26.12.2014 Views

The bond character of rutile type SiO2, GeO2 ... - Unit's home page.

The bond character of rutile type SiO2, GeO2 ... - Unit's home page.

The bond character of rutile type SiO2, GeO2 ... - Unit's home page.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Z. Kristallogr. 215 2000) 419±423 419<br />

# by Oldenbourg Wissenschaftsverlag, MuÈnchen<br />

<strong>The</strong> <strong>bond</strong> <strong>character</strong> <strong>of</strong> <strong>rutile</strong> <strong>type</strong> SiO 2 , GeO 2 and SnO 2 investigated<br />

by molecular orbital calculation<br />

J. Mimaki, T. Tsuchiya and T. Yamanaka*<br />

Osaka University, Faculty <strong>of</strong> Science, Department <strong>of</strong> Earth and Space Science, 1±1 Machikaneyama Toyonaka, Osaka 560±0043, Japan<br />

Received October 18, 1999; accepted February 25, 2000<br />

Abstract. Molecular orbital calculations using descretevariational<br />

Xa method were carried out in order to investigate<br />

the <strong>bond</strong> nature <strong>of</strong> SiO 2 , GeO 2 and SnO 2 . <strong>The</strong> <strong>bond</strong><br />

overlap populations and the d-orbital populations <strong>of</strong> cations<br />

were decreased with increasing the atomic number.<br />

<strong>The</strong> deformation density maps <strong>of</strong> electronic charge show<br />

the accumulation <strong>of</strong> electron in interatomic region which<br />

is most dominant in SiO 2 . <strong>The</strong> calculated density <strong>of</strong> states<br />

indicates that the <strong>bond</strong> <strong>character</strong> <strong>of</strong> SiO 2 is more covalent<br />

than that <strong>of</strong> GeO 2 and SnO 2 . From the excited d-electron<br />

partial density <strong>of</strong> states, it is inferred that the Si excited-3d<br />

has some connection with the <strong>bond</strong> nature <strong>of</strong> SiO 2 covalency.<br />

Introduction<br />

<strong>The</strong> <strong>rutile</strong> <strong>type</strong> structure is the most common MX 2 structure<br />

and the electronic properties <strong>of</strong> this class <strong>of</strong> compounds<br />

vary widely from insulating to metallic behavior.<br />

A number <strong>of</strong> investigations have been conducted by several<br />

theoretical and experimental approaches Baur, Khan,<br />

1971; Baur, 1976; Burdett, 1985; Sorantin, Schwarz,<br />

1992; Camargo, Igualada, BeltraÂn, Llusar, Longo, AndreÂs,<br />

1996). Among them, the <strong>bond</strong> <strong>character</strong> <strong>of</strong> stishovite, a<br />

high-pressure polymorph <strong>of</strong> SiO 2 , and related substances<br />

having the <strong>rutile</strong>-<strong>type</strong> structure are significant subject not<br />

only for the crystal chemistry but also for the earth<br />

science and electronic device.<br />

Since SiO 2 is the most fundamental substance in the<br />

earth crust and plays an important role in modern solid<br />

state technology, many theoretical calculations concerning<br />

SiO 2 polymorphs have been performed with focus on the<br />

crystal structure, phase transition, elastic properties and<br />

electronic states. Electronic and optical properties such as<br />

the band structure, density <strong>of</strong> stated and valence-charge distribution<br />

<strong>of</strong> all polymorphs <strong>of</strong> SiO 2 using self-consistent<br />

orthogonalized linear combinations <strong>of</strong> atomic orbitals<br />

method have been studied by Xu and Ching 1991). Nada,<br />

Catlow, Dovesi and Pisani 1990) have investigated the<br />

chemical nature <strong>of</strong> the Si ±O <strong>bond</strong> <strong>of</strong> a-quartz and stishovite<br />

* Correspondence author e-mail: mimaki@ess.sci.osaka-u.ac.jp)<br />

by a periodic ab-initio Hartree-Fock method. <strong>The</strong>y concluded<br />

that quartz is more covalent than stishovite and that<br />

the Si d-orbitals play an important role in these materials.<br />

In many SiO 2 polymorphs, Si has a tetrahedral coordination.<br />

<strong>The</strong>ir structural difference is in the way <strong>of</strong> the linkage<br />

