />

or factoring out the 1 2 and m, €<br />

€<br />

T =<br />

m<br />

3Nk B<br />

v 2 .<br />

Determining<br />

v 2 ,<br />

€<br />

v 2 = 1 ( 640 m/s ) 2 5 [ + ( 552 m/s)<br />

2 + ( 695m/s)<br />

2 + ( 533m/s)<br />

2 + ( 697 m/s ) 2<br />

]<br />

v 2 = 3.934 × 10 5 m 2 s −2 .<br />

€<br />

The mass of one carbon atom is determined by dividing the molecular weight of one mole in kg by Avogadro’s<br />

number,<br />

€<br />

m =<br />

MW<br />

Avogadro's Number<br />

m = 1.9226 ×10 −26 kg.<br />

=<br />

0.01200 kg/mol<br />

6.02214 ×10 23 /mol<br />

Calculating the temperature,<br />

€<br />

T =<br />

T = 189 K .<br />

( 1.9926 ×10 −26 kg)<br />

(<br />

( ) 3.934 ×105 m 2 s −2<br />

)<br />

3 1.38065×10 −23 J K<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!