<strong>of</strong> tetrahedra. Gibbs 1982) has carefully investigated<br />

<strong>bond</strong> length and angle variations, electron density distributions<br />

and <strong>bond</strong> <strong>character</strong>s <strong>of</strong> silicates by molecular orbital<br />

calculation. On the other hand, the high-pressure polymorph,<br />

stishovite is composed <strong>of</strong> 6-coordinated Si. X-ray<br />

least-squares refinements <strong>of</strong> stishovite and molecular orbital<br />

calculation <strong>of</strong> molecules with 6-coordinated Si has<br />

been performed Hill, Newton, Gibbs, 1983).<br />

Experimental studies on the nature <strong>of</strong> chemical <strong>bond</strong>s,<br />

electron emission spectra can provide information about<br />

electronic band structure which can be compared with the<br />

calculated density <strong>of</strong> states. Despite several theoretical calculations<br />

<strong>of</strong> stishovite, only little experimental work has<br />

been published Wiech, 1984).<br />

<strong>The</strong> <strong>rutile</strong>-<strong>type</strong> dioxides including the group <strong>of</strong> IVb<br />

metals is studied for understanding the structural and physical<br />

properties <strong>of</strong> stishovite. Namely, SnO 2 , GeO 2 and<br />

PbO 2 can be analogue substances for the high-pressure<br />

behavior <strong>of</strong> stishovite. Haines, LeÂger, Chateau, Bini and<br />

Ulivi 1998) have investigated GeO 2 by Raman spectroscopic<br />

study under pressure and they showed that SiO 2 ,<br />

GeO 2 and SnO 2 transform the CaCl 2 <strong>type</strong> structure systematically.<br />

<strong>The</strong> <strong>rutile</strong> structure consists <strong>of</strong> straight chains <strong>of</strong> edgesharing<br />

octahedra which lies parallel to the c axis. <strong>The</strong>re<br />

are two different M-O distances in the each MO 6 octahedron.<br />

<strong>The</strong> structural difference <strong>of</strong> <strong>rutile</strong>-<strong>type</strong> IVb metal<br />

dioxides have reported by Bolzan, Fong, Kennedy and<br />

Howard 1997) by neutron powder diffraction studies.<br />

Compounds <strong>of</strong> SiO 2 and GeO 2 have two longer distances<br />

axial M ±O) and four shorter distances equatorial<br />

M ±O), while those <strong>of</strong> SnO 2 and PbO 2 have two shorter<br />

ones and four longer ones, though the average M ±O distances<br />

display and almost ideal linear relationship with<br />

ionic radii.<br />

Recently, we have investigated the charge density and<br />

<strong>bond</strong> <strong>character</strong> <strong>of</strong> SiO 2 , GeO 2 and SnO 2 by single crystal<br />

X-ray diffraction study using the monopole refinement<br />

technique. <strong>The</strong> change <strong>of</strong> valence electron distribution was


420 J. Mimaki, T. Tsuchiya and T. Yamanaka<br />

clarified. <strong>The</strong> result will be presented in another paper<br />

Yamanaka, Kurashima, Mimaki, submitted).<br />

In the present paper we have studied the <strong>bond</strong> <strong>character</strong><br />

<strong>of</strong> <strong>rutile</strong> <strong>type</strong> SiO 2 , GeO 2 and SnO 2 by molecular orbitals<br />

calculation. <strong>The</strong> key <strong>of</strong> this work is the systematic<br />

research <strong>of</strong> these dioxides. We discuss the differences <strong>of</strong><br />

the dioxides in terms <strong>of</strong> Mulliken population analysis,<br />

density <strong>of</strong> states and charge density distributions.<br />

DV-Xa molecular orbitals calculation<br />

In order to investigate the <strong>bond</strong> <strong>character</strong> <strong>of</strong> <strong>rutile</strong> structure<br />

SiO 2 , GeO 2 and SnO 2 , the cluster discrete variational<br />

DV)-Xa molecular orbitals calculations Averill, Ellis,<br />

1973; Rosen, Ellis, Adachi, Averill, 1976) were carried<br />

out. <strong>The</strong> DV-Xa method is based upon a self-consistentfield<br />

Hartree-Fock-Slater approximation and has been applied<br />

to a wide range <strong>of</strong> materials Kowada, Adachi, Tatsumisago,<br />

Minami, 1992; Tanaka, Kawai, Adachi, 1995;<br />

Nakatsugawa, Iguchi, 1997). In this method, one-electron<br />

Hamiltonian h is,<br />

h ˆ T i ‡ V n ‡ V c ‡ V xc ;<br />

…1†<br />

where T i ,V n ,V c and V xc is the kinetic energy potential, the<br />

Coulomb interaction with nuclear, the Coulomb interaction<br />

between electrons and exchange-correlation potential, respectively.<br />

In the Hartree-Fock-Slater method, the exchange-correlation<br />

potential is given by<br />

<br />

V xa ˆ 3a 3r 1=3<br />

; …2†<br />

4p<br />

Where r…r† is the local charge density<br />

<strong>The</strong> molecular orbitals <strong>of</strong> the cluster are represented by<br />

linear combination <strong>of</strong> atomic orbitals LCAO) expressed<br />

as<br />

w l ˆ P C ij c i ;<br />

…3†<br />

where w l ; c i and C ij is the lth molecular orbital, the ith<br />

atomic orbital and the coefficients <strong>of</strong> linear combinations<br />

determined by self-consistent procedure, respectively.<br />

Compared with the Hartree-Fock methods, this method<br />

has advantages as follows:<br />

1) It can calculate the electronic structure <strong>of</strong> the substances<br />

including heavy atoms within same precision as<br />

light ones because the atomic orbitals are numerically generated.<br />

2) By using Xa exchange-correlation potential a<br />

fixed at 0.7), the computation time is greatly reduced and<br />

relatively large-scale calculation is possible. <strong>The</strong> details <strong>of</strong><br />

the computational treatments <strong>of</strong> the DV-Xa method have<br />

been reported in Adachi, Tsukada, and Satoko 1978).<br />

<strong>The</strong> atomic basis 1s) 2 ns) 2 np) 2 nd) 0 for each cation<br />

where n is 3, 4 and 5 for Si, Ge, Sn, respectively and<br />

1s) 2 2s) 2 2p) 4 for oxygen were adopted as the initial<br />

state. Moreover, we placed formal charges at each atom<br />

sites around the cluster with cation as ‡4, <strong>of</strong> oxygen as<br />

2 in order to include the effect <strong>of</strong> the Madelung potential.<br />

<strong>The</strong> [MO 6 M 10 O 8 ] 16‡ M ˆ Si, Ge, Sn) and<br />

[MO 6 M 10 O 38 ] 44 M ˆ Si, Ge) clusters in D 2h mmm)<br />

point symmetry were employed. Since there is no large<br />

difference among the results obtained from these clusters,<br />

we concluded the size effects <strong>of</strong> cluster are small. <strong>The</strong><br />

structural data <strong>of</strong> clusters were taken from experimental<br />

results Yamanaka et al. Submitted).<br />

Results and discussion<br />

Mulliken population analysis<br />

1) [MO 6 M 10 O 8 ] 16‡ M ˆ Si, Ge, Sn) and 2)<br />

[MO 6 M 10 O 38 ] 44 M ˆ Si, Ge) clusters are shown in<br />

Fig. 1. <strong>The</strong> latter cluster was not calculated in the case <strong>of</strong><br />

M ˆ Sn, since we could not have a good self-consistency<br />

in it. Table 1 shows the results <strong>of</strong> Mulliken population<br />

analysis. <strong>The</strong> <strong>bond</strong> overlap population, which is a useful<br />

parameter to discuss the covalency, is decreased on increasing<br />

atomic number. <strong>The</strong> exited d-orbital population is<br />

also decreased from Si to Sn. <strong>The</strong> Mulliken population<br />

analysis is widely used in the field <strong>of</strong> quantum chemistry<br />

in order to analyze the local electronic properties. However,<br />

it is noted that absolute values <strong>of</strong> Mulliken population<br />

analysis are strongly dependent on the atomic basis<br />

set. On the contrary, they have comparable values when<br />

they are calculated with same conditions.<br />

a<br />

b<br />

Fig. 1. Cluster model <strong>of</strong> a) [MO 6 M 10 O 8 ] 16‡ and b) [MO 6 M 10 O 38 ] 44 .<br />

<strong>The</strong> gray and open spheres are Si and O atoms, respectively.<br />

Table 1. <strong>The</strong> results <strong>of</strong> Mulliken population analysis.<br />

a) cluster: [MO 6 M 10 O 8 ] 16‡ M ˆ Si, Ge, Sn)<br />

n<br />

ns<br />

np<br />

nd<br />

Si Ge Sn<br />

3<br />

0.50<br />

0.83<br />

0.51<br />

4<br />

0.70<br />

0.88<br />

0.23<br />

5<br />

0.62<br />

0.75<br />

0.18<br />

net charge 2.16 2.18 0.43<br />

ovelap population eq)<br />

overlap population ax)<br />

b) cluster: [MO 6 M 10 O 38 ] 44<br />

n<br />

ns<br />

np<br />

nd<br />

0.44<br />

0.42<br />

M ˆ Si, Ge)<br />

Si<br />

3<br />

0.52<br />

0.87<br />

0.53<br />

0.37<br />

0.33<br />

Ge<br />

4<br />

0.70<br />

0.87<br />

0.21<br />

net charge 2.08 2.20<br />

overlap population eq)<br />

overlap population ax)<br />

0.45<br />

0.43<br />

0.36<br />

0.32<br />

0.26<br />

0.25


<strong>The</strong> <strong>bond</strong> <strong>character</strong> <strong>of</strong> <strong>rutile</strong> <strong>type</strong> SiO 2 , GeO 2 and SnO 2 421<br />

Density <strong>of</strong> states <strong>of</strong> SiO 2 , GeO 2 , SnO 2<br />

<strong>The</strong> calculated total and partial densities <strong>of</strong> states DOS)<br />

<strong>of</strong> SiO 2 , GeO 2 and SnO 2 are shown in Fig. 2 and Fig. 3,<br />

respectively. <strong>The</strong> DOS can provide information on the<br />

electron system as a function <strong>of</strong> energy. <strong>The</strong> highest occupied<br />

molecular orbitals HOMO) is set to be zero. <strong>The</strong>se<br />

DOS(arb. units)<br />

SiO 2<br />

GeO 2<br />

SnO 2<br />

-30 -20 -10 0 10<br />

Energy (eV)<br />

Fig. 2. Total density <strong>of</strong> states TDOS) <strong>of</strong> SiO 2 , GeO 2 and SnO 2 . <strong>The</strong><br />

full, dashed and dotted line corresponds to SiO 2 n ˆ 3), GeO 2<br />

n ˆ 4) and SnO 2 n ˆ 5), respectively.<br />

DOS(arb. units)<br />

0.5<br />

0<br />

0.5<br />

0<br />

0.5<br />

0<br />

4.0<br />

0<br />

4.0<br />

Mns<br />

SiO 2 ( n=3 )<br />

GeO 2 ( n=4 )<br />

SnO 2 ( n=5 )<br />

Mnp<br />

Mnd<br />

O2s<br />

O2p<br />

0<br />

-30 -20 -10 0 10<br />

Energy(eV)<br />

Fig. 3. Partial density <strong>of</strong> states PDOS) <strong>of</strong> SiO 2 , GeO 2 and SnO 2 .<br />

<strong>The</strong> full, dashed and dotted lines correspond to SiO 2 n ˆ 3), GeO 2<br />

n ˆ 4) and SnO 2 n ˆ 5), respectively.<br />

DOS were obtained by convolution <strong>of</strong> MO levels with a<br />

Gaussian broadening function with a full width at halfmaximum<br />

FWHM) <strong>of</strong> 0.5 eV. <strong>The</strong> results <strong>of</strong> the total density<br />

<strong>of</strong> states TDOS) for SiO 2 stishovite) is in good<br />

agreement with Xu and Ching 1991). <strong>The</strong> partial density<br />

<strong>of</strong> states PDOS) is in very good agreement with Nada<br />

et al. 1990).<br />

Experimental results <strong>of</strong> X-ray photoelectron spectroscopy<br />

and ultraviolet photoelectron spectroscopy XPS and<br />

UPS) can provide information about density <strong>of</strong> states <strong>of</strong><br />

valence bands. Barr, Mohsenian and Chen 1991) have examined<br />

XPS spectra <strong>of</strong> sputter-deposited thin films <strong>of</strong> IVb<br />

oxides. According to their experiment, the covalency ionicity)<br />

affects the bandwidth <strong>of</strong> these oxides. <strong>The</strong> more<br />

covalent, the wider the bandwidth. Our results <strong>of</strong> total<br />

DOS are roughly in agreement with theirs concerning to<br />

bandwidths which gradually shrink from SiO 2 to SnO 2 .<br />

SiO 2 has the most dispersive bandwidth due to the enhanced<br />

covalency and hybridization compared to GeO 2<br />

and SnO 2 , as shown in Fig. 2.<br />

<strong>The</strong> role played by d-orbitals in Si ±O <strong>bond</strong> formation<br />

is a controversial problem Gibbs, Downs, Boisen, 1994,<br />

Simunek, Vackar, Wiech, 1993). <strong>The</strong> electron emission<br />

spectra about a-quartz and stishovite have been analyzed<br />

by Wiech 1984). Si K-emission bands <strong>of</strong> stishovite are<br />

considerably different from a-quartz, while those <strong>of</strong> the Si<br />

L 2,3 -emission bands are similar. <strong>The</strong> Si K- and Si L-emission<br />

bands reflect the Si p-like and Si s/d-like electrons <strong>of</strong><br />

the valence band, respectively. Simunek et al. 1993) have<br />

concluded that Si 3d-orbital does not participate in the<br />

Si ±O <strong>bond</strong>. This conclusion is based upon the fact that Si<br />

L 2,3 -emission bands composed <strong>of</strong> their s and d constituents<br />

are insensitive to the local crystal structure <strong>of</strong> a-<br />

quartz and stishovite.<br />

On the other hand, Gibbs et al. 1994) concluded that<br />

the d-orbitals <strong>of</strong> Si play a small but important role in governing<br />

the geometry, electron density distribution and<br />

spectral properties. As seen from Fig. 3, the population <strong>of</strong><br />

d-electron on Ge and Sn is much less than that <strong>of</strong> Si.<br />

Thus, it is implied that the d-orbitals <strong>of</strong> cation affects the<br />

difference <strong>of</strong> local geometry <strong>of</strong> the crystal structure <strong>of</strong><br />

these materials.<br />

Electron density distributions <strong>of</strong> SiO 2 ,<br />

GeO 2 and SnO 2<br />

<strong>The</strong> deformation density maps subtracted crystal electron<br />

density from isolated atom electron density) <strong>of</strong> SiO 2 ,<br />

GeO 2 and SnO 2 are shown in Fig. 4 and the degree <strong>of</strong><br />

localization <strong>of</strong> electron density distribution <strong>of</strong> Si ±O,<br />

Ge ±O and Sn ±O has been compared.<br />

Many attempts in order to establish a direct link between<br />

the height/position <strong>of</strong> a build-up <strong>of</strong> the Drr) map<br />

and the ionic/covalent <strong>character</strong> <strong>of</strong> the <strong>bond</strong> had been made<br />

earlier. However, we can not quantitatively evaluate the<br />

specific covalency <strong>of</strong> these <strong>bond</strong>s by deformation density<br />

maps. Dunitz and Sieler 1983) discovered the absence <strong>of</strong> a<br />

build-up <strong>of</strong> the Drr) density in interatomic regions for a<br />

number <strong>of</strong> covalent systems with NN, CN and CO <strong>bond</strong>s.<br />

Thus, the accumulation <strong>of</strong> electron density in the <strong>bond</strong>ing<br />

region is not a necessary condition <strong>of</strong> covalent <strong>bond</strong>s.


422 J. Mimaki, T. Tsuchiya and T. Yamanaka<br />

(a)<br />

(b)<br />

(c)<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Si<br />

Ge<br />

Sn<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

(d)<br />

O<br />

(e)<br />

O<br />

(f)<br />

O<br />

O<br />

Si<br />

O<br />

O<br />

Ge<br />

O<br />

O<br />

Sn<br />

O<br />

O<br />

O<br />

O<br />

Fig. 4. Deformation density map <strong>of</strong> SiO 2 , GeO 2 and SnO 2 .a) SiO 2<br />

equatorial <strong>bond</strong> plane. b) GeO 2 equatorial <strong>bond</strong> plane. c) SnO 2<br />

equatrial <strong>bond</strong> plane. d) SiO 2 axial/equatrial <strong>bond</strong> plane. e) GeO 2<br />

axial/equatrial <strong>bond</strong> plane. f) SnO 2 axial equatrial <strong>bond</strong> plane. <strong>The</strong><br />

Despite the above comment, the deformation density<br />

maps can provide meaningful information and are worth<br />

while calculation, since the relative charge transfer is at<br />

least shown in these results. <strong>The</strong>re is an increase <strong>of</strong> electron<br />

density in the interatomic region between Si and O;<br />

such increase <strong>of</strong> Ge ±O <strong>bond</strong> is less than that <strong>of</strong> Si ±O<br />

<strong>bond</strong>, and that <strong>of</strong> Sn ±O <strong>bond</strong> is the last <strong>of</strong> the three dioxides.<br />

<strong>The</strong> ratio <strong>of</strong> the electron density <strong>of</strong> M ±Oeq)/<br />

M ±Oax) is decreasing with increasing atomic number.<br />

Comparison with monopole refinement results<br />

Together with calculations described above, we have executed<br />

monopole refinements based on X-ray single crystals<br />

diffraction intensities <strong>of</strong> SiO 2 , GeO 2 and SnO 2 Yamanaka<br />

et al. submitted). Our calculations are in good<br />

agreement with the refined results and other experimental<br />

data Baur, Khan 1971; Hill et al. 1983; Spackman, Hill,<br />

Gibbs, 1987; Bolzan et al. 1997) which indicates that the<br />

electron distributions are more localized with increasing<br />

atomic number.<br />

Conclusion<br />

Molecular orbital calculations using descrete-variational<br />

Xa method have been performed in order to study the<br />

<strong>bond</strong> nature <strong>of</strong> SiO 2 , GeO 2 and SnO 2 . Our results indicate<br />

full and dashed lines correspond to positive and negative density, respectively.<br />

Dot-dashed lines indicate the zero level. <strong>The</strong> contour values<br />

range from 0.04 to 0.04 e a.u.) 3 with an increment <strong>of</strong> 0.005 e<br />

a.u.) 3 .<br />

that SiO 2 is the most covalent and the ionicity increases<br />

with increase atomic number. Moreover, the population <strong>of</strong><br />

d-orbital <strong>of</strong> cation decreases with increase atomic number.<br />

Thus, we may conclude that there are some correlations<br />

between the d-orbital <strong>of</strong> cations and the covalency <strong>of</strong><br />

M ±O <strong>bond</strong>s.<br />

Acknowledgments. This work is partly supported by the Grant-in-Aid<br />

A2)-10304044 and B2)-11694076) <strong>of</strong> Ministry <strong>of</strong> Education, Sport<br />

and Culture, Japan.<br />

References<br />

Adachi, H.; Tsukada, M.; Satoko, C.: Discrete Variational Xa Cluster<br />

Calculations I. Application to Metal Clusters. J. Phys. Soc. Jpn.<br />

45 1978) 875±883.<br />

Averill, F. W.; Ellis, D. E.: An efficient numerical multicenter basis<br />

set for molecular orbital calculation: Application to FeCl 4 . J.<br />

Chem. Phys. 59 1973) 6412±6418.<br />

Barr, T. L.; Mohsenian, M.; Chen, L. M.: XPS valence band studies<br />

<strong>of</strong> the <strong>bond</strong>ing chemistry <strong>of</strong> germanium oxides and related systems.<br />

Appl. Surf. Sci. 51 1991) 71±87.<br />

Baur, W. H.; Khan, A. A.: Rutile-Type Compounds. IV. SiO 2 , GeO 2<br />

and a Comparison with other Rutile-Type Structures. Acta Crystallogr.<br />

B27 1971) 2133±2139.<br />

Baur, W. H.: Rutile-Type Compounds. V. Refinement <strong>of</strong> MnO 2 and<br />

MgF 2 . Acta Crystallogr. B32 1976) 2200±2204.<br />

Bolzan, A. A.; Fong, C.: Kennedy, B. J.; Howard, C. J.: Structural<br />

Studies <strong>of</strong> Rutile-Type Metal Dioxides. Acta Crystallogr. B53<br />

1997) 373±380.<br />

Burdett, J.: Electronic Control <strong>of</strong> the Geometry <strong>of</strong> Rutile and Related<br />

Structures. Inorg. Chem. 24 1985) 2244±2253.


<strong>The</strong> <strong>bond</strong> <strong>character</strong> <strong>of</strong> <strong>rutile</strong> <strong>type</strong> SiO 2 , GeO 2 and SnO 2 423<br />

Camargo, A. C.; Igualada, J. A.; BeltraÂn, A.; Llusar, R.; Longo, E.;<br />

AndreÂs, J.: An ab initio perturbed ion study <strong>of</strong> structural properties<br />

<strong>of</strong> TiO 2 , SnO 2 and GeO 2 <strong>rutile</strong> lattices. Chem. Phys. 212<br />

1996) 381±391.<br />

Dunitz, J. D.; Sieler, P.: <strong>The</strong> absence <strong>of</strong> <strong>bond</strong>ing electron density in<br />

certain covalent <strong>bond</strong>s as revealed by X-ray analysis. J. Am.<br />

Chem. Soc. 105 1983) 7056±7058.<br />

Gibbs, G. V.: Molecules as models for <strong>bond</strong>ing in silicates. Am.<br />

Mineral. 67 1982) 421±450.<br />

Gibbs, G. V.; Downs, J. W.; Boisen, M. B.: <strong>The</strong> elusive SiO <strong>bond</strong><br />

SILICA. In: Reviews in Mineralogy vol. 29. Eds. P. J. Heaney,<br />

C. T. Prewitt, G. V. Gibbs), p. 331±368 Am. Meneral., Washington,<br />

D.C. 1994.<br />

Haines, J.; LeÂger, J. M.; Chateau, C.; Bini, R.; Ulivi, L.: Ferroelastic<br />

phase transition in <strong>rutile</strong>-<strong>type</strong> germanium dioxide at high pressure.<br />

Phys. Rev. B58 1998) R2909-R2912.<br />

Hill, R. J.; Newton, M. D.; Gibbs, G. V.: A Crystal Chemical Study<br />

<strong>of</strong> Stishovite. J. Solid State Chem. 47 1983) 185±200.<br />

Kowada, Y.; Adachi, H.; Tatsumisago, M.; Minami, T.: Application <strong>of</strong><br />

the DV-Xa cluster method to calculations <strong>of</strong> the electronic structure<br />

<strong>of</strong> silicate and phosphate glasses. J. Non-Cryst. Solids 150<br />

1992) 318±321.<br />

Nada, R.; Catlow, C. R. A.; Dovesi, R.; Pisani, C.: An ab-initio Hartree-Fock<br />

Study <strong>of</strong> a-quartz and stishovite. Phys. Chem. Miner.<br />

17 1990) 353±362.<br />

Nakatsugawa, H.; Iguchi, I.: Electronic structures in VO 2 using the<br />

periodic polarizable point-ion shell model and DV-Xa method.<br />

Phys. Rev. B55 1997) 2157±2163.<br />

RoseÂn, A.; Ellis, D. E.; Adachi, H.; Averill, F. W.: Calculations <strong>of</strong><br />

molecular ionization energies using a self-consistent-charge Hartree-Fock-Slater<br />

method. J. Chem. Phys. 65 No.9 1976) 3629±<br />

3634.<br />

Simunek, A.; Vackar, J.; Wiech, G.: Local s, p and d charge distributions<br />

and x-ray emission band <strong>of</strong> SiO 2 : a-quartz and stishovite. J.<br />

Phys.: Condens. Matter 5 1993) 867±874.<br />

Sorantin, P. I.; Schwarz, K.: Chemical Bonding in Rutile-Type Compounds.<br />

Inorg. Chem. 31 1992) 567±576.<br />

Spackman, M. A.; Hill, R. J.; Gibbs, G. V.: Exploration <strong>of</strong> Structure<br />

and Bonding in Stishovite with Fourier and Pseudoatom Refinement<br />

Methods Using Single Crystal and Powder X-ray Diffraction<br />

Data. Phys. Chem. Miner. 14 1987) 139±150.<br />

Tanaka, I.; Kawai, J.; Adachi, H.: Near-edge x-ray-absorption fine<br />

structure <strong>of</strong> crystalline silicon dioxides. Phys. Rev. B52 1995)<br />

11733±11739.<br />

Wiech, G.: X-ray spectroscopic investigation <strong>of</strong> the electronic structure<br />

<strong>of</strong> a-quartz and stishovite SiO 2 ). Solid State Commun. 52<br />

1984) 807±809.<br />

Xu, Y.; Ching, W. Y.: Electronic and optical properties <strong>of</strong> all polymorphic<br />

forms <strong>of</strong> silicon dioxide. Phys. Rev. B44 1991) 11048±<br />

11059.<br />

Yamanaka, T.; Kurashima, R.; Mimaki, J.: X-ray diffraction study <strong>of</strong><br />

<strong>bond</strong> <strong>character</strong> <strong>of</strong> <strong>rutile</strong>-<strong>type</strong> SiO 2 , GeO 2 and SnO 2 . Z. Kristallogr.<br />

215 2000) 424±428.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!